1
|
Peng D, Wang L, Fang Y, Lu L, Li Z, Jiang S, Chen J, Aschner M, Li S, Jiang Y. Lead exposure induces neurodysfunction through caspase-1-mediated neuronal pyroptosis. ENVIRONMENTAL RESEARCH 2024; 255:119210. [PMID: 38795947 DOI: 10.1016/j.envres.2024.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic lead (Pb) exposure causes neurodysfunction and contributes to the development of neurodegenerative disease. However, the mechanism of Pb-induced neurological dysfunction have yet to be fully elucidated. This study determined the role pyroptosis plays in Pb-induced neurodysfunction in neurons. We used both in vitro and in vivo approaches to explore whether Pb exposure induces caspase-1-mediated pyroptosis in neurons and its relationship to Pb-induced neurological disorders. Our findings showed that caspase-1-mediated pyroptosis in Pb-exposed neurons activated glycogen synthase kinase 3 protease activity by disrupting Ca2+/calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, leading to neurological disorders. Moreover, the caspase-1 inhibition VX-765 or the non-steroidal anti-inflammatory drug sodium para-aminosalicylic acid (PAS-Na) attenuated the Pb-induced neurological disorders by alleviating caspase-1 mediated neuronal pyroptosis. Our novel studies suggest that caspase-1-mediated pyroptosis in neurons represents a potential mechanism for Pb-induced neurodysfunction, identifying a putative target for attenuating the neurodegenerative effects induced by this metal.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Leilei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Siyang Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Naidu R, Biswas B, Willett IR, Cribb J, Kumar Singh B, Paul Nathanail C, Coulon F, Semple KT, Jones KC, Barclay A, Aitken RJ. Chemical pollution: A growing peril and potential catastrophic risk to humanity. ENVIRONMENT INTERNATIONAL 2021; 156:106616. [PMID: 33989840 DOI: 10.1016/j.envint.2021.106616] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 05/14/2023]
Abstract
Anthropogenic chemical pollution has the potential to pose one of the largest environmental threats to humanity, but global understanding of the issue remains fragmented. This article presents a comprehensive perspective of the threat of chemical pollution to humanity, emphasising male fertility, cognitive health and food security. There are serious gaps in our understanding of the scale of the threat and the risks posed by the dispersal, mixture and recombination of chemicals in the wider environment. Although some pollution control measures exist they are often not being adopted at the rate needed to avoid chronic and acute effects on human health now and in coming decades. There is an urgent need for enhanced global awareness and scientific scrutiny of the overall scale of risk posed by chemical usage, dispersal and disposal.
Collapse
Affiliation(s)
- Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Bhabananda Biswas
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ian R Willett
- School of Agriculture & Food Systems, The University of Melbourne, VIC 3052, Australia
| | - Julian Cribb
- Australian National Centre for the Public Awareness of Science (as an adjunct), Australian National University, Canberra 0200, Australia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | | | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, United Kingdom
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Adam Barclay
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert John Aitken
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, KyunPark S. Heavy Metals Exposure and Alzheimer's Disease and Related Dementias. J Alzheimers Dis 2020; 76:1215-1242. [PMID: 32651318 PMCID: PMC7454042 DOI: 10.3233/jad-200282] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease and related dementias lack effective treatment or cures and are major public health challenges. Risk for Alzheimer's disease and related dementias is partially attributable to environmental factors. The heavy metals lead, cadmium, and manganese are widespread and persistent in our environments. Once persons are exposed to these metals, they are adept at entering cells and reaching the brain. Lead and cadmium are associated with numerous health outcomes even at low levels of exposure. Although manganese is an essential metal, deficiency or environmental exposure or high levels of the metal can be toxic. In cell and animal model systems, lead, cadmium, and manganese are well documented neurotoxicants that contribute to canonical Alzheimer's disease pathologies. Adult human epidemiologic studies have consistently shown lead, cadmium, and manganese are associated with impaired cognitive function and cognitive decline. No longitudinal human epidemiology study has assessed lead or manganese exposure on Alzheimer's disease specifically though two studies have reported a link between cadmium and Alzheimer's disease mortality. More longitudinal epidemiologic studies with high-quality time course exposure data and incident cases of Alzheimer's disease and related dementias are warranted to confirm and estimate the proportion of risk attributable to these exposures. Given the widespread and global exposure to lead, cadmium, and manganese, even small increases in the risks of Alzheimer's disease and related dementias would have a major population impact on the burden on disease. This article reviews the experimental and epidemiologic literature of the associations between lead, cadmium, and manganese on Alzheimer's disease and related dementias and makes recommendations of critical areas of future investment.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ruby C. Hickman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Brandt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Harita S. Vadari
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Howard Hu
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Sung KyunPark
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Dou JF, Farooqui Z, Faulk CD, Barks AK, Jones T, Dolinoy DC, Bakulski KM. Perinatal Lead (Pb) Exposure and Cortical Neuron-Specific DNA Methylation in Male Mice. Genes (Basel) 2019; 10:genes10040274. [PMID: 30987383 PMCID: PMC6523909 DOI: 10.3390/genes10040274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
: Lead (Pb) exposure is associated with a wide range of neurological deficits. Environmental exposures may impact epigenetic changes, such as DNA methylation, and can affect neurodevelopmental outcomes over the life-course. Mating mice were obtained from a genetically invariant C57BL/6J background agouti viable yellow Avy strain. Virgin dams (a/a) were randomly assigned 0 ppm (control), 2.1 ppm (low), or 32 ppm (high) Pb-acetate water two weeks prior to mating with male mice (Avy/a), and this continued through weaning. At age 10 months, cortex neuronal nuclei were separated with NeuN⁺ antibodies in male mice to investigate neuron-specific genome-wide promoter DNA methylation using the Roche NimbleGen Mouse 3x720K CpG Island Promoter Array in nine pooled samples (three per dose). Several probes reached p-value < 10-5 , all of which were hypomethylated: 12 for high Pb (minimum false discovery rate (FDR) = 0.16, largest intensity ratio difference = -2.1) and 7 for low Pb (minimum FDR = 0.56, largest intensity ratio difference = -2.2). Consistent with previous results in bulk tissue, we observed a weak association between early-life exposure to Pb and DNA hypomethylation, with some affected genes related to neurodevelopment or cognitive function. Although these analyses were limited to males, data indicate that non-dividing cells such as neurons can be carriers of long-term epigenetic changes induced in development.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zishaan Farooqui
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christopher D Faulk
- Department of Animal Science, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA.
| | - Amanda K Barks
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55454, USA.
| | - Tamara Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Fathabadi B, Dehghanifiroozabadi M, Aaseth J, Sharifzadeh G, Nakhaee S, Rajabpour-Sanati A, Amirabadizadeh A, Mehrpour O. Comparison of Blood Lead Levels in Patients With Alzheimer's Disease and Healthy People. Am J Alzheimers Dis Other Demen 2018; 33:541-547. [PMID: 30134734 PMCID: PMC10852476 DOI: 10.1177/1533317518794032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND It is argued that breakdown of β-amyloid in the brain causes deposition of senescent plaques and therefore Alzheimer's disease (AD). One of the influential factors for increasing level of this protein is exposure to lead. Our aim was to compare blood lead levels (BLLs) between patients with AD and healthy controls. METHODS This case-control study was performed on all patients with cognitive impairment who were referred to the Neurological Clinic of Birjand in 2016 to 2017. Patients were referred to the laboratory for measurement of their serum levels of lead. The controls and patients were matched by age and sex. RESULTS In the AD case group, the average BLL was 22.22 ± 28.57 μg/dL. Mann-Whitney U test showed that BLLs were significantly higher in the patients than in the controls. The unadjusted odds ratio for BLL among the patients was 1.05 (95% confidence interval: 1.01-1.09; P = .01) compared to the controls. CONCLUSION In the present study, BLL was associated with AD.
Collapse
Affiliation(s)
- Babak Fathabadi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Dehghanifiroozabadi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Department of Neurology, Birjand University of Medical Sciences, Complementary Alternative Medicine Research Center, Valiasr Hospital, Birjand, Iran
| | - Jan Aaseth
- Innlandet Hospital and Inland Norway University of Applied Sciences, Elverum, Norway
| | - Gholamreza Sharifzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Rajabpour-Sanati
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Rocky Mountain Poison and Drug Center, Denver, CO, USA
| |
Collapse
|
6
|
Kelley KD, Checkoway H, Hall DA, Reich SG, Cunningham C, Litvan I. Traumatic Brain Injury and Firearm Use and Risk of Progressive Supranuclear Palsy Among Veterans. Front Neurol 2018; 9:474. [PMID: 29973911 PMCID: PMC6020251 DOI: 10.3389/fneur.2018.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Progressive supranuclear palsy (PSP) is a tauopathy that has a multifactorial etiology. Numerous studies that have investigated lead exposure and traumatic brain injury (TBI) as risk factors for other tauopathies, such as Alzheimer's disease, but not for PSP. Objective: We sought to investigate the role of firearm usage, as a possible indicator of lead exposure, and TBI as risk factors for PSP in a population of military veterans. Methods: We included participants from a larger case-control study who reported previous military service. Our sample included 67 PSP cases and 68 controls. Participants were administered a questionnaire to characterize firearm use in the military and occurrence of TBI. Results: Cases were significantly less educated than controls. In unadjusted analyses, the proportion of PSP cases (80.6%) and controls (64.7%) who reported use of firearms as part of their military job was positively associated with PSP, odds ratio (OR) 2.2 (95% CI: 1-5.0). There were no significant case-control differences in mean service duration. There was only a weak association with history of TBI, OR 1.6 (95% CI: 0.8-3.4). In multivariate models, firearm usage (OR 3.7, 95% CI: 1.5, 9.8) remained significantly associated with PSP. Conclusions: Our findings show a positive association between firearm usage and PSP and an inverse association between education and PSP. The former suggests a possible etiologic role of lead. Further studies are needed to confirm the potential etiologic effects of metals on PSP. The study was registered in clinicaltrials.gov. ClinicalTrials.gov Identifier: NCT00431301.
Collapse
Affiliation(s)
- Kristen D. Kelley
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Harvey Checkoway
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Deborah A. Hall
- Department of Neurology, Rush University Medical Center, Chicago, IL, United States
| | - Stephen G. Reich
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Chris Cunningham
- Clinical Trials Unit, University of Louisville, Louisville, KY, United States
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|