1
|
Huang S, Xu Y, Guo Y, Zhang Y, Tang Y, Liang C, Gao L, Yao B, Wang X. Aspirin increases estrogen levels in the placenta to prevent preeclampsia by regulating placental metabolism and transport function. Biochem Pharmacol 2024; 230:116561. [PMID: 39343179 DOI: 10.1016/j.bcp.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Preeclampsia is a unique multisystem progressive disease during pregnancy, which seriously endangers the health of pregnant women and fetuses. In clinical practice, aspirin is recommended for the prevention of preeclampsia, but the mechanism by which aspirin prevents preeclampsia has not yet been revealed. This report comprehensively evaluates the effects of aspirin on the expression and activity of placental metabolic enzymes and transporters. We found that after aspirin administration, only the expression of organic anion transporter 4 (OAT4) in the placenta showed a significant increase at both mRNA and protein levels, consistent with the results in JAR cells. Meanwhile, studies on the metabolic enzyme activity in the placenta showed a high upregulation of CYP19A1 activity. Subsequently, significant increases in endogenous substrates of OAT4 and CYP19A1 (dehydroepiandrosterone sulfate (DHEAS) and androstenedione) as well as estrone were detected in placental tissue. In summary, aspirin enhances the transport of DHEAS through OAT4 and promotes the metabolism of androstenedione through CYP19A1, thereby increasing estrogen levels in the placenta. This may be the mechanism by which aspirin prevents preeclampsia and maintains pregnancy by regulating the metabolism and transport function of the placenta.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China.
| |
Collapse
|
2
|
Shen Y, Liu J, Yao B, Zhang Y, Huang S, Liang C, Huang J, Tang Y, Wang X. Non-alcoholic fatty liver disease changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats. Toxicol Lett 2024; 396:36-47. [PMID: 38663832 DOI: 10.1016/j.toxlet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRβ, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.
Collapse
Affiliation(s)
- Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Tang J, Zhao H, Li K, Zhou H, Chen Q, Wang H, Li S, Xu J, Sun Y, Chang X. Intestinal microbiota promoted NiONPs-induced liver fibrosis via effecting serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115943. [PMID: 38194811 DOI: 10.1016/j.ecoenv.2024.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Collapse
Affiliation(s)
- Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongjun Zhao
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Pulmonary Hospital of Lanzhou, Public Health Department, Lanzhou 730000, China
| | - Jianguang Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
4
|
Xue J, Yin J, Nie J, Jiang H, Zhang H, Zeng S. Heterodimerization of Human UDP-Glucuronosyltransferase 1A9 and UDP-Glucuronosyltransferase 2B7 Alters Their Glucuronidation Activities. Drug Metab Dispos 2023; 51:1499-1507. [PMID: 37643881 DOI: 10.1124/dmd.123.001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Human UDP-glucuronosyltransferases (UGTs) play a pivotal role as prominent phase II metabolic enzymes, mediating the glucuronidation of both endobiotics and xenobiotics. Dimerization greatly modulates the enzymatic activities of UGTs. In this study, we examined the influence of three mutations (H35A, H268Y, and N68A/N315A) and four truncations (signal peptide, single transmembrane helix, cytosolic tail, and di-lysine motif) in UGT2B7 on its heterodimerization with wild-type UGT1A9, using a Bac-to-Bac expression system. We employed quantitative fluorescence resonance energy transfer (FRET) techniques and co-immunoprecipitation assays to evaluate the formation of heterodimers between UGT1A9 and UGT2B7 allozymes. Furthermore, we evaluated the glucuronidation activities of the heterodimers using zidovudine and propofol as substrates for UGT2B7 and UGT1A9, respectively. Our findings revealed that the histidine residue at codon 35 was involved in the dimeric interaction, as evidenced by the FRET efficiencies and catalytic activities. Interestingly, the signal peptide and single transmembrane helix domain of UGT2B7 had no impact on the protein-protein interaction. These results provide valuable insights for a comprehensive understanding of UGT1A9/UGT2B7 heterodimer formation and its association with glucuronidation activity. SIGNIFICANCE STATEMENT: Our findings revealed that the H35A mutation in UGT2B7 affected the affinity of protein-protein interaction, leading to discernable variations in fluorescence resonance energy transfer efficiencies and catalytic activity. Furthermore, the signal peptide and single transmembrane helix domain of UGT2B7 did not influence heterodimer formation. These results provide valuable insights into the combined effects of polymorphisms and protein-protein interactions on the catalytic activity of UGT1A9 and UGT2B7, enhancing our understanding of UGT dimerization and its impact on metabolite formation.
Collapse
Affiliation(s)
- Jia Xue
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Jing Nie
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Haitao Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis (J.X., J.Y., J.N., H.J., S.Z.) and Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology (H.Z.), Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China (J.N.); and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (H.Z.)
| |
Collapse
|
5
|
Sun L, Mi K, Hou Y, Hui T, Zhang L, Tao Y, Liu Z, Huang L. Pharmacokinetic and Pharmacodynamic Drug-Drug Interactions: Research Methods and Applications. Metabolites 2023; 13:897. [PMID: 37623842 PMCID: PMC10456269 DOI: 10.3390/metabo13080897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Because of the high research and development cost of new drugs, the long development process of new drugs, and the high failure rate at later stages, combining past drugs has gradually become a more economical and attractive alternative. However, the ensuing problem of drug-drug interactions (DDIs) urgently need to be solved, and combination has attracted a lot of attention from pharmaceutical researchers. At present, DDI is often evaluated and investigated from two perspectives: pharmacodynamics and pharmacokinetics. However, in some special cases, DDI cannot be accurately evaluated from a single perspective. Therefore, this review describes and compares the current DDI evaluation methods based on two aspects: pharmacokinetic interaction and pharmacodynamic interaction. The methods summarized in this paper mainly include probe drug cocktail methods, liver microsome and hepatocyte models, static models, physiologically based pharmacokinetic models, machine learning models, in vivo comparative efficacy studies, and in vitro static and dynamic tests. This review aims to serve as a useful guide for interested researchers to promote more scientific accuracy and clinical practical use of DDI studies.
Collapse
Affiliation(s)
- Lei Sun
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
| | - Yixuan Hou
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
| | - Tianyi Hui
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
| | - Lan Zhang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
| | - Zhenli Liu
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (L.S.); (K.M.); (Y.H.); (T.H.); (L.Z.); (Y.T.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China;
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
| |
Collapse
|
6
|
Ahmed AN, Rostami-Hodjegan A, Barber J, Al-Majdoub ZM. Examining Physiologically Based Pharmacokinetic Model Assumptions for Cross-Tissue Similarity of Activity per Unit of Enzyme: The Case Example of Uridine 5'-Diphosphate Glucuronosyltransferase. Drug Metab Dispos 2022; 50:1119-1125. [PMID: 35636771 DOI: 10.1124/dmd.121.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
The default assumption during in vitro in vivo extrapolation (IVIVE) to predict metabolic clearance in physiologically based pharmacokinetics (PBPK) is that protein expression and activity have the same relationship in various tissues. This assumption is examined for uridine 5'-diphosphate glucuronosyltransferases (UGTs), a case example where expression and hence metabolic activity are distributed across various tissues. Our literature analysis presents overwhelming evidence of a greater UGT activity per unit of enzyme (higher kcat) in kidney and intestinal tissues relative to liver (greater than 200-fold for UGT2B7). This analysis is based on application of abundance values reported using similar proteomic techniques and within the same laboratory. Our findings call into question the practice of assuming similar kcat during IVIVE estimations as part of PBPK and call for a systematic assessment of the kcat of various enzymes across different organs. The analysis focused on compiling data for probe substrates that were common for two or more of the studied tissues to allow for reliable comparison of cross-tissue enzyme kinetics; this meant that UGT enzymes included in the study were limited to UGT1A1, 1A3, 1A6, 1A9, and 2B7. Significantly, UGT1A9 (n = 24) and the liver (n = 27) were each found to account for around half of the total dataset; these were found to correlate with hepatic UGT1A9 data found in 15 of the studies, highlighting the need for more research into extrahepatic tissues and other UGT isoforms. SIGNIFICANCE STATEMENT: During physiologically based pharmacokinetic modeling (in vitro in vivo extrapolation) of drug clearance, the default assumption is that the activity per unit of enzyme is the same in all tissues. The analysis provides preliminary evidence that this may not be the case and that renal and intestinal tissues may have almost 250-fold greater uridine 5'-diphosphate glucuronosyltransferase activity per unit of enzyme than liver tissues.
Collapse
Affiliation(s)
- Anika N Ahmed
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK (A.N.A., A.R.-H., J.B., Z.M.A.-M.) and Certara, Simcyp Division, Sheffield, UK (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK (A.N.A., A.R.-H., J.B., Z.M.A.-M.) and Certara, Simcyp Division, Sheffield, UK (A.R.-H.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK (A.N.A., A.R.-H., J.B., Z.M.A.-M.) and Certara, Simcyp Division, Sheffield, UK (A.R.-H.)
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK (A.N.A., A.R.-H., J.B., Z.M.A.-M.) and Certara, Simcyp Division, Sheffield, UK (A.R.-H.)
| |
Collapse
|
7
|
Xu Y, Lu J, Guo Y, Zhang Y, Liu J, Huang S, Zhang Y, Gao L, Wang X. Hypercholesterolemia reduces the expression and function of hepatic drug metabolizing enzymes and transporters in rats. Toxicol Lett 2022; 364:1-11. [PMID: 35654319 DOI: 10.1016/j.toxlet.2022.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
Abstract
Hypercholesterolemia, one of the most common lipid metabolic diseases, may cause severe complications and even death. However, the effect of hypercholesterolemia on drug-metabolizing enzymes and transporters remains unclear. In this report, we established a rat model of diet-induced hypercholesterolemia. Quantitative real-time PCR and Western blot analysis were used to study the mRNA and protein expression of drug-metabolizing enzymes and transporters. The functions of these enzymes and transporters were evaluated by the cocktail assay. In hypercholesterolemic rats, the expression of phase I enzymes (CYP1A2, CYP2C11, CYP2E1, CYP3A1/2, CYP4A1 and FMO1/3) and phase II enzymes (UGT1A1/3, PROG, AZTG, SULT1A1, NAT1 and GSTT1) decreased. In addition, the mRNA levels of drug transporter Slco1a1/2, Slco1b2, Slc22a5, Abcc2, Abcb1a and Abcg2 decreased in rats with hypercholesterolemia, while Abcb1b and Abcc3 increased. The decreased expression of hepatic phase I and II enzymes and transporters may be caused by the changes of CAR, FXR, PXR, and Hnf4α levels. In conclusion, diet-induced hypercholesterolemia changes the expression and function of hepatic drug-metabolizing enzymes and transporters in rats, thereby possibly affecting drug metabolism and pharmacokinetics. In clinical hyperlipidemia, patients should strengthen drug monitoring to avoid possible drug exposure mediated risks.
Collapse
Affiliation(s)
- Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yanfang Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Mullapudi TVR, Ravi PR, Thipparapu G. UGT1A1 and UGT1A3 activity and inhibition in human liver and intestinal microsomes and a recombinant UGT system under similar assay conditions using selective substrates and inhibitors. Xenobiotica 2021; 51:1236-1246. [PMID: 34698602 DOI: 10.1080/00498254.2021.1998732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro enzyme kinetics and inhibition data was compared for UGT1A1 and UGT1A3 isoforms under similar assay conditions using human liver microsomes (HLM), human intestinal microsomes (HIM) and recombinant UGT (rUGT) enzyme systems.UGT1A1 catalysed β-estradiol 3-β-D-glucuronide formation showed allosteric sigmoidal kinetics in all enzyme systems; while UGT1A3 catalysed CDCA 24-acyl-β-D-glucuronide formation exhibited Michaelis-Menten kinetics in HLM, substrate inhibition kinetics in HIM and rUGT systems. Corresponding Km or S50 concentrations of β-estradiol and CDCA were employed in the respective UGT inhibition studies.Atazanavir inhibited the production of β-estradiol 3-β-D-glucuronide with IC50 values of 0.54 µM and 0.16 µM in HLM and rUGT1A1, respectively. But its inhibition potential was not observed in HIM, indicating potential cross-talk with other high-affinity intestinal UGT isozymes. On the other hand, zafirlukast, a pan UGT inhibitor, exhibited moderate inhibition in HIM with an IC50 value of 16.70 µM. Lithocholic acid, inhibited the production of CDCA 24-acyl-β-D-glucuronide with IC50 values of 1.68, 1.84, and 12.42 µM in HLM, rUGT1A3, and HIM, respectively.These results indicated that HLM, HIM, and rUGTs may be used as complementary in vitro systems to evaluate hepatic and intestinal UGT mediated DDIs at the screening stage.
Collapse
Affiliation(s)
- T V Radhakrishna Mullapudi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India.,Drug Metabolism and Pharmacokinetics, PharmaJen Laboratories Private Limited, A209 Technology Business Incubator, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Ganapathi Thipparapu
- Drug Metabolism and Pharmacokinetics, PharmaJen Laboratories Private Limited, A209 Technology Business Incubator, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
9
|
Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD, Cano G, Rojas-Quintero J, Chacín M, Bermúdez V. Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:4807. [PMID: 34062716 PMCID: PMC8125512 DOI: 10.3390/ijms22094807] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.
Collapse
Affiliation(s)
- Raquel Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - José L. Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile;
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Nereida Josefina Valero-Cedeño
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Teresa Isabel Véliz Castro
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - María P. Díaz Albornoz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Gabriel Cano
- Insitute für Pharmazie, Freie Universitänt Berlin, Königin-Louise-Strabe 2-4, 14195 Berlin, Germany;
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| |
Collapse
|
10
|
Sauer UG, Asiimwe A, Botham PA, Charlton A, Hallmark N, Jacobi S, Marty S, Melching-Kollmuss S, Palha JA, Strauss V, van Ravenzwaay B, Swaen G. Toward a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part I: which parameters from human studies are most relevant for toxicological assessments? Crit Rev Toxicol 2020; 50:740-763. [PMID: 33305658 DOI: 10.1080/10408444.2020.1839380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 2018 European Food Safety Authority/European Chemicals Agency Guidance on the Identification of Endocrine Disruptors lacks clarity on how the presence or absence of substance-induced maternal thyroid hormone imbalance, or the potential for subsequent deleterious consequences in child neurodevelopment, should be established by toxicological assessments. To address these uncertainties, this narrative review evaluates human evidence on how altered maternal thyroid function may be associated with child neurodevelopmental outcomes; and seeks to identify parameters in human studies that appear most relevant for toxicological assessments. Serum levels of free thyroxine (fT4) and thyroid stimulating hormone (TSH) are most frequently measured when assessing thyroid function in pregnant women, whereas a broad spectrum of neurodevelopmental parameters is used to evaluate child neurodevelopment. The human data confirms an association between altered maternal serum fT4 and/or TSH and increased risk for child neurodevelopmental impairment. Quantitative boundaries of effects indicative of increased risks need to be established. Moreover, it is unknown if altered serum levels of total T4, free or total triiodothyronine, or parameters unrelated to serum thyroid hormones might be more relevant indicators of such effects. None of the human studies established a link between substance-mediated liver enzyme induction and increased serum thyroid hormone clearance, let alone further to child neurodevelopmental impairment. This review identifies research needs to contribute to the development of toxicity testing strategies, to reliably predict whether substances have the potential to impair child neurodevelopment via maternal thyroid hormone imbalance.
Collapse
Affiliation(s)
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | - Sue Marty
- The Dow Chemical Company, Midland, MI, USA
| | | | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Guimaraes, Portugal.,Clinical Academic Center, Braga, Portugal
| | | | | | - Gerard Swaen
- Department of Complex Genetics, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Badée J, Qiu N, Collier AC, Takahashi RH, Forrest WF, Parrott N, Schmidt S, Fowler S. Characterization of the Ontogeny of Hepatic UDP-Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes. J Clin Pharmacol 2020; 59 Suppl 1:S42-S55. [PMID: 31502688 DOI: 10.1002/jcph.1493] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
An understanding of the postnatal development of hepatic UDP-glucuronosyltransferase (UGT) enzymes is required for accurate prediction of the age-dependent changes in pharmacokinetics of many drugs used in children. However, the maturation rate of hepatic UGT isoforms remains a major knowledge gap. This study aimed to establish the age-associated changes in glucuronidation activity of 10 major hepatic UGT isoforms in humans, namely, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17. Human liver microsomes from pediatric and adult donors were incubated under optimized incubation conditions to assess the activity rates of hepatic UGT isoforms using a panel of 19 in vitro UGT probe substrates and clinically used drugs. Statistically strong correlations of glucuronidation activities allowed the ontogeny of UGT1A1, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 to be established using multiple selective UGT substrates and matched human liver microsome samples. The postnatal development of hepatic UGTs is isoform-dependent using either individual or cross-correlated selective isoform substrates. Maximal adult activity was reached at different times ranging from within a month (UGT1A1, UGT2B4, UGT2B7, UGT2B10, and UGT2B15), during infancy (UGT1A3, UGT1A4, and UGT1A9), to adolescence (UGT1A6 and UGT2B17). This study provides an extensive characterization of the postnatal ontogeny profiles of hepatic UGT enzymes that are instrumental for predicting drug disposition via in vitro-in vivo extrapolation algorithms and verifying pharmacokinetic predictions against in vivo observations via pediatric physiologically based pharmacokinetic modeling in pediatric patients.
Collapse
Affiliation(s)
- Justine Badée
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida, USA
| | - Nahong Qiu
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan H Takahashi
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - William F Forrest
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida, USA
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| |
Collapse
|
12
|
Yamane M, Igarashi F, Yamauchi T, Nakagawa T. Main contribution of UGT1A1 and CYP2C9 in the metabolism of UR-1102, a novel agent for the treatment of gout. Xenobiotica 2020; 51:61-71. [PMID: 32813611 DOI: 10.1080/00498254.2020.1812012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UR-1102, a novel uricosuric agent for treating gout, has been confirmed to exhibit a pharmacological effect in patients. We clarified its metabolic pathway, estimated the contribution of each metabolic enzyme, and assessed the impact of genetic polymorphisms using human in vitro materials. Glucuronide, sulfate and oxidative metabolites of UR-1102 were detected in human hepatocytes. The intrinsic clearance by glucuronidation or oxidation in human liver microsomes was comparable, but sulfation in the cytosol was much lower, indicating that the rank order of contribution was glucuronidation ≥ oxidation > sulfation. Recombinant UGT1A1 and UGT1A3 showed high glucuronidation of UR-1102. We took advantage of a difference in the inhibitory sensitivity of atazanavir to the UGT isoforms and estimated the fraction metabolised (fm) with UGT1A1 to be 70%. Studies using recombinant CYPs and CYP isoform-specific inhibitors showed that oxidation was mediated exclusively by CYP2C9. The effect of UGT1A1 and CYP2C9 inhibitors on UR-1102 metabolism in hepatocytes did not differ markedly between the wild type and variants.
Collapse
Affiliation(s)
- Mizuki Yamane
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | | | | | - Toshito Nakagawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| |
Collapse
|
13
|
Xu L, Zheng R, Xie P, Guo Q, Ji H, Li T. Dysregulation of UDP-glucuronosyltransferases in CCl 4 induced liver injury rats. Chem Biol Interact 2020; 325:109115. [PMID: 32380060 DOI: 10.1016/j.cbi.2020.109115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are a family of phase II drug metabolizing enzymes that catalyze glucuronidation of numerous endogenous and exogenous substrates. Carbon tetrachloride (CCl4) is widely used to develop liver injuries mimicking human liver diseases. However, effects of CCl4 on the expression and activities of UGTs and the mechanism have not been fully elucidated. The present study aims to elucidate the dysregulation patterns of major UGTs induced by CCl4. Biochemical and histopathological results showed that CCl4 exerted hepatotoxicity in rats. The mRNA levels of UGTs were all significantly reduced in acute liver injury rats. However, mRNA levels of UGT1A1, 1A6, 2B1 and 2B2 were up-regulated while the UGT2B3, 2B6 and 2B12 levels were reduced in chronic CCl4-induced liver fibrosis rats. The protein expression of UGT1A1, 1A6 and 2B were decreased in acute liver injury rats. UGT1A1 and 1A6 proteins were increased, whereas UGT2B protein was reduced in liver fibrosis rats. In addition, CCl4 inhibited the enzyme activities of UGTs in rats. Moreover, the dysregulation of UGTs was accompanied by the decreased mRNA expression of Nrf2, CAR, FXR, PXR, PPAR-α and their corresponding target genes, except for Nrf2, HO-1, AhR and CYP1A1 in liver fibrosis rats. These findings suggest that dysregulation of UGTs under CCl4 exposure is isoform-specific, which could have a complex impact on drug efficacy and endogenous metabolism. Different exposure durations of CCl4 (single vs multiple doses) could have differential effects on rat hepatic UGTs expression.
Collapse
Affiliation(s)
- Lijie Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Peng Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Hui Ji
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Tingting Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
14
|
Luo H, Xu Y, Sun D, Cheng Y, Sun Z, Gao J, Zhang Y, Wang X. Assessment of the inhibition risk of paris saponins, bioactive compounds from Paris polyphylla, on CYP and UGT enzymes via cocktail inhibition assays. Regul Toxicol Pharmacol 2020; 113:104637. [PMID: 32145316 DOI: 10.1016/j.yrtph.2020.104637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
Paris saponins, also known as polyphyllins, are natural compounds extracted from Paris polyphylla, which have many pharmacological activities, such as anti-inflammation and anti-cancer. In particular, paris saponin I, II, VII and polyphyllin VI are the components of the quality standard for Paris polyphylla. However, the inhibition risk of polyphyllins on cytochrome P450 (CYP) and UDP-glucuronosyltransferases (UGT) remains unclear. Therefore, this report investigated the potential inhibitory effects of paris saponin I, II, VII and polyphyllin VI on the activities of CYP (CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1 and CYP3A2) and UGT (UGT1A1, UGT1A3, UGT1A6, PROG and AZTG) through cocktail inhibition assays in vitro. In the study of CYP, polyphyllin VI exhibited weak inhibition on CYP2D1 activity in rat liver microsomes with IC50 value at 45.2 μM, while paris saponin VII weakly inhibited CYP2C11 and CYP2E1 activities with IC50 value at 42.0 and 67.7 μM, respectively. In the study of UGT, none of the four steroidal saponins showed significant inhibition risk. In conclusion, paris saponin I, II, VII and polyphyllin VI have very low potential to cause the possible toxicity and drug interactions involving CYP and UGT enzymes, indicating that they are safe enough to take with drugs.
Collapse
Affiliation(s)
- Han Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongyi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
| | - Jing Gao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
15
|
Carrão DB, Habenchus MD, de Albuquerque NCP, da Silva RM, Lopes NP, de Oliveira ARM. In vitro inhibition of human CYP2D6 by the chiral pesticide fipronil and its metabolite fipronil sulfone: Prediction of pesticide-drug interactions. Toxicol Lett 2019; 313:196-204. [PMID: 31278966 DOI: 10.1016/j.toxlet.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
Fipronil is a chiral insecticide employed worldwide in crops, control of public hygiene and control of veterinary pests. Humans can be exposed to fipronil through occupational, food, and environmental contamination. Therefore, the risk assessment of fipronil in humans is important to protect human health. Fipronil sulfone is the major metabolite formed during fipronil metabolism by humans. Since the CYP450 enzymes are the main ones involved in drug metabolism, the evaluation of their inhibition by fipronil and its main metabolite is important to predict drug-pesticide interactions. The aim of this work was to investigate the inhibition effects of rac-fipronil, S-fipronil, R-fipronil and fipronil sulfone on the main human CYP450 isoforms. The results showed that CYP2D6 is the only CYP450 isoform inhibited by these xenobiotics. In addition, no enantioselective differences were observed in the inhibition of CYP450 isoforms by fipronil and its individuals' enantiomers. Rac-fipronil, S-fipronil and R-fipronil are moderate CYP2D6 inhibitors showing a competitive inhibition profile. On the other hand, the metabolite fipronil sulfone showed to be a strong inhibitor of CYP2D6 also by competitive inhibition. These results highlight the importance of metabolite evaluation on pesticide safety since the metabolism of fipronil into fipronil sulfone increases the risk of pesticide-drug interactions for drugs metabolized by CYP2D6.
Collapse
Affiliation(s)
- Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenchus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
16
|
Cheng Y, Tang S, Chen A, Zhang Y, Liu M, Wang X. Evaluation of the inhibition risk of shikonin on human and rat UDP-glucuronosyltransferases (UGT) through the cocktail approach. Toxicol Lett 2019; 312:214-221. [PMID: 31128210 DOI: 10.1016/j.toxlet.2019.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023]
Abstract
Shikonin, a natural red colorant, is widely used for food garnishment and cosmetic ingredient in the world. Shikonin also possesses a variety of pharmacological actions, including anti-inflammation and anti-cancer activities. However, little is known about its effects on the UDP-glucuronosyltransferases (UGT) activity. Therefore, the aim of this study was to evaluate the effect of shikonin on the UGT1A1, UGT1A3, UGT1A6, UGT1A9 and UGT2B7 activities via the human and rat liver microsomal assay and cocktail approach. The results showed shikonin inhibited human and rat liver microsomal UGT activity only in a dose-dependent manner. The further enzyme kinetic studies demonstrated that shikonin was not only a competitive inhibitor of human UGT1A1, UGT1A9, and UGT2B7, but also presented competitive inhibition on rat UGT1A1 and AZTG reactions. In conclusion, shikonin as a reversible inhibitor of UGT enzyme has a high-risk potential to cause the possible toxicity, especially drug-drug or food-drug interactions.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuowen Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, United States
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
17
|
Zhang L, Xu P, Cheng Y, Wang P, Ma X, Liu M, Wang X, Xu F. Diet-induced obese alters the expression and function of hepatic drug-metabolizing enzymes and transporters in rats. Biochem Pharmacol 2019; 164:368-376. [PMID: 31063713 DOI: 10.1016/j.bcp.2019.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
Obesity increases the incidences of metabolic syndrome, including type 2 diabete, fatty liver, dyslipidemia, hyperglycemia, heart disease, hypertension and cancer. In particular, pharmacokinetics and pharmacodynamics of many drugs have changed in obese patients. However, little is known about the hepatic drug-metabolizing enzymes and transporters that are influenced by diet-induced obese. In this report, we established obesity and fatty liver models in male rats by high-fat diet. The expression profiles of drug-metabolizing enzymes and transporters were studied by quantitative real-timePCR and Western blotting analysis. The function of these enzymes and transporters were assessed by their substrates and cocktail methods. The expression and activity of phase I enzymes (CYP1A2, CYP2B1, CYP2C11, CYP3A1, CYP4A1 and FMO1) and phase II enzymes (UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B7, NAT1 and GSTT1) were decreased in the liver of obese rats. In addition, the mRNA levels of hepatic transporter Slco1a2, Slco1b2, Slc22a5, Abcc2, Abcc3, Abcb1a and Abcg2 decreased significantly in obese animals, while Abcb1b increased significantly. Furthermore, the decreased expression of hepatic phase I and II enzymes and transporter may be due to changes of Hnf4α, LXRα and FXR. In conclusion, the diet-induced obese altered the expression and function of hepatic drug-metabolizing enzymes and transporters in male rats, thereby impacting drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Lei Zhang
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peipei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinrun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Centre, Houston, TX, USA
| | - Xin Wang
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Feng Xu
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China.
| |
Collapse
|