1
|
Baigonakova G, Marchenko ES, Gordienko II, Larikov VA, Volinsky AA, Prokopchuk AO. Biocompatibility and Antibacterial Properties of NiTiAg Porous Alloys for Bone Implants. ACS OMEGA 2024; 9:25638-25645. [PMID: 38911803 PMCID: PMC11190923 DOI: 10.1021/acsomega.3c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 06/25/2024]
Abstract
In order to reduce infections, porous NiTi alloys with 62% porosity were obtained by self-propagating high-temperature synthesis with the addition of 0.2 and 0.5 at. % silver nanoparticles. Silver significantly improved the alloys' antibacterial activity without compromising cytocompatibility. An alloy with 0.5 at. % Ag showed the best antibacterial ability against Staphylococcus epidermidis. All alloys exhibited good biocompatibility with no cellular toxicity against embryonic fibroblast 3T3 cells. Clinical evaluation of the results after implantation showed a complete absence of purulent-inflammatory complications in all animals. Even distribution of silver nanoparticles in the surface layer of the porous NiTi alloy provides a uniform antibacterial effect.
Collapse
Affiliation(s)
- Gulsharat
A. Baigonakova
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| | - Ekaterina S. Marchenko
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| | - Ivan I. Gordienko
- Department
of Pediatric Surgery, Ural State Medical
University, 620014 Yekaterinburg, Russia
| | - Victor A. Larikov
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| | - Alex A. Volinsky
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
- Department
of Mechanical Engineering, University of
South Florida, 4202 E. Fowler Avenue ENG030, Tampa, Florida 33620, United States
| | - Anna O. Prokopchuk
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| |
Collapse
|
2
|
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
3
|
Büssemaker H, Meinshausen AK, Bui VD, Döring J, Voropai V, Buchholz A, Mueller AJ, Harnisch K, Martin A, Berger T, Schubert A, Bertrand J. Silver-integrated EDM processing of TiAl6V4 implant material has antibacterial capacity while optimizing osseointegration. Bioact Mater 2024; 31:497-508. [PMID: 37736105 PMCID: PMC10509668 DOI: 10.1016/j.bioactmat.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Periprosthetic joint infections (PJI) are a common reason for orthopedic revision surgeries. It has been shown that the silver surface modification of a titanium alloy (Ti-6Al-4V) by PMEDM (powder mixed electrical discharge machining) exhibits an antibacterial effect on Staphylococcus spp. adhesion. Whether the thickness of the silver-modified surface influences the adhesion and proliferation of bacteria as well as the ossification processes and in-vivo antibacterial capacity has not been investigated before. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process depending on the thickness of PMEDM silver modified surfaces. The attachment of S. aureus on the PMEDM modified surfaces was significantly lower than on comparative control samples, independently of the tested surface properties. Bacterial proliferation, however, was not affected by the silver content in the surface layer. We observed a long-term effect of antibacterial capacity in vitro, as well as in vivo. An induction of ROS, as indicator for oxidative stress, was observed in the bacteria, but not in osteoblast-like cells. No influence on the in vitro osteoblast function was observed, whereas osteoclast formation was drastically reduced on the silver surface. No changes in cell death, the metabolic activity and oxidative stress was measured in osteoblasts. We show that already small amounts of silver exhibit a significant antibacterial capacity while not influencing the osteoblast function. Therefore, PMEDM using silver nano-powder admixed to the dielectric represents a promising technology to shape and concurrently modify implant surfaces to reduce infections while at the same time optimizing bone ingrowth of endoprosthesis.
Collapse
Affiliation(s)
- Hilmar Büssemaker
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | | | - Viet Duc Bui
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Joachim Döring
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Vadym Voropai
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Adrian Buchholz
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Andreas J. Mueller
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karsten Harnisch
- Institute of Materials and Joining Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - André Martin
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Thomas Berger
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Andreas Schubert
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Takito J, Nakamura M. Heterogeneity and Actin Cytoskeleton in Osteoclast and Macrophage Multinucleation. Int J Mol Sci 2020; 21:ijms21186629. [PMID: 32927783 PMCID: PMC7554939 DOI: 10.3390/ijms21186629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoclast signatures are determined by two transcriptional programs, the lineage-determining transcription pathway and the receptor activator of nuclear factor kappa-B ligand (RANKL)-dependent differentiation pathways. During differentiation, mononuclear precursors become multinucleated by cell fusion. Recently, live-cell imaging has revealed a high level of heterogeneity in osteoclast multinucleation. This heterogeneity includes the difference in the differentiation states and the mobility of the fusion precursors, as well as the mode of fusion among the fusion precursors with different numbers of nuclei. In particular, fusion partners often form morphologically distinct actin-based linkages that allow two cells to exchange lipids and proteins before membrane fusion. However, the origin of this heterogeneity remains elusive. On the other hand, osteoclast multinucleation is sensitive to the environmental cues. Such cues promote the reorganization of the actin cytoskeleton, especially the formation and transformation of the podosome, an actin-rich punctate adhesion. This review covers the heterogeneity of osteoclast multinucleation at the pre-fusion stage with reference to the environment-dependent signaling pathway responsible for reorganizing the actin cytoskeleton. Furthermore, we compare osteoclast multinucleation with macrophage fusion, which results in multinucleated giant macrophages.
Collapse
|
5
|
Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bionanocomposites including poly(lactic acid) (PLA), collagen, and silver nanoparticles (AgNPs) were prepared as biocompatible and stable films. Thermal properties of the PLA-based bionanocomposites indicated an increase in the crystallinity of PLA plasticized due to a small quantity of AgNPs. The results on the stability study indicate the promising contribution of the AgNPs on the durability of PLA-based bionanocomposites. In vitro biocompatibility conducted on the mouse fibroblast cell line NCTC, clone 929, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed high values of cell viability (>80%) after cell cultivation in the presence of bionanocomposite formulations for 48 h, while the percentages of lactate dehydrogenase (LDH) released in the culture medium were reduced (<15%), indicating no damages of the cell membranes. In addition, cell cycle analysis assessed by flow cytometry indicated that all tested bionanocomposites did not affect cell proliferation and maintained the normal growth rate of cells. The obtained results recommend the potential use of PLA-based bionanocomposites for biomedical coatings.
Collapse
|
6
|
Jung DW, Ro HJ, Kim J, Kim SI, Yi GR, Lee G, Jun S. Biophysical restriction of growth area using a monodispersed gold sphere nanobarrier prolongs the mitotic phase in HeLa cells. RSC Adv 2019; 9:37497-37506. [PMID: 35542263 PMCID: PMC9075507 DOI: 10.1039/c9ra08410j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles are widely exploited for biological and biotechnical applications owing to their stability, biocompatibility, and known effects on cellular behaviors. Many studies have focused on nanoparticles that are internalized into cells, but extracellular nanoparticles also can regulate cell behavior, a practice known as in-plane surface nanotopography. We demonstrated that nanobarriers composed of morphologically homogeneous gold nanospheres prolonged the mitotic (M) phase in the cervical cancer cell line HeLa without inducing apoptosis. The nanobarrier was formed by electrostatic deposition of nanospheres on a negatively charged, fibronectin-coated substrate. We tested the effects of differently sized nanospheres. Gold nanospheres 42 nm in diameter were found to be non-toxic, while 111 nm nanospheres induced the production of reactive oxygen species, resulting in apoptotic cell death and arrest of cytokinesis. When exposed to sufficient 83 nm gold nanospheres to fabricate a surface nanobarrier, the M phase was delayed but cells proceeded to cytokinesis and the G1 phase. Live-cell imaging showed that the M phase increased by 2.9 h, 2.4 times longer than in control cells. Biophysical analyses indicated that this could be attributed to the specific size of the nanobarrier that physically limited the growth area around the cell.
Collapse
Affiliation(s)
- Dae-Woong Jung
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Department of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyun-Joo Ro
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Bio-Analytical Science, University of Science & Technology Daejeon 34113 Republic of Korea
| | - Junmin Kim
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Department of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Bio-Analytical Science, University of Science & Technology Daejeon 34113 Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Gaehang Lee
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
| | - Sangmi Jun
- Korea Basic Science Institute Daejeon 34133 Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Bio-Analytical Science, University of Science & Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
7
|
Pulmonary and hepatic effects after low dose exposure to nanosilver: Early and long-lasting histological and ultrastructural alterations in rat. Toxicol Rep 2019; 6:1047-1060. [PMID: 31673507 PMCID: PMC6816130 DOI: 10.1016/j.toxrep.2019.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023] Open
Abstract
Low AgNPs dose caused in vivo toxic effects both at portal entry and distant organ. Lung and liver tissues were damaged in Nanosilver-instilled rat. Early and long-lasting histological and ultrastructural alterations were detected. Overall pulmonary injury was more striking compared to hepatic outcomes.
Although environmental airborne silver nanoparticles (AgNPs) levels in occupational and environmental settings are harmful to humans, the precise toxic effects at the portal entry of exposure and after translocation to distant organs are still to be deeply clarified. To this aim, the present study assessed histopathological and ultrastructural alterations (by means of H&E and TEM, respectively) in rat lung and liver, 7 and 28 days after a single intratracheal instillation (i.t) of a low AgNP dose (50 microg/rat), compared to those induced by an equivalent dose of ionic silver (7 microg AgNO3/rat). Lung parenchyma injury was observed acutely after either AgNPs or AgNO3, with the latter compound causing more pronounced effects. Specifically, alveolar collapse accompanied by inflammatory alterations and parenchymal fibrosis were revealed. These effects lasted until the 28th day, a partial pulmonary structure recovery occurred, nevertheless a persistence of slight inflammatory/fibrotic response and apoptotic phenomena were still detected after AgNPs and AgNO3, respectively. Concerning the liver, a diffuse hepatocyte injury was observed, characterized by cytoplasmic damage and dilation of sinusoids, engulfed by degraded material, paralleled by inflammation onset. These effects already detectable at day 7, persisting at the 28th day with some attenuations, were more marked after AgNO3 compared to AgNPs, with the latter able to induce a ductular reaction. Altogether the present findings indicate toxic effects induced by AgNPs both at the portal entry (i.e. lung) and distant tissue (i.e. liver), although the overall pulmonary damage were more striking compared to the hepatic outcomes.
Collapse
|
8
|
Zhou X, Yuan L, Wu C, Cheng Chen, Luo G, Deng J, Mao Z. Recent review of the effect of nanomaterials on stem cells. RSC Adv 2018; 8:17656-17676. [PMID: 35542058 PMCID: PMC9080527 DOI: 10.1039/c8ra02424c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023] Open
Abstract
The field of stem-cell-therapy offers considerable promise as a means of delivering new treatments for a wide range of diseases. Recent progress in nanotechnology has stimulated the development of multifunctional nanomaterials (NMs) for stem-cell-therapy. Several clinical trials based on the use of NMs are currently underway for stem-cell-therapy purposes, such as drug/gene delivery and imaging. However, the interactions between NMs and stem cells are far from being completed, and the effects of the NMs on cellular behavior need critical evaluation. In this review, the interactions between several types of mostly used NMs and stem cells, and their associated possible mechanisms are systematically discussed, with specific emphasis on the possible differentiation effects induced by NMs. It is expected that the enhanced understanding of NM-stem cell interactions will facilitate biomaterial design for stem-cell-therapy and regenerative medicine applications.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Chengzhou Wu
- Department of Respiratory, Wuxi Country People's Hospital Chongqing 405800 China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
9
|
Sutunkova MP, Privalova LI, Minigalieva IA, Gurvich VB, Panov VG, Katsnelson BA. The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol Rep 2018; 5:363-376. [PMID: 29854606 PMCID: PMC5977416 DOI: 10.1016/j.toxrep.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
During 2009-2017 we have studied nanoparticles of elemental silver or gold and of iron, copper, nickel, manganese, lead, zinc, aluminium and titanium oxides (Me-NPs) using, in most cases, a single low-dose intratracheal instillation 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment and, in all cases, repeated intraperitoneal injections in non-lethal doses to induce subchronic intoxications assessed by a lot of toxicodynamic and toxicokinetic features. We have also studied the same effects for a number of relevant combinations of these Me-NPs and have revealed some important patterns of their combined toxicity. Besides, we have carried out long-term inhalation experiments with Fe2O3, NiO and amorphous SiO2 nano-aerosols. We have demonstrated that Me-NPs are much more noxious as compared with their fine micrometric counterparts although the physiological mechanisms of their elimination from the lungs proved to be highly active. Even if water-insoluble, Me-NPs are significantly solubilized in some biological milieus in vitro and in vivo, which may explain some important peculiarities of their toxicity. At the same time, the in situ cytotoxicity, organ-systemic toxicity and in vivo genotoxicity of Me-NPs strongly depends on specific mechanisms characteristic of a particular metal. For some of the Me-NPs studied, we have proposed standards of presumably safe concentrations in workplace air. Along with this, we have proved that the adverse effects of Me-NPs could be significantly alleviated by background or preliminary administration of adequately composed combinations of some bioprotectors.
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Ilzira A. Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir B. Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir G. Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Science, Ekaterinburg, 620990, Russia
| | - Boris A. Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
10
|
High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases 2018; 13:03B410. [PMID: 29490464 DOI: 10.1116/1.5015957] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Within this study, the authors use human mesenchymal stem cells incubated with silver nanoparticles (AgNPs) as a model system to systematically investigate the advantages and drawbacks of the fast imaging delayed extraction mode for two-dimensional and three-dimensional (3D) analyses at the cellular level. The authors compare the delayed extraction mode with commonly employed measurement modes in terms of mass and lateral resolution, intensity, and dose density. Using the delayed extraction mode for single cell analysis, a high mass resolution up to 4000 at m/z = 184.08 combined with a lateral resolution up to 360 nm is achieved. Furthermore, the authors perform 3D analyses with Ar-clusters (10 keV) and O2+ (500 eV) as sputter species, combined with Bi3+ and delayed extraction for analysis. Cell compartments like the nucleus are visualized in 3D, whereas no realistic 3D reconstruction of intracellular AgNP is possible due to the different sputter rates of inorganic and organic cell materials. Furthermore, the authors show that the sputter yield of Ag increases with the decreasing Ar-cluster size, which might be an approach to converge the different sputter rates.
Collapse
|
11
|
Geng H, Poologasundarampillai G, Todd N, Devlin-Mullin A, Moore KL, Golrokhi Z, Gilchrist JB, Jones E, Potter RJ, Sutcliffe C, O'Brien M, Hukins DWL, Cartmell S, Mitchell CA, Lee PD. Biotransformation of Silver Released from Nanoparticle Coated Titanium Implants Revealed in Regenerating Bone. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21169-21180. [PMID: 28581710 DOI: 10.1021/acsami.7b05150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Antimicrobial silver nanoparticle coatings have attracted interest for reducing prosthetic joint infection. However, few studies report in vivo investigations of the biotransformation of silver nanoparticles within the regenerating tissue and its impact on bone formation. We present a longitudinal investigation of the osseointegration of silver nanoparticle-coated additive manufactured titanium implants in rat tibial defects. Correlative imaging at different time points using nanoscale secondary ion mass spectrometry, transmission electron microscopy (TEM), histomorphometry, and 3D X-ray microcomputed tomography provided quantitative insight from the nano- to macroscales. The quality and quantity of newly formed bone is comparable between the uncoated and silver coated implants. The newly formed bone demonstrates a trabecular morphology with bone being located at the implant surface, and at a distance, at two weeks. Nanoscale elemental mapping of the bone-implant interface showed that silver was present primarily in the osseous tissue and colocalized with sulfur. TEM revealed silver sulfide nanoparticles in the newly regenerated bone, presenting strong evidence that the previously in vitro observed biotransformation of silver to silver sulfide occurs in vivo.
Collapse
Affiliation(s)
- Hua Geng
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
- Research Complex at Harwell , Harwell OX11 0FA, U.K
| | - Gowsihan Poologasundarampillai
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
- Research Complex at Harwell , Harwell OX11 0FA, U.K
| | - Naomi Todd
- Centre for Molecular Biosciences (CMB), School of Biomedical Sciences, Ulster University , Coleraine BT52 1SA, Northern Ireland
| | - Aine Devlin-Mullin
- Centre for Molecular Biosciences (CMB), School of Biomedical Sciences, Ulster University , Coleraine BT52 1SA, Northern Ireland
| | - Katie L Moore
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Zahra Golrokhi
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | | | - Eric Jones
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | - Richard J Potter
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | - Chris Sutcliffe
- Centre for Materials and Structures, School of Engineering, The University of Liverpool , Liverpool L69 3GH, U.K
| | - Marie O'Brien
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - David W L Hukins
- Department of Mechanical Engineering, School of Engineering, University of Birmingham , Birmingham B15 2TT, U.K
| | - Sarah Cartmell
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Christopher A Mitchell
- Centre for Molecular Biosciences (CMB), School of Biomedical Sciences, Ulster University , Coleraine BT52 1SA, Northern Ireland
| | - Peter D Lee
- School of Materials, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
- Research Complex at Harwell , Harwell OX11 0FA, U.K
| |
Collapse
|