1
|
Alharbi FK. The mitigating effect of dietary β-glucan against fipronil-induced intoxication in Nile Tilapia ( Oreochromis niloticus): Histopathological, immunological, hematological, and biochemical analysis. Open Vet J 2025; 15:965-976. [PMID: 40201840 PMCID: PMC11974277 DOI: 10.5455/ovj.2025.v15.i2.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025] Open
Abstract
Background Due to its remarkable effectiveness against a wide range of pests and insects at very low concentrations, the broad-spectrum fipronil pesticide is currently gaining popularity in the agricultural, public health, and international industries. However, the stressor effects of fipronil insecticides cause ecological disruption, growth retardation, immunosuppression, and higher fish mortality rates. Both animals and humans have demonstrated the effectiveness of prebiotics such as β-1,3-glucan in their diets. Aquaculture has recently increased in use because of its potential to control diseases, compete with environmental stresses, and promote fish growth. Aim The goal of this study was to determine how dietary β-1,3-glucan can protect Nile Tilapia (Oreochromis niloticus)fish from fipronil's harmful effects. Methods We randomly divided 240 fish into four equal groups. As a control, the first group (G1) was fed a standard diet. A 0.1% dose of -1, 3-glucan was added to G2. Fipronil was added to G3 at a concentration of 2.8 mg/l (1/10 96 h LC50). At the indicated concentrations, G4 was combined with β-1, 3-glucan, and fipronil. Alterations in vital signs, metabolic profiles, immunological responses, blood counts, and any histological abnormalities in the liver or spleen of the fish were investigated and recorded. Results The fipronil-exposed group exhibited slow mobility, respiratory discomfort, and increased mucus secretion. Several blood markers, like immunoglobulin M and lysozyme, were found to be significantly lower. On the other hand, the levels of aspartate aminotransferase, alanine aminotransferase, urea, creatinine, and cortisol in the serum were significantly higher. Liver histopathology revealed hemorrhagic blood vessels, steatosis in hepatocytes, hydropic degeneration, and widespread necrosis. Furthermore, we noted serious splenic parenchymal necrosis, hemorrhagic red pulp, white pulp depletion, and hemosiderosis. Histological changes were slowed by G4, which had β-1,3-glucan and fipronil. Moreover, it increases blood markers and physical activity levels. Conclusion The results show that β-1,3-glucan is an effective dietary supplement for Nile tilapia, and it improves their health, increases their immunity, and neutralizes fipronil contaminants in fish farming.
Collapse
|
2
|
Dourado PLR, da Silva DGH, Alves TC, de Almeida EA. Fipronil exposure alters oxidative stress responses of Nile tilapia (Oreochromis niloticus) to acute moderate hypoxia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107163. [PMID: 39579505 DOI: 10.1016/j.aquatox.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/25/2024]
Abstract
Acute hypoxia is known to increase the generation of reactive oxygen species (ROS), leading to modulation in antioxidant defenses. Pollutant exposure can potentiate ROS generation during hypoxic events and impair antioxidant defenses, increasing the susceptibility of hypoxia-tolerant fishes, such as the Nile tilapia (Oreochromis niloticus), to oxidative stress. The purpose of this study was to evaluate oxidative stress responses of O. niloticus to acute (3 and 8 h) moderate hypoxia (dissolved oxygen ≤2 mg/L-1) and how these responses are affected by simultaneous exposure to the insecticide fipronil (0.1 and 0.5 µg L-1). Hypoxia exposure for 3 h caused an increase in glutathione peroxidase (GPx) activity in the gill and also increased catalase (CAT) and glutathione S-transferase (GST) activities in the liver. After 8 h of hypoxia, glutathione reductase (GR) activity increased. DNA damage (comet assay) in erythrocytes was reduced by hypoxia after 3 and 8 h. Fipronil exposure for 3 h decreased CAT activity in the gill, both under normoxia and hypoxia. After 8 h, the combination of fipronil and hypoxia increased GR activity in the gill. In the liver, fipronil exposure under hypoxia for 3 h increased CAT and GR activities; after 8 h, CAT was decreased, and GST increased. GR was also increased by fipronil under normoxia for 8 h. All treatments reduced lipid peroxidation levels in the gills, but in the liver, lipid peroxidation was increased by fipronil after 3 h under normoxia. Moreover, fipronil exposure under hypoxia for 3 and 8 h increased DNA damage in erythrocytes, while 8 h of fipronil exposure under normoxia decreased it, suggesting the activation of DNA repair mechanisms. Results show that both fipronil and hypoxia exposure significantly modulate the oxidative stress parameters of O. niloticus and that the combination of these factors produces more pronounced effects.
Collapse
Affiliation(s)
| | | | - Thiago Caique Alves
- FURB Fundação Universidade Regional de Blumenau, Department of Natural Sciences, Blumenau, Santa Catarina, Brazil
| | - Eduardo Alves de Almeida
- FURB Fundação Universidade Regional de Blumenau, Department of Natural Sciences, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Wang Z, Du Z, Shi Y, Qi P, Di S, Zhao H, Ji X, Lu C, Wang X. Transfer and risk assessment of fipronil in laying hen tissues and eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172811. [PMID: 38701918 DOI: 10.1016/j.scitotenv.2024.172811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Fipronil is a persistent insecticide known to transfer into hen eggs from exposure from animal drinking water and feed, but some questions remain regarding its transfer behavior and distribution characteristics. Therefore, the dynamic metabolism, residue distribution and transfer factor (TF) of fipronil were investigated in 11 edible tissues of laying hens and eggs over 21 days. After a continuous low-dose drinking water exposure scenario, the sum of fipronil and all its metabolites (defined as fipronilT) quickly transferred to each edible tissue and gradually increased with exposure time. FipronilT residue in eggs first appeared at 3 days and then gradually increased. After a single high-dose feed exposure scenario, fipronilT residue in edible tissues first appeared after 2 h, quickly peaked at 1 day, and then gradually decreased. In eggs, fipronilT residue first appeared at 2 days, peaked 6-7 days and then gradually decreased. The TF values followed the order of the skin (0.30-0.73) > egg yolk (0.30-0.71) > bottom (0.21-0.59) after drinking water exposure, and the order of the skin (1.01-1.59) > bottom (0.75-1.1) > egg yolk (0.58-1.10) for feed exposure. Fipronil sulfone, a more toxic compound, was the predominant metabolite with higher levels distributed in the skin and bottom for both exposure pathways. FipronilT was distributed in egg yolks rather than in albumen owing to its lipophilicity, and the ratio of egg yolk to albumen may potentially reflect the time of exposure. The distinction is that the residues after feed exposure were much higher than that after drinking water exposure in edible tissues and eggs. The study highlights the residual characteristics of two exposure pathways, which would contribute to the tracing of contamination sources and risk assessment.
Collapse
Affiliation(s)
- Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ziyan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yanke Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Chunbo Lu
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
4
|
Lefèvre-Arbogast S, Chaker J, Mercier F, Barouki R, Coumoul X, Miller GW, David A, Samieri C. Assessing the contribution of the chemical exposome to neurodegenerative disease. Nat Neurosci 2024; 27:812-821. [PMID: 38684891 DOI: 10.1038/s41593-024-01627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Over the past few decades, numerous environmental chemicals from solvents to pesticides have been suggested to be involved in the development and progression of neurodegenerative diseases. Most of the evidence has accumulated from occupational or cohort studies in humans or laboratory research in animal models, with a range of chemicals being implicated. What has been missing is a systematic approach analogous to genome-wide association studies, which have identified dozens of genes involved in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. Fortunately, it is now possible to study hundreds to thousands of chemical features under the exposome framework. This Perspective explores how advances in mass spectrometry make it possible to generate exposomic data to complement genomic data and thereby better understand neurodegenerative diseases.
Collapse
Affiliation(s)
- S Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - J Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - F Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - R Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, Paris, France
| | - X Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, Paris, France
| | - G W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - C Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France.
| |
Collapse
|
5
|
Khan NH, Jiang E, Qureshi IZ. Effect of Fipronil Exposure on Hematological Aspects of Rhesus Monkeys ( Macaca mulatta): Risk and Toxicity Assessment in Agro-Workers. J Inflamm Res 2023; 16:5755-5765. [PMID: 38170119 PMCID: PMC10759453 DOI: 10.2147/jir.s386145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Fipronil (FPN) is a broad-spectrum phenylpyrazole insecticide, widely used in agriculture and veterinary medicine. Published research on FPN toxicity has established the fact that its inhalation or dermal exposure may lead to very serious clinical outcomes in non-target animals. In line to its exposure and toxicity related damage, FPN has been investigated in many invertebrates, however, its exposure-related noxiousness is less reported in higher animals. Objective To assess the FPN-induced effects to agro-workers in the field, in the present study, we used physiological human surrogates, adult rhesus monkeys as models. Method We exposed well habituated, chair restraint adult rhesus monkeys with a field spray concentration of FPN (0.3 mg/1 mL distilled water) through an inhalation route in the closed system. Animals were divided into control and treatment groups, each containing three animals. Inflammatory and hematological effects were determined by evaluating the kidney and liver biomarker enzymes; serum creatinine and alanine transaminase (ALT), aspartate transaminase (AST) levels respectively. Results Our findings reveal that FPN treated monkeys show significantly increased levels of ALT (p = 0.000461), AST (p = 0.0681) and creatinine (p = 0.00656) as compared to the control group. Furthermore, significant differences of red blood cells (RBCs) (p = 0.0139) and white blood cells (WBCs) (p = 0.00642) were also observed in the treated and control group monkeys which reflect strong toxic effects on the blood cells. Conclusion Our findings demonstrate that FPN exposure is very toxic to higher animals and causes severe damage to the liver and kidneys along with other clinical problems. The study highlights the effect and impact of passive inhalation of insecticides in intentionally carefree agro-workers and raises the concern of public awareness toward pesticides use.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Human and Animal Physiology Laboratory, Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 44000, Pakistan
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Irfan Zia Qureshi
- Human and Animal Physiology Laboratory, Department of Animal Sciences, Quaid-I-Azam University, Islamabad, 44000, Pakistan
| |
Collapse
|
6
|
Mendonça JDS, de Almeida JCN, Vieira LG, Hirano LQL, Santos ALQ, Andrade DV, Malafaia G, de Oliveira Júnior RJ, Beletti ME. Mutagenicity, hepatotoxicity, and neurotoxicity of glyphosate and fipronil commercial formulations in Amazon turtles neonates (Podocnemis expansa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165529. [PMID: 37453711 DOI: 10.1016/j.scitotenv.2023.165529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Pesticides are considered one of the main causes of the population decline of reptiles worldwide, with freshwater turtles being particularly susceptible to aquatic contamination. In this context, we investigated the potential mutagenic, hepatotoxic, and neurotoxic effects in neonates of Podocnemis expansa exposed to substrate contaminated with different concentrations of glyphosate and/or fipronil during embryonic development. Eggs collected from the natural environment were artificially incubated in sand moistened with pure water, water added with glyphosate Atar 48® at concentrations of 65 and 6500 μg/L (groups G1 and G2, respectively), water added with fipronil Regent® 800WG at 4 and 400 μg/L (groups F1 and F2, respectively) and, water added with the combination of 65 μg/L glyphosate and 4 μg/L fipronil or with 6500 μg/L glyphosate and 400 μg/L fipronil (groups GF1 and GF2, respectively). For mutagenicity analysis, we evaluated the frequency of micronuclei (MN) and other erythrocyte nuclear abnormalities (ENAs), while for evaluation of hepatotoxicity and neurotoxicity, livers and encephalon were analyzed for histopathological alterations. Exposure to pesticides, alone or in combination, increased the frequency of erythrocyte nuclear abnormalities, particularly blebbed nuclei, moved nuclei, and notched nuclei. Individuals exposed to fipronil exhibited congestion and inflammatory infiltrate in their liver tissue, while, in the encephalon, congestion, and necrosis were present. Our study confirms that the incubation of eggs in substrate polluted with glyphosate and fipronil causes histopathological damage and mutagenic alteration in P. expansa, highlighting the importance of using different biomarkers to evaluate the ecotoxicological effects of these pesticides, especially in oviparous animals.
Collapse
Affiliation(s)
- Juliana Dos Santos Mendonça
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Toxicologia Aplicada ao Meio Ambiente, Instituto Federal Goiano, Urutaí, GO, Brazil.
| | - Julio Cesar Neves de Almeida
- Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratório Multidisciplinar em Morfologia e Ontogenia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Líria Queiroz Luz Hirano
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília (UNB), Brasília, DF, Brazil
| | - André Luiz Quagliatto Santos
- Organização Não Governamental - Preservação dos Animais Silvestres do Brasil - ONG PAS do Brasil, Uberlândia, MG, Brazil
| | - Denis Vieira Andrade
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Guilherme Malafaia
- Laboratório de Toxicologia Aplicada ao Meio Ambiente, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Conservação dos Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Ecologia, Conservação e Biodiversidade, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Marcelo Emílio Beletti
- Laboratório de Biologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| |
Collapse
|
7
|
Choi J, Choi Y, Kim SD. Body distribution and ecotoxicological effect of nanoplastics in freshwater fish, Zacco platypus. CHEMOSPHERE 2023; 341:140107. [PMID: 37683945 DOI: 10.1016/j.chemosphere.2023.140107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The increased consumption of plastics worldwide, has led to the emergence of nanoplastics as important environmental pollutants. Despite the presence of nanoplastics in aquatic environments, their effects on ecosystems remain largely unexplored due to the analysis complexity. This study investigated the organ accumulation and toxic effects of 50 nm polystyrene nanoplastics (PS-NPs) in Zacco platypus (Z. platypus; also known as pale chub fish) using pyrolyzer-gas chromatography-mass spectrometry (Pyr-GC/MS). PS-NPs accumulated in Z. platypus' brain, digestive tract, branchia, and liver, causing changes at cellular level. Over a 14-day exposure, the accumulated PS-NPs led to observable changes in fish behavior (e.g., Total traveled distance and maximum velocity). In addition, the oxidative stress in each organ of Z. platypus increased as the exposure concentration of PS-NPs increased. This study shows that accumulation of nanoplastics in fish, resulting in behavioral changes and biochemical toxicity. As the pattern of change magnifies with exposure time and concentration, from a long-term perspective, the influence of nanoplastics on aquatic ecosystems become evident. This underscores the urgency for continuous research into the potential risks of nanoplastics in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiwon Choi
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Yeowool Choi
- Department of Economic and Environmental Research, The Incheon Institute, 98 Simgok-ro, Seo-gu, Incheon, 22711, South Korea.
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea; Environmental Analysis Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
8
|
Kim C, Lee SE. Developmental toxicity of fipronil and its two metabolites towards zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122119. [PMID: 37385358 DOI: 10.1016/j.envpol.2023.122119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Fipronil (FIL) use is currently regulated in several countries due to its specific toxicity to bees. This study investigated the possible developmental toxicities as well as the acute toxicities of FIL, fipronil sulfide (FIL-SI), and fipronil sulfone (FIL-SO) to zebrafish (Danio rerio) embryos. At concentrations up to 5000 μg L-1, FIL- and FIL-SI-treated embryos exhibited significant mortality at 96 h postfertilization. Body length was significantly shortened with increasing concentrations in FIL- and FIL-SI-treated embryos. However, FIL-SO-treated embryos exhibited low mortality with high hatching rates. Body length was also significantly shortened in FIL-SO-treated embryos. Regarding the number of intersegmental vessels (ISVs), all chemical-treated embryos showed high ISV numbers with increasing concentrations of each chemical. FIL and FIL-SI induced abnormal heart formation with heart dysfunction in embryos, whereas FIL-SO did not induce any difference in heart development compared with the control. Abnormal heart formation may be related to the upregulation of nppa responsible for the expression of natriuretic peptides in embryos. Embryonic acetylcholinesterase activity was decreased gradually according to the increase in FIL and FIL-SI concentrations, whereas FIL-SO did not cause any change in enzyme activity. Il-1β responsible for the occurrence of injury or infection was highly upregulated in FIL-SI- and FIL-SO-treated embryos. Therefore, reduction to FIL-SI may be associated with FIL toxicity, whereas oxidation to FIL-SO may be a detoxification route in the environment.
Collapse
Affiliation(s)
- Chaeeun Kim
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Jamebozorgi FH, Abtahi B, Sharifpour I, Seyfabadi J, Rahmatabadi ZT, Nazemroaya S, Lari E. The effects of the water-soluble fractions of crude oil on liver and kidney tissues of Caspian Kutum juveniles, Rutilus frisii. MARINE POLLUTION BULLETIN 2023; 189:114675. [PMID: 36827769 DOI: 10.1016/j.marpolbul.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The lethal and histopathological impacts of crude oil's Water-Soluble Fraction (WSF) on the liver and kidney tissues of juvenile Rutilus frisii were investigated. The LC50 96 h of WSF was calculated at 33.95 ppm. Fish exposed to two concentrations (0.1 LC50 and LC50) of WSF and control for 24 and 96 h were used for histopathological studies. Tissues in the control group and 0.1 LC50-24 h were healthy, and no specific damages were observed. With increasing exposure time (96 h) and concentration (LC50), damages' type, frequency, and intensity gradually increased. Cloudy swelling, loss of cell boundary, nuclei deformation, and congestion of blood vessels were found in the liver, enlarged glomeruli, reduced Bowman's space, and occlusion of the tubular lumen, were found in the kidney. It is demonstrated that the WSF of crude oil can cause severe damage to the tissues of juvenile Kutum, depending on the exposure concentration.
Collapse
Affiliation(s)
| | - Behrooz Abtahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Issa Sharifpour
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| | - Jafar Seyfabadi
- Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | | | - Samira Nazemroaya
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Ebrahim Lari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
10
|
Handa K, Jindal R. Mitigating the nephrotoxic impact of hexavalent chromium in Ctenopharyngodon idellus (grass carp) with Boerhavia diffusa (punarnava) leaf extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42399-42415. [PMID: 36648730 DOI: 10.1007/s11356-022-24931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In Ctenopharyngodon idellus, the ameliorative influence of rutin-containing leaf extract of Boerhavia diffusa was assessed against chronic exposure to hexavalent chromium. For this, alterations in chromium accumulation, oxidative stress, kidney function markers, histopathology (light and transmission electron microscopy), and transcriptional profiling (Nrf2 and MT2) were examined. RP-HPLC analysis confirmed the presence of rutin (90.45 ± 0.98 mg/g) in the ethanolic leaf extract of the plant. LD50 of the extract to the fish was beyond 5000 mg/kg b.w. The fish was subjected to a sublethal concentration of hexavalent chromium (5.30 mg/L) accompanied by a dose of 250 mg/kg b.w./day of extract in the diet for the experimental duration of 45 days. The extract alone did not generate any adverse consequences in the nephric tissue. Chronic exposure to hexavalent chromium damaged tissue irreparably, demonstrated by elevated levels of kidney function markers (blood urea nitrogen and creatinine) and altered histoarchitecture (DTC value of 78.02 ± 10.5). The metal exposure increased chromium accumulation and malondialdehyde (MDA) and decreased the reduced glutathione (GSH) levels, the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione-S-transferase) and gene expression in the tissue. The co-supplementation of leaf extract with metal exposure revealed a tissue architecture with normal to slight modifications, and the level of kidney markers, antioxidants, and genes expressed in a normalized range. Principal component analysis created two components with antioxidants (GSH, SOD, CAT, and GST) revealing a negative correlation with the second component comprising MDA, DTC, and chromium concentration. It can be concluded that B. diffusa leaves are safe additives in the fish diet and possess an ameliorative capacity for renal injury incurred by hexavalent chromium.
Collapse
Affiliation(s)
- Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Ferro LA, Fernandes SLA, Kalinin AL, Monteiro DA. Effects of exposure to sediment-associated fipronil on cardiac function of Neotropical armored catfish Hypostomus regani. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:236-245. [PMID: 36803268 DOI: 10.1080/10934529.2023.2182582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Fipronil is widely used as a broad-spectrum insecticide in agriculture, urban environments, and veterinary medicine. Fipronil can enter aquatic ecosystems and spread to sediment and organic matter, representing a risk to non-target species. This study aimed to evaluate the effects of short-term (96 h) exposure to a low and realistic concentration of sediment-associated fipronil (4.2 µg.kg-1 of Regent® 800 WG) on myocardial contractility of armored catfish Hypostomus regain, a benthic fish species. Fipronil exposure induced increased inotropism and acceleration of contractile kinetics, although no alterations in the relative ventricular mass were observed. This better cardiac function was associated with an elevated expression and/or function of the Na+/Ca2+ exchanger and its marked contribution to contraction and relaxation, probably due to a stress-induced adrenergic stimulation. Ventricle strips of exposed fish also exhibited a faster relaxation and a higher cardiac pumping capacity, indicating that armored catfish were able to perform cardiac adjustments to face the exposure. However, a high energetic cost to maintain an increased cardiac performance can make fish more susceptible to other stressors, impairing developmental processes and/or survival. These findings highlight the need for regulations of emerging contaminants, such as fipronil, to ensure adequate protection of the aquatic system.
Collapse
Affiliation(s)
- Lucas Abreu Ferro
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos (UFSCar), São Paulo State University (UNESP), São Carlos, Araraquara, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Suzana Luisa Alves Fernandes
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos (UFSCar), São Paulo State University (UNESP), São Carlos, Araraquara, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
12
|
Elmowalid GA, Ghonimi WAM, Abd Allah HM, Abdallah H, El-Murr A, Abdelwahab AM. β-1,3-glucan improved the health and immunity of juvenile African catfish (Clarias gariepinus) and neutralized the histological changes caused by lead and fipronil pollutants. BMC Vet Res 2023; 19:45. [PMID: 36765350 PMCID: PMC9921358 DOI: 10.1186/s12917-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Water pollutants cause adverse effects in aquatic ecosystems. The immunomodulatory and mitigating effects of dietary 1,3-glucan on fipronil and lead-induced intoxication in African catfish (Clarias gariepinus) were investigated. Two hundred forty catfish were randomly divided into four equal groups: those in the first group were fed basic diet and served as controls; those in the second group were supplemented with β-1,3-glucan (0.1%); those in the third group were exposed to combination of lead nitrate at 0.041 mg/L (1/10 96 h LC50) and fipronil at 2.8 mg/l (1/10 96 h LC50); and those in the fourth group were exposed to combination of fipronil, lead, and β-1,3-glucan. The health status, haematological, immunological, and histological changes were all evaluated. RESULT Swelling on the dorsolateral side, spinal column deviation, sluggish movement, skin bleaching, excessive mucus secretion, significant variations in blood indices-related measures, and a 45% death rate were observed in the third group. There was a significant reduction in interleukin-1 (IL-1) and interleukin-6 (IL-6) and immunoglobulin M (IgM) concentrations, as well as decrease in their corresponding gene expression, indicating that fipronil and lead had immunosuppressive activity. Severe catarrhal enteritis and mucinous degeneration of the lining epithelium, and notable depletion of white pulp, congested red pulp and hemosiderosis were common pathological findings in the spleen. β-1,3-glucan alone or in combination with fipronil and lead provoked physical activity, blood indices, with elevations in IL-1β, IL-2, IL-6, and IgM concentrations, as well as up-regulation in their genes' expression in splenic tissues, when compared to the third group. The spleen and intestine had normal histological architecture with 5% mortalities. There were no fish deaths in the β-1,3-glucan-alone or control groups. CONCLUSION The use of β-1,3-glucan (0.1%) as dietary supplement could be implemented to protect against the toxic effects of fipronil and lead toxicity by improving the health and immunological parameters of intoxicated catfish.
Collapse
Affiliation(s)
- Gamal A. Elmowalid
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wael A. M. Ghonimi
- grid.31451.320000 0001 2158 2757Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hossam M. Abd Allah
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Abdallah
- grid.31451.320000 0001 2158 2757Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abdelhakeem El-Murr
- grid.31451.320000 0001 2158 2757Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf M. Abdelwahab
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Fuller N, Magnuson JT, Huff Hartz KE, Whitledge GW, Acuña S, McGruer V, Schlenk D, Lydy MJ. Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120308. [PMID: 36181938 DOI: 10.1016/j.envpol.2022.120308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aquatic organisms are exposed to complex mixtures of pesticides in the environment, but traditional risk assessment approaches typically only consider individual compounds. In conjunction with exposure to pesticide mixtures, global climate change is anticipated to alter thermal regimes of waterways, leading to potential co-exposure of biota to elevated temperatures and contaminants. Furthermore, most studies utilize aqueous exposures, whereas the dietary route of exposure may be more important for fish owing to the hydrophobicity of many pesticides. Consequently, the current study aimed to determine the effects of elevated temperatures and dietary pesticide mixtures on swimming performance and lipid metabolism of juvenile Chinook salmon, Oncorhynchus tshawytscha. Fish were fed pesticide-dosed pellets at three concentrations and three temperatures (11, 14 and 17 °C) for 14 days and swimming performance (Umax) and expression of genes involved in lipid metabolism and energetics were assessed (ATP citrate lyase, fatty acid synthase, farnesoid x receptor and liver x receptor). The low-pesticide pellet treatment contained five pesticides, p,p'-DDE, bifenthrin, esfenvalerate, chlorpyrifos and fipronil at concentrations based on prey items collected from the Sacramento River (CA, USA) watershed, with the high-pesticide pellet treatment containing a six times higher dose. Temperature exacerbated effects of pesticide exposure on swimming performance, with significant reductions in Umax of 31 and 23% in the low and high-pesticide pellet groups relative to controls at 17 °C, but no significant differences in Umax among pesticide concentrations at 11 or 14 °C. At 14 °C there was a significant positive relationship between juvenile Chinook salmon pesticide body residues and expression of ATP citrate lyase and fatty acid synthase, but an inverse relationship and significant downregulation at 17 °C. These findings suggest that temperature may modulate effects of environmentally relevant pesticide exposure on salmon, and that pesticide-induced impairment of swimming performance may be exacerbated under future climate scenarios.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Jason T Magnuson
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Victoria McGruer
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA.
| |
Collapse
|
14
|
Fadl SE, Elbialy ZI, Abdo W, Saad AH, Aboubakr M, Abdeen A, Elkamshishi MM, Salah AS, El-Mleeh A, Almeer R, Aleya L, Abdel-Daim MM, Najda A, Abdelhiee EY. Ameliorative effect of Spirulina and Saccharomyces cerevisiae against fipronil toxicity in Oreochromis niloticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113899. [PMID: 35870348 DOI: 10.1016/j.ecoenv.2022.113899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The ameliorative effects of Spirulina and Saccharomyces cerevisiae (S. cerevisiae) against fipronil toxicity in Nile tilapia fish were investigated. Fipronil is a kind of pesticide that is widely used in agriculture, thus this trial was conducted to evaluate the effect of fipronil on growth related parameters (final body weight, feed intake, weight gain, feed conversion ratio, specific growth rate, and protein efficiency ratio), hematology related parameters (RBCs, WBCs, hemoglobin, packed cell volume, and deferential leukocytic count), biochemistry related parameters (alanine aminotransferase, aspartate aminotransferase, total protein, albumin, urea, and creatinine), histopathology of liver, intestine, gills, and spleen, and gene expression of antioxidants, stress, inflammatory, apoptotic, and related to junction proteins genes as SOD and GPx, COX II, TNF-α, Casp-3, and Claudin-3, respectively, in Nile tilapia (Oreochromis niloticus). Four hundred and five Nile tilapia fish were distributed in a glass aquarium into nine groups according to the Spirulina and S. cerevisiae supplemented diets, with or without fipronil contaminated water. The classified groups are control, Sc: S. cerevisiae (4 g/Kg diet), Sp: Spirulina (1 g/100 g diet), Fb1: 0.0021 mg fipronil/L, ScFb1: S. cerevisiae (4 g/Kg diet) with 0.0021 mg fipronil/L, SpFb1: Spirulina (1 g/100 g diet) with 0.0021 mg fipronil/L, Fb2: 0.0042 mg fipronil/L, ScFb2: S. cerevisiae (4 g/Kg diet) with 0.0042 mg fipronil/L, and SpFb2: Spirulina (1 g/100 g diet) with 0.0042 mg fipronil/L. The results of the present investigation indicated the negative effect of fipronil on the growth performance parameters of Nile tilapia, which was confirmed by the results of hematology, biochemistry, and histopathology. In addition, the results of gene expression of antioxidants, stress, inflammatory, and apoptotic genes indicate the genotoxicity of fipronil. However, these negative effects were ameliorated by Spirulina and Saccharomyces dietary supplementation.
Collapse
Affiliation(s)
- Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine - Matrouh University, Matrouh 51744, Egypt.
| | - Zizy I Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt.
| | - Adel Hassan Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt.
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Mohamed Morsi Elkamshishi
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Abdallah S Salah
- Faculty of Aquatic and Fisheries Sciences, Department of Aquaculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32514, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, F-25030 Besançon, France.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Ehab Yahya Abdelhiee
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt.
| |
Collapse
|
15
|
Oliveira HHQ, Reis-Filho JA, Nunes JACC, Dos Santos RM, de F Esteves Santiago E, Aguilar L, de Mello Affonso PRA, da Cruz AL. Gill Histopathological Biomarkers in Fish Exposed to Trace Metals in the Todos os Santos Bay, Brazil. Biol Trace Elem Res 2022; 200:3388-3399. [PMID: 34590237 DOI: 10.1007/s12011-021-02930-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Histopathologies are widely recognized as biomarkers of environmental pollution. In this sense, we evaluated the putative relationship of gill histopathologies and distinct ecological impacts in two regions of Todos os Santos Bay (BTS), Brazil, the largest bay in Northeastern Brazil, South Atlantic. We compared the presence and concentration of metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn) in water, sediments, and gills and gill histopathologies of a demersal fish (Diapterus rhombeus) and a benthic fish (Ogcocephalus vespertilio). As expected, fish and sediment samples from historically contaminated areas (Aratu) showed more remarkable traces of metals than apparently low-impact areas (Jaguaripe). Likewise, the DTC (degree of tissue change) index and the volume densities were higher in fish caught in Aratu. In addition, the Diapterus rhombeus species showed more potential than Ogcocephalus vespertilio for risk assessment as it showed more responses to the environment reflected on more histopathologies. These data support the effectiveness of incorporating functional gill morphology to monitor impacts on estuarine biota that can be used as a reference to improve the management of ecosystems and prevent harm to human health.
Collapse
Affiliation(s)
- Heigon H Queiroz Oliveira
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - José Amorim Reis-Filho
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - José Anchieta C C Nunes
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Renata Melo Dos Santos
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Eunice de F Esteves Santiago
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Letícia Aguilar
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil
| | - Paulo R A de Mello Affonso
- Departamento de Ciências Biológicas, Universidade Estadual Do Sudoeste da Bahia (UESB), Campus de Jequié, Jequié, BA, 45205-490, Brazil
| | - André Luis da Cruz
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Barão de Jeremoabo, 147, Salvador, BA, 40170-115, Brazil.
| |
Collapse
|
16
|
Magnuson JT, Fuller N, Huff Hartz KE, Anzalone S, Whitledge GW, Acuña S, Lydy MJ, Schlenk D. Dietary Exposure to Bifenthrin and Fipronil Impacts Swimming Performance in Juvenile Chinook Salmon ( Oncorhynchus tshawytscha). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5071-5080. [PMID: 35353479 PMCID: PMC9354086 DOI: 10.1021/acs.est.1c06609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two commonly used insecticides, bifenthrin and fipronil, can accumulate in the prey of juvenile Chinook salmon, yet the effects of dietary exposure are not understood. Therefore, to better characterize the effect of a dietary exposure route, juvenile Chinook salmon were fed chironomids dosed with a concentration of 9 or 900 ng/g of bifenthrin, fipronil, or their mixture for 25 days at concentrations previously measured in field-collected samples. Chinook were assessed for maximum swimming performance (Umax) using a short-duration constant acceleration test and biochemical responses related to energetic processes (glucose levels) and liver health (aspartate aminotransferase (AST) activity). Chinook exposed to bifenthrin and bifenthrin and fipronil mixtures had a significantly reduced swimming performance, although not when exposed to fipronil alone. The AST activity was significantly increased in bifenthrin and mixture treatments and glucose levels were increased in Chinook following a mixture treatment, although not when exposed to fipronil alone. These findings suggest that there are different metabolic processes between bifenthrin and fipronil following dietary uptake that may influence toxicity. The significant reductions in swimming performance and increased levels of biochemical processes involved in energetics and fish heath could have implications for foraging activity and predator avoidance in wild fish at sensitive life stages.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
| | - Neil Fuller
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kara E. Huff Hartz
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sara Anzalone
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Gregory W. Whitledge
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Shawn Acuña
- Metropolitan
Water District of Southern California, 1121 L Street, Suite 900, Sacramento, California 95814, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Castro MS, Penha LCC, Torres TA, Jorge MB, Carvalho-Costa LF, Fillmann G, Luvizotto-Santos R. Genotoxic and mutagenic effects of chlorothalonil on the estuarine fish Micropogonias furnieri (Desmarest, 1823). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23504-23511. [PMID: 34807392 DOI: 10.1007/s11356-021-17328-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chlorothalonil is a fungicide widely used in agriculture as well as an active ingredient in antifouling paints. Although it causes toxic effects on non-target organisms and can accumulate in fish tissues, little is known about its sublethal effects. Thus, genotoxic and mutagenic effects of intraperitoneal injected chlorothalonil in Micropogonias furnieri, an estuarine fish of frequent human consumption and a promising test-organism for ecotoxicological assays, were assessed. Chlorothalonil showed to be genotoxic (DNA damage by comet assay) and mutagenic (micronuclei, nuclear buds, apoptotic fragments, and bilobed cells) even at the lowest dose tested (0.35 μg g-1) and in a dose-dependent manner (0.35 and 3.5 μg g-1) for micronuclei, apoptotic fragments, and bilobed cells. As genomic instability may lead to carcinogenesis, the present evidence can assist decision-makers in banning this compound since any benefit toward food production is outweighed by the hazard to aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Muryllo Santos Castro
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil
| | - Larissa Cristine Carvalho Penha
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil
| | - Thamires Alexsandra Torres
- Programa de Pós-Graduação em Oceanografia, Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil
| | - Marianna Basso Jorge
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil
- Programa de Pós-Graduação em Oceanografia, Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil
| | - Luis Fernando Carvalho-Costa
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Ricardo Luvizotto-Santos
- Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil.
- Programa de Pós-Graduação em Oceanografia, Universidade Federal do Maranhão (UFMA), São Luís, Maranhão, Brazil.
- Coordenação do Curso de Ciência e Tecnologia, Centro de Ciências Exatas e Tecnologias (CCET), Av. dos Portugueses, 1966 - Vila Bacanga, São Luís, Maranhão, 65080-805, Brazil.
| |
Collapse
|
18
|
Sharma K, Sharma P, Dhiman SK, Chadha P, Saini HS. Biochemical, genotoxic, histological and ultrastructural effects on liver and gills of fresh water fish Channa punctatus exposed to textile industry intermediate 2 ABS. CHEMOSPHERE 2022; 287:132103. [PMID: 34488055 DOI: 10.1016/j.chemosphere.2021.132103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The study was planned to assess the acute toxicity of textile industry intermediate, 2 amino benzene sulfonate (2 ABS) through biochemical, genotoxic, histopathological and ultrastructural (SEM) analysis in liver and gills of fresh water fish Channa punctatus. The fish were subjected to two sublethal concentrations (2.83 mg/30 g b. w. and 5.66 mg/30 g b. w.) for 96 h. A significant (p ≤ 0.05) increment in the enzymatic activity of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) was observed followed by decline on CAT-SOD after 96 h of exposure in both the tissues, whereas increment in malondialdehyde (MDA) levels were observed throughout the exposure period for both the concentrations. Comet assay also showed elevated tail length and % tail DNA throughout the exposure period, marking maximum damage after 96 h for both the tissues. Light microscopy divulged several anomalies including: infiltration of lymphocytes, sinusoidal dilations, necrosis, vacuolation in liver and secondary lamellae fusion, telangiectasia and epithelial uplifting in gills. The highest degree of tissue change (DTC) in liver (50.33 ± 0.88) and gill (42.33 ± 2.18) was recorded with the highest concentration after 96 h of exposure. Scanning electron microscopy (SEM) also reaffirmed several alterations in liver and gills of fish. The findings of the present study inflict changes in liver and gills, marking the interference of 2 ABS with the normal functioning by suppressing the enzymatic activity, accelerating the lipid peroxidation, enhancing DNA damage and by disrupting normal architecture of liver and gills, making it toxic towards the fish even at sub-lethal concentrations.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Prince Sharma
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Shakti Kumar Dhiman
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India.
| | - Pooja Chadha
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | | |
Collapse
|
19
|
Batoye S, Jindal R, Verma S. Ameliorating effect of ascorbic acid on fenvalerate induced ultrastructural changes in scales, erythrocytes and gills of Ctenopharyngodon idella (Valenciennes, 1844). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36472-36492. [PMID: 33694114 DOI: 10.1007/s11356-021-13257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Fenvalerate (type II synthetic pyrethroid), widely used in agricultural practices, find its way into aquatic ecosystem through air, by runoff, or by percolation to groundwater. It is an extremely toxic insecticide for aquatic organisms especially fish. In the present study, the fenvalerate (FEN) induced toxicity and the protective efficacy of ascorbic acid (AA) against FEN in Ctenopharyngodon idella was evaluated by studying the structural alterations in scales, erythrocytes and gills. The fishes were exposed to 1.2 μg/L and 2 μg/L of FEN and orally administered with 1000 mg/kg diet of AA. The fishes were scrutinized on 15th, 30th and 60th day of experiment. Scanning electron microscopic studies (SEM) of FEN-treated fish revealed extensive morphological alterations on the microstructure of scales including deformed focus, uprooted lepidonts and tubercles, hole formation and worn out calcareous material from the surface. FEN intoxication induced severe damage on erythrocytes including formation of dacrocytes, serrated spherocytes, echinocytes with oozed out cytoplasmic content, contracted plasma membrane and appearance of lobopodial projections. Ultrastructural studies in gills declared profound lesions in the form of aneurysm, loss of secondary lamellae and destructed microstructures of pavement cells. On the other hand, supplementation of AA in diet mitigated the impairment provoked by FEN on the scales, erythrocytes and gills due to its antioxidant properties.
Collapse
Affiliation(s)
- Smriti Batoye
- Department of Zoology, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| | - Rajinder Jindal
- Aquatic Biology Lab, Department of Zoology, Panjab University, Chandigarh, India
| | - Sakshi Verma
- Zoology Department, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| |
Collapse
|
20
|
Dogan D, Deveci HA, Nur G. Manifestations of oxidative stress and liver injury in clothianidin exposed Oncorhynchus mykiss. Toxicol Res (Camb) 2021; 10:501-510. [PMID: 34141164 DOI: 10.1093/toxres/tfab027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
This investigation was conducted to evaluate the effects of clothianidin, a neonicotinoid insecticide, on hepatic oxidative stress biomarkers, biochemical indices of blood serum and liver integrity in juvenile Oncorhynchus mykiss following 7, 14 and 21 days of application to environmentally relevant concentrations of 3, 15 and 30 μg/l. The observed hypertrophy caused elevation in hepatosomatic index, a significant increase in serum glucose and a decrease in tissue protein level with extended period of exposure were determined. The treatment resulted in a marked induction in the activities of antioxidant enzymes which were accompanied with simultaneous elevation in MDA and protein carbonyl level reflecting loss of membrane integrity and protein function. Histopathological examination showed liver injury manifested as hepatocellular degeneration, fibrosis, vacuolation, congestion, necrosis, steatosis and pyknosis proceding with the concentration. The stressful condition triggered hyperglycemic and hypoproteinemic conditions which might be proposed as general adaptive response. Moreover, altered liver histology reveals the hepatotoxic potential of clothianidin via oxidative stress as a common pathological mechanism leading to liver injury.
Collapse
Affiliation(s)
- Demet Dogan
- Department of Veterinary Medicine, Vocational School of Araban, University of Gaziantep, Araban-Gaziantep 27650, Turkey
| | - Haci Ahmet Deveci
- Faculty of Health and Sciences, Department of Nutrition and Dietetics, University of Gaziantep, Gaziantep 27310, Turkey
| | - Gokhan Nur
- Faculty of Medicine, Department of Histology and Embryology, University of Gaziantep, Gaziantep 27310, Turkey
| |
Collapse
|
21
|
Silva ALN, Rodrigues RA, Siqueira MS, Farias KNN, Kuibida KV, Franco-Belussi L, Fernandes CE. Transaminase profile and hepatic histopathological traits in Piaractus mesopotamicus exposed to insecticide Diflubenzuron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22002-22010. [PMID: 33410075 DOI: 10.1007/s11356-020-12013-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Diflubenzuron (DFB) is a widely used insecticide to control ectoparasites in fish farming. Although therapeutic concentrations (i.e., 50 to 100 mg/L) are safe as they fail to induce mortality, they can promote tissue changes. In Brazil, Pacu (Piaractus mesopotamicus) is a native species used for commercial production, and it remains crucial to determine underlying mechanisms to mitigate the potential effects of pathogens on productivity. The aim of this study was to analyze the transaminase profile and histopathological changes in the liver of P. mesopotamicus exposed to a DFB bath. Hence, the fish were exposed to an immersion bath containing a 70 mg/L nominal concentration of Difluchem 240 SC® (24% (m/m) DFB) for 30 (n = 10), 60 (n = 10), and 120 min (n = 10), every 24 h for 3 days. Following exposure, plasma transaminases and liver histology were analyzed. In DFB-exposed fish, levels of aspartate transaminase (AST) and alanine transaminase (ALT) were elevated when compared with the control at 30 and 60 min. Furthermore, liver morphology was altered based on exposure times. Compared with controls, the degree of reversible damage (degree of tissue change (DTC)) demonstrated high scores for all exposure times, with no difference between individual groups. Irreversible changes were increased in the 60 and 120-min baths. These findings highlight the impact of the therapeutic DFB concentration (i.e., 70 mg/L), revealing that 60-min and 120-min bathing induces irreversible and progressive hepatic changes.
Collapse
Affiliation(s)
- André Luiz N Silva
- Programa de Pós Graduação em Ciência Animal, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Robson Andrade Rodrigues
- Departamento de Aquicultura do Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mayara Schueroff Siqueira
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Karine Nathiele Nogueira Farias
- Programa de Pós Graduação em Ciência Animal, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Karin Virgínia Kuibida
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Lilian Franco-Belussi
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Carlos E Fernandes
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
| |
Collapse
|
22
|
Bownik A, Szabelak A. Short-term effects of pesticide fipronil on behavioral and physiological endpoints of Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13091-6. [PMID: 33638071 PMCID: PMC8241664 DOI: 10.1007/s11356-021-13091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 05/13/2023]
Abstract
Fipronil (FIP) is an organic pesticide with many practical uses. Although some results indicated toxic effects in some terrestrial and aquatic animal species, little is known on its influence on behavioral and physiological endpoints of cladocerans. The aim of our study was to determine the short-term effects of FIP at concentrations of 0.1 μg/L, 1 μg/L, 10 μg/L, and 100 μg/L on Daphnia magna sublethal indices: behavioral (swimming speed, distance traveled) and physiological endpoints (heart rate, post-abdominal claw activity and thoracic limb movements). The results showed that FIP induced reduction of swimming speed and distance traveled in a concentration- and time-dependent manner at all the concentrations used. The lowest concentration of the insecticide temporarily stimulated post-abdominal claw activity after 24 h and thoracic limb activity after 48 h; however, the highest concentrations reduced all the studied physiological endpoints. IC50 values showed that thoracic limb activity, swimming speed, and distance traveled were most sensitive to FIP after 24-h exposure. The most sensitive parameter after 48 h and 72 h was swimming speed and post-abdominal claw activity, respectively. The study indicated that (i) behavioral and physiological endpoints of Daphnia magna are reliable and valuable sublethal indicators of toxic alterations induced by FIP; however, they respond with different sensitivity at various times of exposure, (ii) FIP may alter cladoceran behavior and physiological processes at concentrations detected in the aquatic environment; therefore, it should be considered as an ecotoxicological hazard to freshwater cladocerans.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
23
|
Wang Y, Li X, Xu C, Yang G, Wang D, Wang X, Wang Q. Toxicological interactions of cadmium and four pesticides on early life stage of rare minnow (Gobiocypris rarus). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1453-1461. [PMID: 32880082 DOI: 10.1007/s10646-020-02269-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Although chemicals have been traditionally regulated on an individual basis in aquatic ecosystems, they often co-exist as different types of complex mixtures. Laboratory assays were conducted for assessing the responses of rare minnow (Gobiocypris rarus) to individual and mixture chemicals [trace element cadmium (Cd), thiamethoxam, deltamethrin, malathion and prochloraz]. Data obtained from 96 h semi-static toxicity assays implied that deltamethrin elicited the highest toxic effect on the various developmental phases (larval, juvenile and adult phases) of G. rarus with LC50 values ranging from 0.00061 to 0.25 mg a.i. L-1, followed by prochloraz, malathion and Cd with 96-h LC50 values ranging from 0.49 to 1.1, from 7.1 to 26, and from 7.6 to 15 mg a.i. L-1, respectively. Thiamethoxam elicited the lowest toxic effect on the organisms with 96-h LC50 values ranging from 38 to 202 mg a.i. L-1. Larval phase was not always the most sensitive period in the three detected phases to most of chemicals. Chemical combinations containing deltamethrin and malathion displayed synergetic responses to the larvae of G. rarus. Besides, the binary mixtures of Cd-deltamethrin and Cd-prochloraz also exhibited synergetic response to rare minnows. Our results indicate that extra information is necessary to develop practical criteria for selecting chemical combinations that require legislative attention according to their likelihood to exert synergetic responses. Thence, more investigations on mixture toxicities of various chemicals should be taken as a priority for producing synergetic interaction to improve the environmental risk assessment of chemicals.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture/Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
24
|
Cunha RLDD, de Brito-Gitirana L. Effects of titanium dioxide nanoparticles on the intestine, liver, and kidney of Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111032. [PMID: 32745774 DOI: 10.1016/j.ecoenv.2020.111032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (Np-TiO2) have become the common component of sunscreen cosmetic products. Np-TiO2 can affect especially aquatic ecosystems health, including aquatic organisms such as fish. It is therefore necessary to acquire a better understanding of the effect of Np-TiO2 on aquatic organisms. This study evaluated the biological effects of Np-TiO2 on Danio rerio, such as survival rate and weight change and, in particular, the Ti content or retention in the intestine and liver, as well as the activities of catalase and superoxide dismutase enzymes. In addition, the structure of the intestine, kidney, and liver was investigated through histological analysis. Ninety zebrafish were used, randomly divided into three treatment-groups: a control group (fed with food without adding Np-TiO2) and two groups of fish fed with food containing Np-TiO2 exposed for 7 and 14 days. The amount of Ti in the liver and intestine was measured using atomic absorption spectrophotometry coupled to a graphite furnace (GFAAS). Morphological analysis and enzyme catalase and superoxide dismutase assays were likewise performed. Ti was detected in all fish even in control group; probably Ti must have been introduced during production by the fish food industry. Structural changes were detected in fish fed with Np-TiO2 as vacuolization and disruption of the apical cytoplasm of epithelial cells that covered the intestinal villi. Although kidney morphology appeared intact, the lumen of the proximal tubule was enlarged, and the cells of the distal tubule were vacuolated. No morphological changes in the liver were detected; however, superoxide dismutase activity decreased, suggesting that liver changes occurred at the molecular level. Thus, Np-TiO2 causes morphological changes in the intestine, kidney, and liver of zebrafish and biochemical changes in the liver exposed for 7 and 14 days. Although not highly lethal, Np-TiO2 in the food chain can interfere with the morphophysiology of aquatic organisms. Neither mortalities nor body weight losses were recorded among fish in all groups over the duration of the experiment.
Collapse
Affiliation(s)
- Rafaela Luiza Dias da Cunha
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas (ICB), Universidade Federal Do Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro State, Brazil
| | - Lycia de Brito-Gitirana
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas (ICB), Universidade Federal Do Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro State, Brazil.
| |
Collapse
|
25
|
Li H, Zhang R, Sun F, Zhang Y. Evaluation of toxicological responses and promising biomarkers of topmouth gudgeon (Pseudorasbora parva) exposed to fipronil at environmentally relevant levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24081-24089. [PMID: 32304060 DOI: 10.1007/s11356-020-08555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Fipronil is an insecticide commonly used in agriculture. We report here on the sublethal and sub-chronic effects of fipronil on non-target topmouth gudgeon (Pseudorasbora parva) at environmentally relevant levels. The results showed that fipronil did not cause significant changes in brain acetylcholinesterase activities, glutathione S-transferase (GST) activities in the intestine, and GST, glutamic pyruvic transaminase (GPT), and glutamic oxaloacetic transaminase (GOT) activities in the liver tissues at environmentally relevant levels for 96-h exposure. In the further test for a 12-day exposure, dose-dependent responses of the serum GPT and GOT activities were observed in all treated groups with sublethal concentrations of fipronil. Furthermore, fipronil could reduce the liver mitochondrial membrane fluidity of P. parva, especially with high concentration of fipronil at high temperature. The results suggest that serum GPT and GOT in P. parva might be useful biomarkers for effects of fipronil exposure at environmentally relevant level, and reducing fluidity of liver mitochondrial membrane may be one toxic mechanism of fipronil.
Collapse
Affiliation(s)
- Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yahui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Environmental Analysis and Testing Laboratory of CRAES, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
26
|
Bevilaqua F, Sachett A, Chitolina R, Garbinato C, Gasparetto H, Marcon M, Mocelin R, Dallegrave E, Conterato G, Piato A, Siebel AM. A mixture of fipronil and fungicides induces alterations on behavioral and oxidative stress parameters in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:140-147. [PMID: 31865514 DOI: 10.1007/s10646-019-02146-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Pesticide commercial mixtures, including the insecticide fipronil and the fungicides pyraclostrobin and methyl-thiophanate, have been used in concomitant pest control, facilitating agricultural management. Their widespread use can lead to soil and water contamination and potentially induce damages in the ecosystem, producing toxic effects in non-target organisms. Despite their toxicological potential, their effects on behavioral and biochemical parameters are not well understood. Here we investigated the effects of the mixture of fipronil and fungicides (MFF) pyraclostrobin and methyl- thiophanate on behavioral and biochemical parameters of oxidative stress in adult zebrafish. Animals exposed to the highest MFF tested concentration showed a decrease in the total distance traveled and in the number of crossings in the different zones of the tank. Furthermore, animals exposed to highest MFF tested concentration spent more time in water surface. In addition, our data showed that the exposure to this preparation promoted a decrease in non-protein thiol content as well as in catalase activity. Finally, pesticide exposure induced an increase in the superoxide dismutase/catalase ratio. Our results indicate that alterations in behavioral and oxidative parameters are involved in MFF toxicity in zebrafish. The antioxidant mechanisms analyzed were altered in concentrations that did not affect zebrafish behavior. Therefore, the assessment of oxidative stress parameters in zebrafish brains could be very useful to detect the early effects of environmental exposure to the MFF.
Collapse
Affiliation(s)
- Fernanda Bevilaqua
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Henrique Gasparetto
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Matheus Marcon
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricieri Mocelin
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Greicy Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anna M Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
27
|
Dallarés S, Dourado P, Sanahuja I, Solovyev M, Gisbert E, Montemurro N, Torreblanca A, Blázquez M, Solé M. Multibiomarker approach to fipronil exposure in the fish Dicentrarchus labrax under two temperature regimes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105378. [PMID: 31841729 DOI: 10.1016/j.aquatox.2019.105378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Fipronil is a phenylpyrazole insecticide widely used to control pests in agriculture even though evidence of harmful side effects in non-target species has been reported. A comprehensive study on the effects of dietary administration of Regent®800WG (80 % fipronil) in European sea bass juveniles was carried out under two temperature regimes: a) natural conditions, and b) 3 °C above the natural temperature (an increase predicted for the NW Mediterranean by the end of this century). Fipronil was added to the fish food (10 mg fipronil /Kg feed) and the effects were studied at several time points including right before administration, 7 and 14 days after daily fipronil feed and one-week after the insecticide withdrawal from the diet (depuration period). A wide array of physiological and metabolic biomarkers including feeding rate, general condition indices, plasma and epidermal mucus metabolites, immune response, osmoregulation, detoxification and oxidative-stress markers and digestive enzymes were assessed. General linear models and principal component analyses indicated that regardless of water temperature, fipronil resulted in a significant alteration of several of the above listed biomarkers. Among them, glucose and lactate levels increased in plasma and decreased in epidermal mucus as indicators of a stress response. Similarly, a depletion in catalase activity and higher lipid peroxidation in liver of fipronil-exposed fish were also indicative of an oxidative-stress condition. Fipronil induced a time dependent inhibition of Cytochrome P450-related activities and an increase of phase II glutathione-S-transferase. Moreover, fipronil administration was able to reduce the hypo-osmoregulatory capability as shown by the increase of plasmatic osmolality and altered several digestive enzymes including trypsin, lipase, alpha amylase and maltase. Finally, analyses in bile and muscle confirmed the rapid clearance of fipronil but the persistence of the metabolite fipronil-sulfone in bile even after the 7-day depuration period. Altogether, the results reveal a notable impact of this compound on the physiological condition of the European sea bass. The results should be considered in future environmental risk assessment studies since fipronil could be hazardous to fish species, particularly those inhabiting estuarine ecosystems exposed to the discharge of agriculture runoffs where this pesticide is mainly used.
Collapse
Affiliation(s)
- Sara Dallarés
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Priscila Dourado
- Institute of Biosciences, Language and Exact Sciences of São José do Rio Preto, Paulist State University "Júlio de Mesquita Filho", Rua Cristóvão Colombo - de 1897/1898 ao fim, Jardim Nazareth, 15054000, São José do Rio Preto, SP, Brazil
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mikhail Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze st., 11, 630091, Novosibirsk, Russia; Tomsk State University, 36 Lenin Ave, 634050, Tomsk, Russia
| | - Enric Gisbert
- Institute of Research and Technology Food and Agriculture (IRTA), Aquaculture Program, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Nicola Montemurro
- Water and Soil Quality Research Group (IDAEA-CSIC), Department of Environmental Chemistry, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Amparo Torreblanca
- Department of Functional Biology and Physical Anthropology, University of València, C/Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Mercedes Blázquez
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
28
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
29
|
Interactions of oxidative DNA damage and CYP1A gene expression with the liver enzymes in Klunzinger's mullet exposed to benzo[ a]pyrene. Toxicol Rep 2019; 6:1097-1103. [PMID: 31720230 PMCID: PMC6839019 DOI: 10.1016/j.toxrep.2019.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is an important contaminant whose liver biotransformation is dependent on the species, the route of exposure and the concentration. The goal of this study was to assess the interactions of oxidative DNA damage and CYP1A gene expression with the liver enzymes in Klunzinger’s mullet (Liza klunzingeri) exposed to benzo[a]pyrene. Sublethal doses of B[a]P (5, 10 and 50 mg/kg) were intraperitoneally administered to the fish for 14 days. The alterations in antioxidant enzymes’ activity (SOD, CAT, and GPX), hepatic enzymes’ activity (ALT, AST and ALP), DNA damage (measured by comet assay and cellProfiler software) and CYP1A gene expression in the fish liver were studied on the 1st, 3rd, 7th and 14th days. The determination of these parameters in the liver showed that most of these parameters significantly increased mostly in a time-dependent manner. Multiple regression analysis showed that DNA damage and CYP1A gene expression had positive correlations with the liver enzymes in this fish species intraperitoneally exposed to these concentrations. Moreover, these interactions indicated that theses parameters are sensitive biomarkers for the exposure to B[a]P in Klunzinger's mullet. However, other possible factors and B[a]P metabolites should be considered in future studies for better elucidating the biotransformation mechanisms and introducing better biomarkers of B[a]P.
Collapse
|
30
|
Jindal R, Handa K. Hexavalent chromium-induced toxic effects on the antioxidant levels, histopathological alterations and expression of Nrf2 and MT2 genes in the branchial tissue of Ctenopharyngodon idellus. CHEMOSPHERE 2019; 230:144-156. [PMID: 31103860 DOI: 10.1016/j.chemosphere.2019.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Ability of hexavalent chromium to accumulate and induce oxidative stress has been studied in the gills of Ctenopharyngodon idellus, with the resulting damage in the form of altered endogenous antioxidant enzyme activity and, histopathology in the tissue. The fish were exposed to 5.3 (C1) and 10.63 mg/L (C2) of hexavalent chromium and were scrutinised on 15th, 30th and 45th day of toxicant exposure. Oxidative stress studied in terms of lipid peroxidation and glutathione levels and the antioxidant enzymes activity also exhibited alterations. The histopathological modifications in gills announced lesions in the form of hyperplasia, aneurysm, lamellar fusion, focal proliferation, epithelial degeneration and necrosis with loss of lamellae, bringing irreversible damage on 45th day with mean degree of tissue change value of 100.35 ± 10.69. Bioaccumulation of chromium, and increased anomalies in branchial tissue exhibited damage in concentration and time-dependent manner. The ultrastructural anomalies in the cellular morphology in the epithelial cells of filaments and lamellae, exhibited pleomorphic nuclei, swollen mitochondria, extensive vacuolation and loss of microridges in pavement cells. The tissue also displayed altered regulation of Nrf2 and Mt2 following Cr(VI) exposure with maximum downregulation on 45th day by 61 and 53%, respectively. PCA generated two principal components, PC1 (GSH, GST, CAT and SOD) and PC2 (DTC, MDA and Cr(VI) concentration). Thus, it can be concluded that accumulation of Cr(VI) induces alteration in the gene expression of Nrf2 and Mt2 leading to the development of oxidative stress, ensuing various pathological changes creating hindrance in fish survival.
Collapse
Affiliation(s)
- Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160 014, India
| | - Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
31
|
Ardeshir RA, Zolgharnein H, Movahedinia A, Salamat N, Zabihi E. CYP1A gene expression as a basic factor for fipronil toxicity in Caspian kutum fish. Toxicol Rep 2017; 5:113-124. [PMID: 29854583 PMCID: PMC5978015 DOI: 10.1016/j.toxrep.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to assess the effects of fipronil insecticide on the Caspian kutum fish at different levels of biological organizations and to find possible relationship between these biomarkers. Different doses of fipronil (65, 130 and 200 mg/kg) were intraperitoneally administered to the fish for 2 weeks. After 7 and 14 days of exposure, alterations in organ-somatic index, tissue and DNA structure, oxidative stress and CYP1A gene expression in gill, liver, brain and kidney were studied. Determination of these parameters in the liver showed that the degree of tissue change (DTC), comet tail, superoxide dismutase (SOD) and relative CYP1A mRNA expression increased mostly in a time dependent manner whereas in the kidney increased mostly in a dose dependent manner. These parameters in the gill increased more in time and dose dependent manner. Apart from the changes in CYP1A expression and oxidative stress, no alterations was observed in the brain. Multiple regression analysis showed that the CYP1A had the most correlation with the organ-somatic index (R2 = 0.76) and comet tail (R2 = 0.89) in the liver, and with DTC (R2 = 0.93) and oxidative stress (R2 = 0.87) in the kidney. Generally, this study showed that CYP1A gene expression can be considered as one basic factor for fipronil toxicity in this fish. However, other possible factors also should be considered for future research.
Collapse
Affiliation(s)
- Rashid Alijani Ardeshir
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Hossein Zolgharnein
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran.,Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|