1
|
Quasmi MN, Kumar D, Jangra A. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Toxicol Rep 2025; 14:101859. [PMID: 39758802 PMCID: PMC11699442 DOI: 10.1016/j.toxrep.2024.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Acrylamide (AA) has raised concerns throughout the world in recent years because of its potential negative effects on human health. Numerous researches on humans and animals have connected a high dietary exposure to AA to a possible risk of cancer. Additionally, higher consumption of acrylamide has also been associated with dysfunctioning of various organ systems from nervous system to the reproductive system. Acrylamide is primarily metabolised into the glycidamide inside the body which gets accumulated in different tissues including kidney and liver, and chronic exposure to this can lead to the nephrotoxicity and hepatotoxicity through different molecular mechanisms. This review summarizes the various sources, formation and metabolism of the dietary acrylamide along with the different molecular mechanisms such as oxidative stress, inflammation, DNA damage, autophagy, mitochondrial dysfunction and morphological changes in nephron and hepatocytes through which acrylamide exerts its deleterious effect on kidney and liver causing nephrotoxicity and hepatotoxicity. This review summarizes various animal and cellular studies that demonstrate AA-induced nephrotoxicity and hepatotoxicity. Lastly, the article emphasizes on underlying protective molecular mechanisms of various pharmacological interventions against acrylamide induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mohammed Nazish Quasmi
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
2
|
Cristaldi A, Pulvirenti E, Rapisarda P, Favara C, Castrogiovanni M, Oliveri Conti G, Ferrante M. Determination of acrylamide levels in chips/crisps on the Italian market and exposure risk assessment. Food Chem Toxicol 2025; 202:115539. [PMID: 40345519 DOI: 10.1016/j.fct.2025.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Acrylamide is an important concern in the food industry because it can form during cooking at high temperatures of foods, mainly of vegetable origin, and rich in carbohydrates. In this study, we detected the acrylamide levels in chips/crisps from five brands available on the Italian market and performed the risk assessment related to the exposure to acrylamide through the consumption of chips/crisps. A total of 50 samples were prepared and the acrylamide levels were determined by HPLC. The mean acrylamide value was 1116.6 ± 585 μg/kg, and two out of five brands showed higher values. EDI values were between 0.172 and 0.901 μg/kg bw/day. The LCR values ranged from 8.61 × 10-5 to 4.51 × 10-4. The THQ values were all below 1. The MOEc values ranged from 189 to 987 (mean 478), significantly lower than the 10000 threshold, indicating a potential carcinogenic risk. MOEn values ranged from 477 to 2496 (mean 1208), with values above 100 suggesting no neurotoxic risk. Further research is needed to suggest appropriate interventions to reduce acrylamide levels in foods.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medicine and Surgery, University of Enna "Kore", Scientific and Technological Center of Santa Panasia, 94100, Enna, Italy; Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Paola Rapisarda
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Claudia Favara
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Castrogiovanni
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
3
|
Kazmi I, Altayb HN, Al-Abbasi FA, Alharbi KS, Almalki NAR, Moglad E, Al-Qahtani SD, Bawadood AS, Sayyed N. Rosiridin prevents cisplatin-induced renal toxicity by inhibiting caspase-3/NF-κB/ Bcl-2 signaling pathways in rats and in silico study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5895-5913. [PMID: 39621090 DOI: 10.1007/s00210-024-03643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/15/2024] [Indexed: 04/11/2025]
Abstract
The present investigation determines the effects of rosiridin in cisplatin (CP)-induced renal toxicity in rats. The experimental animals were used and divided into four groups. Experimental rats were randomly divided into group-I normal control, group-II CP group (8 mg/kg i.p.), group-III CP + rosiridin (10 mg/kg, p.o.) and group-IV rosiridin (10 mg/kg p.o.). Various biochemical parameters, i.e., creatinine, urea, uric acid, cholesterol, blood urea nitrogen, antioxidant levels, inflammatory markers such as interleukins-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), apoptosis markers including B cell lymphoma-2 (Bcl-2), caspase-3 and histopathological investigations were evaluated. Additionally, molecular docking and dynamics were performed to assess the interaction of rosiridin with target proteins. Rosiridin significantly minimized alteration in creatinine, urea, uric acid, cholesterol, blood urea nitrogen, antioxidant levels, and inflammatory, i.e., IL-1β, IL-6, TNF-α, NF-κB, Bcl-2, and caspase-3 which CP induced in rats. The interaction of rosiridin showed a favorable docking energy. The MD simulation results showed the higher stability of the complex generated from rosiridin. The current study exhibited rosiridin having a protective effect on CP-induced renal toxicity.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Salwa D Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Al Majmaah, Saudi Arabia
| | - Azizah Salim Bawadood
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, 247121, India.
| |
Collapse
|
4
|
Chanu MB, Chanu WK, Chingakham BS. "GC-MS profiling, sub-acute toxicity study and total phenolic and flavonoid content analysis of methanolic leaf extract of Schima wallichii (D.C.) Korth-a traditional antidiabetic medicinal plant". JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118111. [PMID: 38653394 DOI: 10.1016/j.jep.2024.118111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schima wallichii (D.C.) Korth is traditionally used in Manipur, India for treatment of diabetes and hypertension. However, there is no data reported regarding safety profile of this medicinal plant upon repeated per oral administration over a period of time. AIM OF THE STUDY In the current study phytochemical profile, toxicological profile and total phenolic and flavonoid compound content of Schima wallichii leaves extract were evaluated. MATERIALS AND METHODS Gas chromatography coupled to mass spectrometry was performed for chemical profiling by using Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS), Shimadzu, TQ8040 system. A 28 days sub-acute toxicity study was carried out using albino Wistar rats by administering 3 different doses (200, 400 and 800 mg/kg body weight per oral) of methanol leaves extract. Changes in body weights were recorded weekly. Serum biochemical parameters were estimated as well as blood-cell count was done to check the effect of extract on haematopoietic system. Histopathology of vital organs viz. kidney, heart, brain, liver was performed to find any pathological indications. Since, liver is main the site for xenobiotic metabolism, estimation of the level of glutathione, catalase and lipid peroxidation were done. Further, total phenolic and flavonoid compound content estimation was performed for the leaves extract. RESULTS GC-MS revealed 14 major compounds with area percentage >1% of which quinic acid, n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, (Z,Z,Z)-, Octatriacontyl trifluoroacetate, are three major compounds. No mortality was observed after the treatment with extract. Blood-cell count and biochemical parameters didn't show significant deviation as compared to control group. Histopathology study of vital organs viz. (liver, kidney, heart and brain) showed normal cellular construction comparing to control group. There was no sign of membrane lipid peroxidation, depletion of catalase level and glutathione level in liver. The result demonstrates that NOAEL (no-observed-adverse-effect levels) in the sub-acute toxicity was above 800 mg/kg. The leaves extract showed significant total phenol and flavonoid content. CONCLUSION The present study revealed that Schima wallichii possessed important bioactive compounds with therapeutic values. The plant was safe for consumption after repeated high doses administration in rats and possesses significant amount of total phenol and flavonoid content.
Collapse
Affiliation(s)
- Maibam Beebina Chanu
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, 795001, Manipur, India.
| | - Wahengbam Kabita Chanu
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, 795001, Manipur, India.
| | - Brajakishor Singh Chingakham
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, 795001, Manipur, India.
| |
Collapse
|
5
|
Rivadeneyra-Domínguez E, Zamora-Bello I, Rodríguez-Landa JF, Ortega-García AA, Rosales-Sánchez Ó. Emblica officinalis Gaertn as a Potential Alternative Therapy for the Treatment of Epilepsy: An Animal Study. Dose Response 2024; 22:15593258241282018. [PMID: 39247123 PMCID: PMC11378198 DOI: 10.1177/15593258241282018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Epilepsy is a neurological disorder characterized by recurrent seizures. Although antiepileptic drugs (AEDs) reduce the frequency of epileptic seizures, they can cause renal and hepatic damage. Several preclinical studies have indicated that Emblica officinalis Gaertn (AMLA) exerts an anticonvulsant effect related to its tannin and polyphenol content. Objective: We aim to evaluate the anticonvulsant effects of chronic oral AMLA administration and its impact on biochemical and hematological parameters in rats. Methods: Twenty-eight male Wistar rats (250 to 300 g) were divided into four experimental groups (n = 7): vehicle (purified water), AMLA (500 and 700 mg/kg), and carbamazepine (CBZ) (300 mg/kg) as the pharmacological control of anticonvulsant activity. Treatments were administered orally every 24 hours for 28 days, while carbamazepine was administered every 48 hours for 5 days before the behavioral, biochemical, and hematological test. On day 29, Status epilepticus (SE) was induced using the lithium-pilocarpine model (3 mEq/kg, i.p. and 30 mg/kg, s.c.), after which the behavioral and biochemical effects were evaluated. Results: The AMLA 500 mg/kg and CBZ 300 mg/kg groups presented fewer phase V seizures than the vehicle group did. None of the treatments modified biochemical or hematological parameters. Conclusion: AMLA could be considered as a potential alternative therapy for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, México
| | | | | |
Collapse
|
6
|
Chaniad P, Chukaew A, Na-Ek P, Yusakul G, Chuaboon L, Phuwajaroanpong A, Plirat W, Konyanee A, Septama AW, Punsawad C. In vivo antimalarial effect of 1-hydroxy-5,6,7-trimethoxyxanthone isolated from Mammea siamensis T. Anders. flowers: pharmacokinetic and acute toxicity studies. BMC Complement Med Ther 2024; 24:129. [PMID: 38521901 PMCID: PMC10960464 DOI: 10.1186/s12906-024-04427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Pathobiology and Tropical Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arnon Chukaew
- Chemistry Department, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Tani, 84100, Thailand
| | - Prasit Na-Ek
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Pathobiology and Tropical Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arisara Phuwajaroanpong
- Research Center in Pathobiology and Tropical Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Walaiporn Plirat
- Research Center in Pathobiology and Tropical Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Research Center in Pathobiology and Tropical Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, 16915, Indonesia
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Pathobiology and Tropical Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
7
|
Üremi Ş N, Üremi Ş MM, Gül M, Özsoy EN, Türköz Y. Protective effects of vitamin E against acrylamide-induced hepatotoxicity and nephrotoxicity from fetal development to adulthood: Insights into Akt/NF-κB and Bcl-xL/Bax signaling pathways. Toxicology 2024; 502:153729. [PMID: 38242491 DOI: 10.1016/j.tox.2024.153729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Acrylamide (ACR), a toxin present in fried and baked carbohydrate-rich foods, is known to cause liver and kidney damage. This study aimed to investigate the mechanisms of oxidative stress, inflammation, and apoptosis that contribute to liver and kidney damage induced by chronic administration of ACR. Additionally, the effectiveness of vitamin E in mitigating these toxic effects was examined. The study initially involved dividing 40 pregnant rats into four groups. After lactation, the research continued with male offspring rats from each group. The offspring rats were divided into Control, Vitamin E, ACR, and ACR + Vitamin E groups. Following ACR administration, liver and kidney function tests were performed on serum samples. Biochemical analyses, evaluation of inflammation markers, histopathological examination, and assessment of protein levels of Akt/IκBα/NF-κB, Bax, Bcl-xL, and Caspase-9 were conducted on liver and kidney tissues. The analysis demonstrated that ACR adversely affected liver and kidney function, resulting in oxidative stress, increased inflammation, and elevated apoptotic markers. Conversely, administration of vitamin E positively impacted these parameters, restoring them to control levels. Based on the results, the mechanism of ACR's action on oxidative stress and inflammation-induced liver and kidney damage may be associated with the activation of apoptotic markers such as Bax and Caspase-9, as well as the Akt/IκBα/NF-κB signaling pathway. Consequently, the protective properties of vitamin E establish it as an essential vitamin for the prevention or mitigation of various ACR-induced damages.
Collapse
Affiliation(s)
- Nuray Üremi Ş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | | | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Eda Nur Özsoy
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
8
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Ibrahim DS, Shahen EMS. Effect of royal jelly on acrylamide-induced neurotoxicity in rats. J Chem Neuroanat 2023; 134:102358. [PMID: 37925036 DOI: 10.1016/j.jchemneu.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Royal Jelly (RJ) is a natural product made by nurse bees known for its multiple therapeutic properties. The research aims to discover the ability of RJ to improve the hematological alterations and neurotoxicity caused by acrylamide (AA). The study rats were separated equally into four groups (6 in each group), the control group, the AA (38.27 mg/kg bw) group, the RJ (150 mg/kg bw) + AA group, and the RJ (300 mg/kg bw) + AA group. Blood and brain samples were collected after 10 days to evaluate haematological and biochemical parameters and to examine histopathological and immunohistochemistry. The administration of AA increased the level of malondialdehyde (MDA), decreases levels of haematological parameters, superoxide dismutase (SOD), reduced glutathione (GSH), brain-derived neurotrophic factor (BDNF), neurotransmitters (serotonin, dopamine, and acetylcholine), and cleaved caspase-3, as well as increase the damage to the brain tissues. Meanwhile, RJ improved levels of haematological parameters, oxidative stress parameters (MDA, SOD, and GSH), BDNF, neurotransmitters, cleaved caspase-3, and brain tissue damage induced by AA. The study demonstrated the protective impact of RJ against the haematological alterations and neurotoxicity caused by AA.
Collapse
Affiliation(s)
- Doaa S Ibrahim
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt.
| | - Eman M S Shahen
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Liu Z, Daniels T, Campen MJ, Alvidrez RIM. Inflammatory atherosclerotic plaque identification by SPECT/CT imaging of LFA-1 using [ 111In] In-DANBIRT in a novel dyslipidemic rat model. Ann Nucl Med 2023; 37:635-643. [PMID: 37742306 DOI: 10.1007/s12149-023-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Atherosclerosis is prevalent globally, closely associated with dyslipidemia and other metabolic dysfunction. Early diagnosis of atherosclerosis is challenging due to limited diagnostic capabilities that need to be expanded with animal models with enhanced vascular biology like rats. Our previous research showed [111In] In-DANBIRT has potential as a diagnostic tool for detecting atherosclerosis in mice. The primary aim of the present study is to evaluate [111In] In-DANBIRT in a novel atherosclerotic rat with early- and late-stage atherosclerosis and metabolic disease. METHODS We characterized metabolic and body composition differences in these novel dyslipidemic rats under different diets using serum chemistry and dual-energy X-ray absorptiometry (DEXA) scan, respectively. We performed 1-h post-injection in vivo molecular imaging of ApoE knockout, lean Zucker (LZ) male rats at baseline and followed them into 10 weeks of either normal or high-fat/cholesterol diet implementation (22 weeks of age). RESULTS We identified significant differences in body composition and metabolic changes in ApoE knockout rats compared to ApoE wildtype rats. Our findings indicate an increased uptake of [111In] In-DANBIRT in ApoE knockout, lean Zucker (LZ) rats, particularly in the descending aorta, a location where early-stage atherosclerosis is commonly found. Our findings, however, also revealed that the ApoE knockout, Zucker diabetic fatty (ZDF) model has high mortality rate, which may be attributed to alterations of critical enzymes involved in regulating metabolism and liver function. CONCLUSION Our results are highly encouraging as they demonstrated the potential of [111In] In-DANBIRT to detect early-stage atherosclerosis in rats that might otherwise go unnoticed by other methods, showcasing the high sensitivity of [111In] In-DANBIRT. Our future studies will aim to establish a viable T2D atherosclerosis model in rats with more advanced stages of the disease to further demonstrate the reliability of [111In] In-DANBIRT as a diagnostic tool for patients in all stages of atherosclerosis.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Tamara Daniels
- Department of Radiopharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Matthew J Campen
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Department of Radiopharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA.
- Pittsburgh Liver Research Center Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, 87131, USA.
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA.
| |
Collapse
|
11
|
Rivadeneyra-Domínguez E, Zamora-Bello I, Castañeda-Morales JM, Díaz-Vallejo JJ, Rosales-Sánchez Ó, Rodríguez-Landa JF. The standardized extract of Centella asiatica L. Urb attenuates the convulsant effect induced by lithium/pilocarpine without affecting biochemical and haematological parameters in rats. BMC Complement Med Ther 2023; 23:343. [PMID: 37759286 PMCID: PMC10523769 DOI: 10.1186/s12906-023-04179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Status epilepticus (SE) is a type of epileptic activity characterized by a failure of the inhibitory mechanisms that limit seizures, which are mainly regulated by the GABAergic system. This imbalance increases glutamatergic neurotransmission and consequently produces epileptic activity. It is also associated with oxidative stress due to an imbalance between reactive oxygen species (ROS) and antioxidant defences. Unfortunately, long-term treatment with anti-epileptic drugs (AEDs) may produce hepatotoxicity, nephrotoxicity, and haematological alterations. In this way, some secondary metabolites of plants have been used to ameliorate the deterioration of nervous system disorders through their antioxidant properties, in addition to their anticonvulsant effects. An example is Centella asiatica, a plant noted to have a reputed neuroprotective effect related to its antioxidant activity. However, similar to conventional drugs, natural molecules may produce side effects when consumed in high doses, which could occur with Centella asiatica. Therefore, we aimed to evaluate the effect of a standardized extract of Centella asiatica L. Urb with tested anticonvulsant activity on biochemical and haematological parameters in rats subjected to lithium/pilocarpine-induced seizures. METHODS Twenty-eight adult male Wistar rats were randomly divided into four groups (n = 7 each): vehicle (purified water), Centella asiatica (200 and 400 mg/kg), and carbamazepine (CBZ) (300 mg/kg) as a pharmacological control of anticonvulsant activity. Treatments were administered orally every 24 h for 35 consecutive days. On Day 36, SE was induced using the lithium/pilocarpine model (3 mEq/kg, i.p. and 30 mg/kg s.c., respectively), and the behavioural and biochemical effects were evaluated. RESULTS Centella asiatica 400 mg/kg increased the latency to the first generalized seizure and SE onset and significantly reduced the time to the first generalized seizure compared to values in the vehicle group. Biochemical parameters, i.e., haematic cytometry, blood chemistry, and liver function tests, showed no significant differences among the different treatments. CONCLUSION The dose of Centella asiatica that produces anticonvulsant activity in the lithium/pilocarpine model devoid of hepatotoxicity, nephrotoxicity, and alterations in haematological parameters suggests that the standardized extract of this plant could be of utility in the development of new safe therapies for the treatment of convulsions associated with epilepsy.
Collapse
Affiliation(s)
| | - Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
| | | | | | - Óscar Rosales-Sánchez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
12
|
Mahfouz H, Dahran N, Abdel-Rahman Mohamed A, Abd El-Hakim YM, Metwally MMM, Alqahtani LS, Abdelmawlla HA, Wahab HA, Shamlan G, Nassan MA, Gaber RA. Stabilization of glutathione redox dynamics and CYP2E1 by green synthesized Moringa oleifera-mediated zinc oxide nanoparticles against acrylamide induced hepatotoxicity in rat model: Morphometric and molecular perspectives. Food Chem Toxicol 2023; 176:113744. [PMID: 36965644 DOI: 10.1016/j.fct.2023.113744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The terrible reality is that acrylamide (AA) is a common food contaminant found in a wide variety of commonly consumed foods. This research involves the advancement of a more dependable technique for the bio-fabrication of zinc oxide nanoparticles (ZNPs) through the green method using Moringa Oleifera extract (MO-ZNPs) as an efficient chelating agent for acrylamide (AA). The effects of AA on glutathione redox dynamics, liver function, lipid profile, and zinc residues in Sprague Dawley rats are investigated. Finally, the microarchitecture and immunohistochemical staining of Caspase-3 and CYP2E1 were determined in the liver tissue of rats. Four separate groups, including control, MO-ZNPs (10 mg/kg b.wt), AA (20 mg/kg b.wt), and AA + MO-ZNPs for 60 days. The results revealed a suppressed activity of glutathione redox enzymes (GSH, GPX,and GSR) on both molecular and biochemical levels. Also, AA caused elevated liver enzymes, hepatosomatic index, and immunohistochemical staining of caspase-3 and CYP2E1 expression. MO-ZNPs co-treatment, on the other hand, stabilized glutathione-related enzyme gene expression, normalized hepatocellular enzyme levels, and restored hepatic tissue microarchitectures. It could be assumed that MO-ZNPs is a promising hepatoprotective molecule for alleviating AA-induced hepatotoxicity. We witnessed changes in glutathione redox dynamics to be restorative. Glutathione and cytochrome P450 2E1 play crucial roles in AA detoxification, so maintaining a healthy glutathione redox cycle is necessary for disposing of AA toxicity.
Collapse
Affiliation(s)
- Hala Mahfouz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | | | | | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Hassan Abdelraheem Abdelmawlla
- Department of Anatomy, College of Medicine, Jouf University, Saudi Arabia; Anatomy and Embryology Department, College of Medicine, Beni-Suef University, Egypt
| | - Hazim A Wahab
- Histology Department, Faculty of Medicine, Menofiya University, Shebin El Kom, Egypt
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, PO Box 11099,Taif, 21944, Saudi Arabia.
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
13
|
Hirsutidin Prevents Cisplatin-Evoked Renal Toxicity by Reducing Oxidative Stress/Inflammation and Restoring the Endogenous Enzymatic and Non-Enzymatic Level. Biomedicines 2023; 11:biomedicines11030804. [PMID: 36979784 PMCID: PMC10045162 DOI: 10.3390/biomedicines11030804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Recent research has shown that phytocomponents may be useful in the treatment of renal toxicity. This study was conducted to evaluate the renal disease hirsutidin in the paradigm of renal toxicity induced by cisplatin. Male Wistar rats were given cisplatin (3 mg/kg body weight/day, for 25 days, i.p.) to induce renal toxicity. Experimental rats were randomly allocated to four different groups: group I received saline, group II received cisplatin, group III received cisplatin + hirsutidin (10 mg/kg)and group IV (per se)received hirsutidin (10 m/kg)for 25 days. Various biochemical parameters were assessed, oxidative stress (superoxide dismutase (SOD), glutathione transferase (GSH), malonaldehyde (MDA) and catalase (CAT)), blood-chemistry parameters (blood urea nitrogen (BUN) and cholesterol), non-protein-nitrogenous components (uric acid, urea, and creatinine), and anti-inflammatory-tumor necrosis factor-α (TNF-α), interleukin-1β(IL-1β). IL-6 and nuclear factor-kB (NFκB) were evaluated and histopathology was conducted. Hirsutidin alleviated renal injury which was manifested by significantly diminished uric acid, urea, urine volume, creatinine, and BUN, compared to the cisplatin group. Hirsutidin restored the activities of several antioxidant enzyme parameters—MDA, CAT, GSH, and SOD. Additionally, there was a decline in the levels of inflammatory markers—TNF-α, IL-1β, IL-6, and NFκB—compared to the cisplatin group. The current research study shows that hirsutidin may act as a therapeutic agent for the treatment of nephrotoxicity induced by cisplatin.
Collapse
|
14
|
Zulham, Subarnas A, Wilar G, Susilawati Y, Chaerunisaa AY. Safety Assessment of Schleichera oleosa Lour. Leaves Extract: Acute and Subchronic Studies. Pak J Biol Sci 2023; 26:148-158. [PMID: 37779329 DOI: 10.3923/pjbs.2023.148.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
<b>Background and Objective:</b> <i>Schleichera oleosa</i> (Sapindaceae) has been reported to be useful in traditional medicine and it has some potential pharmacological activities, such as anticancer, antioxidant and antimicrobial activities. This study aimed to assess its safety to provide complete data required for the development of <i>S. oleosa</i> as herbal medicine. <b>Materials and Methods:</b> The safety assessment of the extract was carried out by testing acute and subchronic toxicity in mice (male and female) and rats (male and female), respectively. The doses used in the acute toxicity test were 1000, 2000, 3000, 4000 and 5000 mg kg<sup>1</sup> of body weight and those in the subchronic treatment were 100, 200 and 400 mg kg<sup>1</sup> of body weight. <b>Results:</b> In the acute toxicity test, the <i>S. oleosa</i> leaf extract at all doses indicated that the LD<sub>50</sub> value of the extract was higher than 5000 mg kg<sup>1</sup> b.wt., which suggested that this extract is practically non-toxic according to the toxicity criteria. Furthermore, the subchronic toxicity test found that the administration of the extract to male and female rats at a daily dose of 100 and 200 mg kg<sup>1</sup> b.wt., for 90 days did not cause any significant change in blood haematology, blood biochemistry and histopathological picture of liver, kidney, heart, lymph and lung. Despite there being a significant increase in white blood counts, long-term use of the <i>S. oleosa</i> leaf extract is relatively safe. <b>Conclusion:</b> The results provided evidence regarding the potential of <i>S. oleosa</i> leaves to be used as herbal medicine. However, further research needs to be done to verify that activity and its safety in long-term use.
Collapse
|
15
|
Momtazi-Borojeni AA, Banach M, Tabatabaei SA, Sahebkar A. Preclinical toxicity assessment of a peptide-based antiPCSK9 vaccine in healthy mice. Biomed Pharmacother 2023; 158:114170. [PMID: 36587555 DOI: 10.1016/j.biopha.2022.114170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel cholesterol-lowering treatment for decreasing the risk of atherosclerosis. We have previously shown that active immunization using the antiPCSK9 vaccine could decrease hypercholesterolemia and impede the development of atherosclerotic lesions in the experimental model of atherosclerosis. Here, we evaluated the toxicity of the vaccine in healthy mice. METHODS Forty male and female albino mice were divided into 4 experimental groups, including vaccine female (10 mice) and male (10 mice) groups receiving the antiPCSK9 vaccine as well as the corresponding control female (10 mice) and male (10 mice) groups receiving the phosphate buffer. Vaccination was planned based on 4 subcutaneous injections of the vaccine formulation (10 µg/mouse) in bi-weekly intervals. The toxicity study was performed by the subacute protocol, 28 days after the last vaccine injection. To this end, the plasma levels of lipid indexes, urea, creatinine, AST, ALT, ALP, and fasting plasma glucose (FPG), as well as the CBC test were measured. To evaluate histopathological alterations, various tissues including the heart, liver, kidney, spleen, and brain were studied using hematoxylin & eosin (H&E) staining by an expert pathologist. The severity of damage to the tissue was considered based on the standard classification; grade 1 as light damage, grade 2 as moderate damage, grade 3 as near intense damage, and grade 4 as intense damage. RESULTS The results showed non-significant changes of total cholesterol, LDL-C, triglyceride, HDL-C, FBS, creatinine, urea, AST, ALP, ALT, and PAB in the vaccinated mice when compared with control mice. The CBS test indicated that there were no significant changes in the levels of WBC, RBC, HGB, HCT, MCH, MCHC, PLT, LYM, NEUT, MCV, RDW-S, PDW, and MPV in the vaccinated mice when compared with control mice. Evaluating histopathological alterations in various tissues indicated no significant adverse effects in vaccinated mice when compared to control mice. CONCLUSION The findings of the present study indicate that antiPCSK9 is safe and exerts no adverse effects on the function of different organs and blood levels of cellular and biochemical biomarkers in healthy mice.
Collapse
Affiliation(s)
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Martha Orendu Oche A, Tamunotonye Watson J, Sani Hyedima G, Sadiya Ufeli B. Leptadenia hastata Leaf Extract ameliorates oxidative stress and serum biochemical parameters in Streptozotocin-Induced diabetes in Wistar rats. J Diabetes Metab Disord 2022; 21:1273-1281. [PMID: 36404850 PMCID: PMC9672294 DOI: 10.1007/s40200-022-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Introduction : Diabetes Mellitus is a major health problem characterized by hyperglycemia and disturbances in metabolism and implicated in causing oxidative stress. Treatment includes administration of oral hypoglycaemic agents with lifestyle modifications, these offer glycemic control, however, present limitations about availability, affordability and side effects. Traditional anti-diabetic plants are becoming popular in management of diabetes mellitus. This study was carried out to determine the efficacy of Leptadenaia hastata in treatment of diabetes. Materials and methods Diabetes mellitus was induced in using a single injection of streptozotocin (50 mg kg- 1 i.p.). The rats were divided into four groups of 5 rats each. Groups 3-6 received olive oil, 100 mg kg- 1 extract, 200 mg.kg- 1 extract and insulin (6IU kg- 1), respectively. 10 non-diabetic rats were grouped into two group receiving olive oil and 200 mg kg- 1 extract for 28 days. All groups were sacrificed by injecting with ketamine hydrochloride, blood was collected by cardiac puncture and centrifuged. The serum was analyzed for biochemical parameters. The liver was removed and homogenized with the supernatant of the resultant homogenate collected and used for analysis of oxidative stress enzymes. Results The extract significantly decreased serum AST (p < 0.05), ALP (p < 0.001), ALT (p < 0.05), TG (p < 0.01), TC (p < 0.001), creatinine (p < 0.001). It had no effect on SOD and CAT levels but it significantly increased (p < 0.001) GSH levels and reduced (p < 0.05) MDA level. Conclusions The n-hexane extract of Leptadenia hastata significantly decreased the levels of hepatic and renal serum biomarkers proving that it was beneficial in ameliorating diabetic related complications. The extract significantly increased GSH levels and reduced MDA level. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01017-z.
Collapse
Affiliation(s)
- Attah Martha Orendu Oche
- Department of Human Anatomy, College of Basic Medical Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State Nigeria
- Department of Medicine, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | | | - Garba Sani Hyedima
- Department of Human Anatomy, College of Basic Medical Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State Nigeria
| | - Balogun Sadiya Ufeli
- Department of Human Anatomy, College of Health Sciences, Federal University Dutse, Dutse, Jigawa State Nigeria
| |
Collapse
|
17
|
Ybañez-Julca RO, Palacios J, Asunción-Alvarez D, Quispe-Díaz I, Nwokocha CR, de Albuquerque RDDG. Lepidium meyenii Walp (red maca) Supplementation Prevents Acrylamide-Induced Oxidative Stress and Liver Toxicity in Rats: Phytochemical Composition by UHPLC-ESI-MS/MS. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:460-466. [PMID: 35932411 DOI: 10.1007/s11130-022-01000-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lepidium meyenii Walp (red maca) is a high Andean plant cultivated since the Incas and has innumerable therapeutic properties. The study aims to identify its phytochemical composition using UHPLC-ESI-MS/MS, and evaluate its effects on acrylamide-induced oxidative stress. The lyophilized aqueous extract of red maca (LAqE-RM) was orally administered in doses of 1 and 2 g/kg body weight for 4 weeks. Malondialdehyde (MDA) levels in erythrocytes, brain, and liver, as well as hepatic levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Administration of acrylamide for 2 and 4 weeks significantly increased (p < 0.001) MDA levels in erythrocytes, brain, and liver. However, LAqE-RM prevented (p < 0.001) an increase in MDA levels in all tissues studied. Likewise, the groups treated with LAqE-RM presented significantly (p < 0.001) lower levels of ALT and AST compared to the control. Treatment with LAqE-RM ameliorated the acrylamide-induced oxidative stress by reducing MDA levels in erythrocytes, brain, and liver and by lowering liver levels of ALT and AST in a dose-dependent manner. Twenty-five secondary metabolites were identified and characterized from LAqE-RM based on UHPLC mass spectrophotometry. These include carbolines, alkamides, fatty acids, and macamides, which are probably involved in their antioxidant protective role.
Collapse
Affiliation(s)
- Roberto O Ybañez-Julca
- Laboratorio de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú.
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Daniel Asunción-Alvarez
- Laboratorio de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Ivan Quispe-Díaz
- Laboratorio de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston, Jamaica
| | | |
Collapse
|
18
|
Subacute Toxicity Effects of the Aqueous Shoot Extract of Yushania alpina (K. Schum.) W.C.Lin in Sprague Dawley Rats: An Appraisal of Its Safety in Ethnomedicinal Usage. J Toxicol 2022; 2022:6283066. [PMID: 36061215 PMCID: PMC9436527 DOI: 10.1155/2022/6283066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Plant-based medicines have effectively managed several ailments in humans and animals since prehistoric times. However, the pharmacologic efficacy and safety of many plants currently used in traditional medicine have not been explored empirically, which raises serious public health concerns, derailing further research and their integration into the conventional healthcare system. Despite the longstanding ethnomedicinal usage of Yushania alpina shoot extract to treat inflammation, microbial infections, and diarrhoea, among other diseases, there is insufficient scientific data to appraise its toxicity profile and safety. Accordingly, we investigated the subacute toxicity of the aqueous shoot extract of Y. alpina in Sprague Dawley rats (both sexes) for 28 days based on the Organisation for Economic Cooperation and Development guideline 407. In this study, all the experimental rats treated orally with 40 mg/Kg BW, 200 mg/Kg BW, and 1000 mg/Kg BW of the aqueous shoot extract of Y. alpina remained normal, like the control group rats, and did not show any clinical signs of subacute toxicity, and no morbidity or mortality was recorded. Besides, the weekly body weight gains and the haematological and biochemical parameters of experimental rats orally administered with the studied plant extract at the tested doses and in the control group were comparable (P > 0.05). No pathologic alterations in internal organs were observed following necroscopy. Further, the differences in weights of the liver, kidney, and spleen of experimental rats which were subacutely treated with the studied plant extract and the control rats were insignificant (P > 0.05). Moreover, no histopathological changes were observed in tissue sections of the liver, kidney, and spleen obtained from all the experimental rats. Our findings demonstrate that the aqueous shoot extract of Y. alpina may be safe as it does not elicit subacute toxicity in Sprague Dawley rats. Further toxicological and pharmacological studies using other model animals and in clinical setups are encouraged to fully appraise the efficacy and safety of the studied plant extract.
Collapse
|
19
|
Zahid F, Batool S, Ud-Din F, Ali Z, Nabi M, Khan S, Salman O, Khan GM. Antileishmanial Agents Co-loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity. AAPS PharmSciTech 2022; 23:226. [PMID: 35970966 DOI: 10.1208/s12249-022-02384-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
The prime objective of this study was to develop amphotericin B (AMB) and rifampicin (RIF) co-loaded transfersomal gel (AMB-RIF co-loaded TFG) for effective treatment of cutaneous leishmaniasis (CL). AMB-RIF co-loaded TF was prepared by the thin-film hydration method and was optimized based on particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (%EE), and deformability index. Similarly, AMB-RIF co-loaded TFG was characterized in terms of rheology, spread ability, and pH. In vitro, ex vivo, and in vivo assays were performed to evaluate AMB-RIF co-loaded TF as a potential treatment option for CL. The optimized formulation had vesicles in nanosize range (167 nm) with suitable PDI (0.106), zeta potential (- 19.05 mV), and excellent %EE of RIF (66%) and AMB (85%). Moreover, it had appropriate deformability index (0.952). Additionally, AMB-RIF co-loaded TFG demonstrated suitable rheological behavior for topical application. AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG showed sustained release of the incorporated drugs as compared to AMB-RIF suspension. Furthermore, RIF permeation from AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG was enhanced fivefold and threefold, whereas AMB permeation was enhanced by eightfold and 6.6-fold, respectively. The significantly different IC50, higher CC50, and FIC50 (p < 0.5) showed synergistic antileishmanial potential of AMB-RIF co-loaded TF. Likewise, reduced lesion size and parasitic burden in AMB-RIF co-loaded TF-treated mouse group further established the antileishmanial effect of the optimized formulation. Besides, AMB-RIF co-loaded TFG showed a better safety profile. This study concluded that TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of CL.
Collapse
Affiliation(s)
- Fatima Zahid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar Ud-Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Zakir Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Nabi
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Omer Salman
- Department of Pharmacy, Forman Christian University, Lahore, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan. .,Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
20
|
Gilani SJ, Bin-Jumah MN, Al-Abbasi FA, Nadeem MS, Alzarea SI, Ahmed MM, Sayyed N, Kazmi I. Rosinidin Protects against Cisplatin-Induced Nephrotoxicity via Subsiding Proinflammatory and Oxidative Stress Biomarkers in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9719. [PMID: 35955076 PMCID: PMC9368304 DOI: 10.3390/ijerph19159719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rosinidin is a flavonoid anthocyanin pigmentation found in shrub flowers such as Catharanthus roseus and Primula rosea. The molecular docking studies predicted that rosinidin has adequate structural competency, making it a viable medicinal candidate for the treatment of a wide range of disorders. The current study intends to assess rosinidin nephroprotective efficacy against nephrotoxicity induced by cisplatin in rats. MATERIALS AND METHODS Oral acute toxicity tests of rosinidin were conducted to assess potential toxicity in animals, and it was shown to be safe. The nephroprotective effect of rosinidin 10, and 20 mg/kg were tested in rats for 25 days with concurrent administration of cisplatin. Several biochemical parameters were measured to support enzymatic and non-enzymatic oxidative stress such as superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH). Likewise, changes in several non-protein-nitrogenous components and blood chemistry parameters were made to support the theory linked with the pathogenesis of chemical-induced nephrotoxicity. RESULTS Cisplatin caused significant changes in biochemical, enzymatic, and blood chemistry, which rosinidin efficiently controlled. CONCLUSIONS The present investigation linked rosinidin with nephroprotective efficacy in experimental models.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Zamora-Bello I, Hernandez-Baltazar D, Rodríguez-Landa JF, Rivadeneyra-Domínguez E. Optimizing rat and human blood cells sampling for in silico morphometric analysis. Acta Histochem 2022; 124:151917. [PMID: 35716583 DOI: 10.1016/j.acthis.2022.151917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
Abstract
Measurements of Morphometric Parameters of the Blood Cells (MPBC) are key for the diagnosis of both mental and metabolic diseases. Several manual approaches or computational methodologies are useful to provide reliable clinical diagnosis. The sample processing and data analysis is relevant, however the sample handling on the pre-analytical phase remains scarcely evaluated. The main goal of this study was to favor the preservation of blood smear using a histological resin. This strategy lead us two practical approaches, give a detailed morphometric description of white blood cells and establish reference intervals in male Wistar rats, which are scarcely reported. Blood smears from male Wistar rats (n = 120) and adult men were collected at room temperature. The integrity of Wright-stained cells was evaluated by an in silico image analysis from rat and human blood smear preserved with a toluene-based synthetic resin mounting medium. A single sample of human blood was used as a control of procedure. The reference intervals was established by cell counting. Based on the results of segmentation algorithm followed by an automatic thresholding analysis, the incorporation of resin favor the conservation of cell blood populations, and lead to identify morphologic features such as nucleus/cytoplasmic shape, granules presence and DNA appearance in nucleus of white blood cells. The use of a histological resin could favor a fast and efficient sample handling in silico MPBC measurements both in the species studied as in wild animals.
Collapse
Affiliation(s)
- Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - Daniel Hernandez-Baltazar
- Investigadoras e investigadores por México. Consejo Nacional de Ciencia y Tecnología (CONACyT), CDMX, Mexico; Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | | | | |
Collapse
|
22
|
Zamora-Bello I, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Anticonvulsant Effect of Turmeric and Resveratrol in Lithium/Pilocarpine-Induced Status Epilepticus in Wistar Rats. Molecules 2022; 27:3835. [PMID: 35744955 PMCID: PMC9231157 DOI: 10.3390/molecules27123835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that lacks a cure. The use of plant-derived antioxidant molecules such as those contained in turmeric powder and resveratrol may produce short-term anticonvulsant effects. A total of 42 three-month-old male Wistar rats were divided into six groups (n = 7 in each group): Vehicle (purified water), turmeric (150 and 300 mg/kg, respectively), and resveratrol (30 and 60 mg/kg, respectively), administered per os (p.o.) every 24 h for 35 days. Carbamazepine (300 mg/kg/5 days) was used as a pharmacological control for anticonvulsant activity. At the end of the treatment, status epilepticus was induced using the lithium-pilocarpine model [3 mEq/kg, intraperitoneally (i.p.) and 30 mg/kg subcutaneously (s.c.), respectively]. Seizures were evaluated using the Racine scale. The 300 mg/kg of turmeric and 60 mg/kg of resveratrol groups had an increased latency to the first generalized seizure. The groups treated with 150 and 300 mg/kg of turmeric and 60 mg/kg of resveratrol also had an increased latency to status epilepticus and a decreased number of generalized seizures compared to the vehicle group. The chronic administration of turmeric and resveratrol exerts anticonvulsant effects without producing kidney or liver damage. This suggests that both of these natural products of plant origin could work as adjuvants in the treatment of epilepsy.
Collapse
Affiliation(s)
- Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
23
|
The Anti-Inflammatory, Anti-Apoptotic and Antioxidant Effects of a Pomegranate-Peel Extract against Acrylamide-Induced Hepatotoxicity in Rats. Life (Basel) 2022; 12:life12020224. [PMID: 35207511 PMCID: PMC8878900 DOI: 10.3390/life12020224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
The Acrylamide is a toxic compound generated under oxidative stress arising from intracellular ROS production and induced toxicity. It is frequently used in industry and generated through the heating of tobacco and foods high in carbohydrates. The exact mechanism of its toxicity is still unclear. In this study, an extract of the peels of pomegranate (Punica granatum L.), a nutritious and visually appealing fruit with a diverse bioactive profile, was examined for its potential anti-apoptotic, antioxidant, and anti-inflammatory effects. A total of 40 adult male Wistar rats were allocated into four groups of 10 rats each: Group 1 was a negative-control group (CNT) and received normal saline; Group 2 was a positive-control acrylamide group and received acrylamide orally at a dose of 20 mg/kg/bw; in Group 3, the rats were supplemented with pomegranate-peel extract (P.P; 150 mg/kg/bw) orally on a daily basis for 3 weeks, administered simultaneously with the acrylamide treatment described for Group 2; Group 4 was a protective group, and the animals received the pomegranate-peel extract and acrylamide as stated for Groups 2 and 3, with the pomegranate-peel extract (P.P. extract) administered 1 week earlier than the acrylamide. The results indicate that acrylamide exposure increased the serum levels of AST, ALT, creatinine, interleukin-1 beta, and interleukin-6 in an extraordinary manner. In addition, it increased the lipid peroxidation marker malondialdehyde (MDA) and simultaneously weakened antioxidant biomarker activities (SOD, GSH, and catalase) and reduced the levels of interleukin-10. The pomegranate-peel extract was shown to reduce the inflammatory blood markers of interleukin-1 beta and IL-6. Glutathione peroxidase, superoxide dismutase, catalase, and interleukin-10 were all significantly elevated in comparison to the acrylamide-treatment group as a result of the significant reduction in MDA levels induced by the P.P extract. In addition, the pomegranate-peel extract normalized the cyclooxygenase-2 (COX2), transforming growth factor-beta 1 (TGF-β1), and caspase-3 levels, with a significant upregulation of the mRNA expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (Nrf2), and Bcl-2. Therefore, these data reveal that pomegranate peel has anti-inflammatory, antiapoptotic, free-radical-scavenging, and powerful antioxidant activity that protects against acrylamide toxicity.
Collapse
|
24
|
Uthra C, Reshi MS, Jaswal A, Yadav D, Shrivastava S, Sinha N, Shukla S. Protective efficacy of rutin against acrylamide-induced oxidative stress, biochemical alterations and histopathological lesions in rats. Toxicol Res (Camb) 2022; 11:215-225. [PMID: 35237426 PMCID: PMC8882811 DOI: 10.1093/toxres/tfab125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/11/2021] [Accepted: 12/12/2021] [Indexed: 01/28/2023] Open
Abstract
Acrylamide is a well-known neurotoxicant and carcinogen. Apart from industrial exposure, acrylamide is also found in different food products. The present study deals with in vivo experiment to test the protective effect of rutin against acrylamide induced toxicity in rats. The study was carried out on female rats with exposure of acrylamide at the dose of 38.27 mg/kg body weight, orally for 10 days followed by the therapy of rutin (05, 10, 20 and 40 mg/kg orally), for three consecutive days. All animals were sacrificed after 24 h of last treatment and various biochemical parameters in blood and tissue were investigated. Histopathology of liver, kidney and brain was also done. On administration of acrylamide for 10 days, neurotoxicity was observed in terms of decreased acetylcholinesterase activity and oxidative stress was observed in terms of increased lipid peroxidation, declined level of reduced glutathione, antioxidant enzymes (superoxide dismutase and catalase) in liver, kidney and brain. Acrylamide exposure increased the activities of serum transaminases, lipid profile, bilirubin, urea, uric acid and creatinine in serum indicating damage. Our experimental results conclude that rutin showed remarkable protection against oxidative DNA damage induced by acrylamide, which may be due to its antioxidant potential.
Collapse
Affiliation(s)
- Chhavi Uthra
- Correspondence address. Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India. Tel: 9755952336 (M); E-mail:
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Lab, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu & Kashmir, 185234, India
| | - Amita Jaswal
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Deepa Yadav
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Sadhana Shrivastava
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Neelu Sinha
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| |
Collapse
|
25
|
Firouzabadi AM, Imani M, Zakizadeh F, Ghaderi N, Zare F, Yadegari M, Pourentezari M, Fesahat F. Evaluating effect of acrylamide and ascorbic acid on oxidative stress and apoptosis in ovarian tissue of wistar rat. Toxicol Rep 2022; 9:1580-1585. [DOI: 10.1016/j.toxrep.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
|
26
|
Li YS, Suen JL, Tseng WL, Lu CY. An eco-friendly solvent-free reaction based on peptide probes: design an extraction-free method for analysis of acrylamide under microliter volume. Anal Bioanal Chem 2021; 413:7531-7539. [PMID: 34635932 DOI: 10.1007/s00216-021-03717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Acrylamide is a group 2A carcinogen and potential endocrine disruptor that can enter the ecosystem by various routes and has recently become a dangerous pollutant. This widely used chemical can enter the human body via air inhalation, food or water consumption, or skin contact. In this study, we developed a peptide probe for the detection of acrylamide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) after its micro-tagging with a peptide. Direct detection of acrylamide by MALDI-TOF MS is not feasible due to its poor ionization in the MALDI interface, which hinders its analysis by the technique. After microwave irradiation for 2 min, the formed acrylamide-peptide derivative was detected easily by MALDI-TOF MS without the need for extraction procedures. The procedure does not involve organic solvents and a water-soluble peptide that allows detection of acrylamide in small sample volumes with a limit of detection (LOD) of 0.05 ng/μL. The relative standard deviation (RSD) and relative error (RE) of the measurements were < 6.7% for intra- and inter-day assays. Gel-washing solutions from a polyacrylamide gel experiment were used as a model to study the efficiency of the developed method. Finally, we used the proposed method for the detection of free acrylamide in small volumes of lung epithelial cells (a model to test the air inhalation of acrylamide under a tiny volume of sample) and human urine. The developed method will enable rapid acrylamide detection in environmental and biological samples via a green approach based on microwave-assisted derivatization in water alongside the use of a less toxic derivatization reagent, reusable target plate, and miniaturization protocols.
Collapse
Affiliation(s)
- Yi-Shan Li
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, College of Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
27
|
Le TH. GSTM1 Gene, Diet, and Kidney Disease: Implication for Precision Medicine?: Recent Advances in Hypertension. Hypertension 2021; 78:936-945. [PMID: 34455814 DOI: 10.1161/hypertensionaha.121.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the United States, the prevalence of chronic kidney disease in adults is ≈14%. The mainstay of therapy for chronic kidney disease is angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, but many patients with chronic kidney disease still progress to end-stage kidney disease. Increased oxidative stress is a major molecular underpinning of chronic kidney disease progression. In humans, a common deletion variant of the glutathione-S-transferase μ-1 (GSTM1) gene, the GSTM1 null allele (GSTM1(0)), results in decreased GSTM1 enzymatic activity and is associated with higher levels of oxidative stress. GSTM1 belongs to the superfamily of GSTs that are phase II antioxidant enzymes and are regulated by Nrf2 (nuclear factor erythroid 2-related factor 2). Cruciferous vegetables in general, and broccoli in particular, are rich in glucoraphanin, a precursor of sulforaphane that has been shown to have protective effects against oxidative damage through the activation of Nrf2. This review will highlight recent human and animal studies implicating the role of GSTM1 deficiency in hypertension and kidney disease, and its impact on the effects of cruciferous vegetables on kidney injury and disease progression, illustrating the significance of gene and environment interaction and a potential for targeted precision medicine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, NY
| |
Collapse
|
28
|
Bin-Jumah MN, Al-Huqail AA, Abdelnaeim N, Kamel M, Fouda MMA, Abulmeaty MMA, Saadeldin IM, Abdel-Daim MM. Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26653-26663. [PMID: 33492591 DOI: 10.1007/s11356-021-12422-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide (AA) is a hazardous chemical that is widely used in industrial practices. Spirulina platensis (SP) is a blue green alga that is rich in bioactive compounds with many medicinal benefits. The aim of the present study was to evaluate the ameliorative effect of SP against AA toxicity in rats. Animals were divided into six groups: Group (1) was normal rats, groups (2) and (3) received SP at 500 and 1000 mg/kg BW orally respectively for 21 days, group (4) was administered 20 mg/kg BW AA daily for 14 days, while groups (5) and (6) were given orally SP at the same doses of groups (2) and (3), then AA at similar dose of group (4). Rats that received AA alone displayed markedly increased serum levels of liver enzymes (ALT, AST, and ALP), kidney function parameters (urea and creatinine), DNA damage marker (8-OHdG), and proinflammatory cytokines (IL-1β, IL-6, and TNF-α), compared to control rats. Furthermore, tissue analysis revealed marked increases in hepatic, renal, and brain MDA and NO, as well as marked reductions in the antioxidant biomarkers (GSH, GSH-Px, SOD, and CAT) in acrylamide-intoxicated rats. Spirulina ameliorated the alterations in serum biochemical parameters and reduced MDA and NO, as well as improved antioxidant biomarkers in AA-intoxicated rats in a dose-dependent manner. Our results show that SP has a powerful protective effect on serum biochemistry and liver, kidney, and brain antioxidant machinery in AA-intoxicated rats.
Collapse
Affiliation(s)
- May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noha Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mahmoud M A Abulmeaty
- Department of Community Health Sciences, Collage of Applied Medical Sciences, King Saud University, P.O. Box: 10219, Riyadh, 11433, Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
29
|
Barrientos-Bonilla AA, Nadella R, Pensado-Guevara PB, Sánchez-García ADC, Zavala-Flores LM, Puga-Olguín A, Villanueva-Olivo A, Hernandez-Baltazar D. Caspase-3-related apoptosis prevents pathological regeneration in a living liver donor rat model. Adv Med Sci 2021; 66:176-184. [PMID: 33676076 DOI: 10.1016/j.advms.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The main goal of this study was to determine the relationship of cleaved-caspase-3 (C3)-related apoptosis and hepatic proliferation, during the liver repopulation in a living liver donor rat model. MATERIAL/METHODS Thirty-three animals were randomized into eleven groups and evaluated on postoperative from 3 h until 384 h after 30%-partial hepatectomy (30%-PHx). Liver sections (5 μm) were processed by hematoxylin-eosin, and immunostaining for C3, accompanied by hepatic function test. C3 content and the hepatic lobule enlargement were analyzed by optical density, followed by cell counting. RESULTS Transient variations of alanine transferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were found. Significant increase in the C3 levels, and cell nuclei number, were detected at 12 h and 48 h after 30%-PHx, evidencing a correlation of p = -0.3679. CONCLUSION In the 30%-PHx rat model, C3-related apoptosis prevents proliferative pathological conditions during the hepatic lobule re-modeling.
Collapse
Affiliation(s)
| | - Rasajna Nadella
- Department of Biosciences, Rajiv Gandhi University of Knowledge Technologies (RGUKT), Srikakulam, India
| | | | - Aurora Del Carmen Sánchez-García
- Laboratorio de Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Laura Mireya Zavala-Flores
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey Nuevo León, Mexico
| | - Abraham Puga-Olguín
- Unidad de Salud Integrativa, Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Xalapa Veracruz, Mexico
| | - Arnulfo Villanueva-Olivo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey Nuevo León, Mexico
| | - Daniel Hernandez-Baltazar
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa Veracruz, Mexico; Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico.
| |
Collapse
|
30
|
Jung D, Jung JB, Kang S, Li K, Hwang I, Jeong JH, Kim HS, Lee J. Toxico-metabolomics study of a deep eutectic solvent comprising choline chloride and urea suggests in vivo toxicity involving oxidative stress and ammonia stress. GREEN CHEMISTRY 2021; 23:1300-1311. [DOI: 10.1039/d0gc03927f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.
Collapse
Affiliation(s)
- Dasom Jung
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jae Back Jung
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Seulgi Kang
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Ke Li
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Inseon Hwang
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy
- Sungkyunkwan University
- Suwon
- Republic of Korea
| |
Collapse
|
31
|
Zhao S, Sun H, Liu Q, Shen Y, Jiang Y, Li Y, Liu T, Liu T, Xu H, Shao M. Protective effect of seabuckthorn berry juice against acrylamide-induced oxidative damage in rats. J Food Sci 2020; 85:2245-2254. [PMID: 32579735 DOI: 10.1111/1750-3841.15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Acrylamide (AA), classified as a probable carcinogen, can be neurotoxic, genotoxic, and can damage DNA. This study explored the ability of seabuckthorn berries juice (SBJ) to alleviate AA-induced toxic injury in rats. Twenty-four adult male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AA group (40 mg/kg), AA + SBJ (40 mg/kg AA and 5 mL/kg SBJ), and AA + vitamin C (VC) group (positive control group, 40 mg/kg AA and 100 mg/kg VC). At the end of the experiment, rats in AA group showed a marked decrease in the rate of weight gain, hind extremity abduction, and ataxia. Obvious anomalies were seen in plasma biochemical parameters (P < 0.05), and different degrees of injury were observed upon histological examination of five tissues (hippocampus, cerebellum, liver, small intestine, and kidney). Compared to the control group, levels of superoxide dismutase, catalase, and glutathione were significantly decreased, while malondialdehyde was elevated (P < 0.05). SBJ treatment reduced the abnormal of behavior, hematological index, antioxidant enzyme, and tissue damage caused by AA in rats. PRACTICAL APPLICATION: Seabuckthorn berries are wild berries rich in vitamin C and polyphenols, which have good antioxidant properties. In this experiment, SBJ has a significant alleviating effect on AA-induced oxidative damage in rats. Therefore, we speculate that SBJ may relieve the oxidative damage caused by diet or other forms of AA exposure in the general population. At the same time, this experiment also provides new ideas for alleviating AA-induced in vivo toxicity.
Collapse
Affiliation(s)
- Sijia Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Sun
- Author, Sun, is, with, China Institute to Veterinary Drug Control, Beijing, 100081, China
| | - Qingbo Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Shen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianxu Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Honghua Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
32
|
Eslamizad S, Kobarfard F, Tsitsimpikou C, Tsatsakis A, Tabib K, Yazdanpanah H. Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food Chem Toxicol 2019; 126:162-168. [PMID: 30753857 DOI: 10.1016/j.fct.2019.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Acrylamide is a chemical, often present in bread, legally classified as carcinogen, mutagen and reproductive toxicant. Since bread is consumed both world-wide and in Iran, determination of acrylamide in different types of breads is of high interest. In the present study, acrylamide was monitored in 56 Sangak and 30 industrial bread samples collected from Tehran and Shiraz, using LC-MS/MS (LOQ = 1 ng/g). In addition, the noncarcinogenic risk (target hazard quotient-THQ) and carcinogenic risk (incremental lifetime cancer risk-ILCR) due to ingestion of acrylamide through bread consumption in children and adults were assessed. Acrylamide was detected in more than 90% of the samples tested. The average daily intake of acrylamide in Iran based on exclusive consumption of Sangak bread, was estimated at 145 ng/kg bw/day. Based on the THQ for bread acrylamide in adults and children, the decreasing risk order was: Shiraz semi-industrial Sangak, Shiraz traditional Sangak, Tehran traditional Sangak, Tehran industrial bread. The ILCR of bread acrylamide calculated for adults and children was higher than the permissible lifetime carcinogenic risk value established by USEPA (1.00E-5). Results show that bread is a major source of acrylamide intake by people in Iran and all consumers regardless of age could be at elevated carcinogenic risk.
Collapse
Affiliation(s)
- Samira Eslamizad
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aristides Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kimia Tabib
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yazdanpanah
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|