1
|
Uddin MH, Ritu JR, Putnala SK, Rachamalla M, Chivers DP, Niyogi S. Selenium toxicity in fishes: A current perspective. CHEMOSPHERE 2024; 364:143214. [PMID: 39214409 DOI: 10.1016/j.chemosphere.2024.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activities have led to increased levels of contaminants that pose significant threats to aquatic organisms, particularly fishes. One such contaminant is Selenium (Se), a metalloid which is released by various industrial activities including mining and fossil fuel combustion. Selenium is crucial for various physiological functions, however it can bioaccumulate and become toxic at elevated concentrations. Given that fishes are key predators in aquatic ecosystems and a major protein source for humans, Se accumulation raises considerable ecological and food safety concerns. Selenium induces toxicity at the cellular level by disrupting the balance between reactive oxygen species (ROS) production and antioxidant capacity leading to oxidative damage. Chronic exposure to elevated Se impairs a wide range of critical physiological functions including metabolism, growth and reproduction. Selenium is also a potent teratogen and induces various types of adverse developmental effects in fishes, mainly due to its maternal transfer to the eggs. Moreover, that can persist across generations. Furthermore, Se-induced oxidative stress in the brain is a major driver of its neurotoxicity, which leads to impairment of several ecologically important behaviours in fishes including cognition and memory functions, social preference and interactions, and anxiety response. Our review provides an up-to-date and in-depth analysis of the various adverse physiological effects of Se in fishes, while identifying knowledge gaps that need to be addressed in future research for greater insights into the impact of Se in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
2
|
Allen DS, Wiencek MM, Kelly MM, Solomons KS, Sellin Jeffries MK. Exploring Alternatives for Marine Toxicity Testing: Initial Evaluation of Fish Embryo and Mysid Tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1285-1299. [PMID: 38558477 DOI: 10.1002/etc.5862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Dalton S Allen
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Maddie M Wiencek
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Michaela M Kelly
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Katie S Solomons
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | | |
Collapse
|
3
|
Sultana N, Eti SA, Hossain ML, Li J, Salam MA. Tracing and source fingerprinting of metals from the southern coastal sediments in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27846-27863. [PMID: 38519615 DOI: 10.1007/s11356-024-32684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Trace element pollution from anthropogenic sources is increasingly widespread. This pollution in terrestrial environments threatens agricultural crop production, while in aquatic environments, it threatens fish cultivation. The contamination of these crucial food sources raises significant concerns regarding food safety, security, and its potential adverse effects on human health. Coastal areas are particularly vulnerable to heavy metal pollution due to their proximity to industrial and urban centres, as well as their susceptibility to contamination from marine sources. In attempting to identify the sources of heavy metals (As, Cu, Cr, Cd, Fe, Hg, Mn, Ni, Pb, and Zn) and measure their contributions, we collected soil samples from thirty sites along the three coastal districts (Patuakhali, Barguna, and Bhola) in Bangladesh. Using atomic absorption spectroscopy, heavy metal concentrations in soil samples were measured and three receptor models (PMF, PCA-MLR, and UNMIX) were applied to detect their sources. Pairwise correlation analysis of metal concentrations in 30 sites across 3 coastal districts showed all possible patterns, including both significant and insignificant positive and negative relationships between different metals, except for As and Hg which did not display any significant relationships with other metals. The concentrations of Cu, Fe, Mn, Ni, and Zn exceed the US-EPA sediment quality standard. The applied PCA-MLR, PMF, and UNMIX models identified several sources of heavy metal contamination, including (i) mixed anthropogenic and natural activities: contribution of 59%, 37%, and 43%, and (ii) vehicle emissions: contribution of 23%, 26% and 29%. The recognized metal sources should be prioritised to avoid the discharge of poisonous pollutants from anthropogenic factors and any possible future exposure. This study's findings have implications for ongoing monitoring and management of heavy metal contamination in coastal environments to mitigate potential health and ecological impacts and can inform policy development and management strategies.
Collapse
Affiliation(s)
- Niger Sultana
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shamima Akther Eti
- Fibre and Polymer Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Dhaka, Bangladesh
| | - Md Lokman Hossain
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
- Department of Environment Protection Technology, German University Bangladesh, Gazipur, Bangladesh
| | - Jianfeng Li
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
4
|
Zulfahmi I, El Rahimi SA, Suherman SD, Almunawarah A, Sardi A, Helmi K, Nafis B, Perdana AW, Adani KH, Admaja Nasution IA, Sumon KA, Rahman MM. Acute toxicity of palm oil mill effluent on zebrafish (Danio rerio Hamilton-Buchanan, 1822): Growth performance, behavioral responses and histopathological lesions. CHEMOSPHERE 2023; 340:139788. [PMID: 37574082 DOI: 10.1016/j.chemosphere.2023.139788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Evaluating the toxicity of Palm Oil Mill Effluent (POME) is critical as part of the effort to develop waste management regulations for the palm oil industry. In this study, we investigated the acute toxicity of POME on growth performance, behavioral response, and histopathology of gill and liver tissues of zebrafish (Danio rerio). In total, 550 adult male zebrafish were used for the toxicity experiment including range finding test, acute toxicity test, growth performance and behaviour test. Static non-renewal acute toxicity bioassays were conducted by exposing fish to POME (1.584-9.968 mL/L) for 96 h. Growth performance, behavior response, and histopathological lesions in untreated and POME treated (96-h LC50: 5.156 mL/L) fish were measured at 24, 48, 72 and 96 h. Time-dependent significant decline in body length and body weight of POME-exposed zebrafish was observed. Furthermore, several behavioral changes were recorded, including hyperactivity, loss of balance, excessive mucus secretion, and depigmentation. Decreasing operculum movement and oxygen consumption rate as well as alterations in gill tissues (i.e. hyperplasia, hypertrophy, hemorrhage, and necrosis) of POME-exposed zebrafish were observed, suggesting a dysfunction in respiratory performance. On the other hand, liver tissue alterations (congestion, hemorrhage, hyperplasia, shrinkage of hepatocytes, hydrophilic degeneration, and necrosis) indicated a disruption in detoxification performance. We conclude that exposure to POME at acute concentration caused histopathological lesions both in gill and liver tissue along with changes in fish behaviors which disrupted respiratory and detoxification performance, resulting in mortality and reduced growth of zebrafish. These findings might provide valuable information for guiding POME management and regulation.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Sayyid Afdhal El Rahimi
- Department of Marine Science, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Saed Dedi Suherman
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Almunawarah Almunawarah
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Arif Sardi
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Kamaliah Helmi
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khalisah Huwaina Adani
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ihdina Alfi Admaja Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
5
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
6
|
Hema T, Poopal RK, Ramesh M, Ren Z, Li B. Developmental toxicity of the emerging contaminant cyclophosphamide and the integrated biomarker response (IBRv2) in zebrafish. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1391-1406. [PMID: 37539704 DOI: 10.1039/d3em00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The safety of cyclophosphamide (CP) in the early developmental stages is not studied yet; it is important to study the responses at these stages because they might have relevance to CP-administered humans. We studied the developmental toxicity of CP by analysing physiological, morphological, and oxidative stress, neurotransmission enzymes, gene expression and histological endpoints in zebrafish embryos/larvae. The study lasted for 120 hpf at environmentally relevant concentrations of CP. No visible alterations were noticed in the control group. Delayed hatching, slow heart rate, yolk sac oedema, pericardial oedema, morphological deformities, the incompetence of oxidative stress biomarkers, excessive generation of ROS, apoptosis, inhibition of neurotransmitters and histopathological anomalies were observed in CP-treated groups. These alterations were found to be concentration- and duration-dependent effects for physiological and morphological endpoints, whereas concentration-dependent effects were antioxidants, ROS, apoptosis and histological endpoints. Biomarkers and gene expression were standardised using the integrated biomarker response-IBRv2 index. The IBRv2 index showed a concentration-dependent behaviour. A non-lethal developmental and teratogenic effect was observed in CP-treated zebrafish embryos/larvae at the studied concentrations. The studied biomarkers are sensitive, and the responses are interrelated; thus, their responses are useful to assess veiled and unseen hazards of pharmaceuticals.
Collapse
Affiliation(s)
- Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Mathan Ramesh
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|
7
|
Sulukan E, Baran A, Kankaynar M, Kızıltan T, Bolat İ, Yıldırım S, Ceyhun HA, Ceyhun SB. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158903. [PMID: 36419276 DOI: 10.1016/j.scitotenv.2022.158903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The increase in temperature due to global warming greatly affects the toxicity produced by pesticides in the aquatic ecosystem. Studies investigating the effects of such environmental stress factors on next generations are important in terms of the sustainability of ecosystems. In this study, the effects of parental synergistic exposure to glyphosate and temperature increase on the next generation were investigated in a zebrafish model. For this purpose, adult zebrafish were exposed to 1 ppm and 5 ppm glyphosate for 96 h at four different temperatures (28.5, 29.0, 29.5, 30.0 °C). At the end of this period, some of the fish were subjected to the recovery process for 10 days. At the end of both treatments, a new generation was taken from the fish and morphological, physiological, molecular and behavioral analysis were performed on the offspring. According to the results, in parallel with the 0.5-degree temperature increase applied to the parents with glyphosate exposure, lower survival rate, delay in hatching, increased body malformations and lower blood flow and heart rate were detected in the offspring. In addition, according to the results of whole mouth larva staining, increased apoptosis, free oxygen radical formation and lipid accumulation were detected in the offspring. Moreover, it has been observed that the temperature increases to which the parents are exposed affects the light signal transmission and serotonin pathways in the offspring, resulting in more dark/light locomotor activity and increased thigmotaxis.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Tuğba Kızıltan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
8
|
Evaluation of developmental toxicity in zebrafish embryos and antiproliferative potential against human tumor cell lines of new derivatives containing 4-nitrophenyl group. Toxicol Appl Pharmacol 2023; 458:116325. [PMID: 36436567 DOI: 10.1016/j.taap.2022.116325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The aim of the studies was to evaluate the antiproliferative potential against human tumor cell lines of newly synthetized derivatives containing 4-nitrophenyl group, as well as its impact on developmental toxicity in zebrafish model. We selected 1-(4-nitrobenzoyl)-4-ethylsemicarbazide (APS-1) and 1-[(4-nitrophenyl)acetyl]-4-hexyl-thiosemicarbazide (APS-18) for research. The antiproliferative properties of semicarbazide derivatives were assessed against human cancer cell lines derived from hepatocellular adenocarcinoma (HepG2), renal cell carcinoma (769-P), non-small cell lung cancer (NCI-H1563) and glioblastoma multiforme (LN229) in comparison to the physiological human embryonic kidney (HEK-293) cell line. The influence of the tested substances on the cell cycle and apoptosis was also evaluated. Fish embryo acute toxicity test (FET) was performed based on OECD Guidelines (Test No. 236), and was carried out for the first 5 days post fertilization. The following concentrations of APS-1 and APS-18 were tested: 125-2000 μM and 0.125-1000 μM, respectively. The presented studies on the antiproliferative properties of the new semicarbazide derivatives showed that the compounds APS-1 and APS-18 reduce the viability of human tumor lines. Particularly noteworthy is the strong and selective antiproliferative activity of APS-18 against all neoplastic cell lines, in particular against glioblastoma. Against this tumor line, the compound APS-1 showed an effective inhibitory effect. In the FET we noted that the direct exposure of zebrafish embryos to APS-1 and APS-18 in used range of concentration did not cause morphological abnormalities, including cardiotoxicity. On basis of obtained outcomes it could be concluded that APS-1 and APS-18 may constitute models for further research, design and synthesis of new, safer drugs with more favorable anticancer properties.
Collapse
|
9
|
Larvicidal activity of plant extracts from Colombian North Coast against Aedes aegypti L. mosquito larvae. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Organophosphate Insecticide Toxicity in Neural Development, Cognition, Behaviour and Degeneration: Insights from Zebrafish. J Dev Biol 2022; 10:jdb10040049. [PMID: 36412643 PMCID: PMC9680476 DOI: 10.3390/jdb10040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organophosphate (OP) insecticides are used to eliminate agricultural threats posed by insects, through inhibition of the neurotransmitter acetylcholinesterase (AChE). These potent neurotoxins are extremely efficacious in insect elimination, and as such, are the preferred agricultural insecticides worldwide. Despite their efficacy, however, estimates indicate that only 0.1% of organophosphates reach their desired target. Moreover, multiple studies have shown that OP exposure in both humans and animals can lead to aberrations in embryonic development, defects in childhood neurocognition, and substantial contribution to neurodegenerative diseases such as Alzheimer's and Motor Neurone Disease. Here, we review the current state of knowledge pertaining to organophosphate exposure on both embryonic development and/or subsequent neurological consequences on behaviour, paying particular attention to data gleaned using an excellent animal model, the zebrafish (Danio rerio).
Collapse
|
11
|
Shahjahan M, Islam MJ, Hossain MT, Mishu MA, Hasan J, Brown C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156910. [PMID: 35753474 DOI: 10.1016/j.scitotenv.2022.156910] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Global climate change due to anthropogenic activities affects the dynamics of aquatic communities by altering the adaptive capacities of their inhabitants. Analysis of blood provides valuable insights in the form of a comprehensive representation of the physiological and functional status of fish under various environmental and treatment conditions. This review synthesizes currently available information about blood biomarkers used in climate change induced stress responses in fish. Alterations in informative blood-based indicators are used to monitor the physiological fitness of individual fishes or entire populations. Specific characteristics of fish blood, such as serum and plasma metabolites, cell composition, cellular abnormalities, cellular and antioxidant enzymes necessitate adapted protocols, as well as careful attention to experimental designs and meticulous interpretation of patterns of data. Moreover, the sampling technique, transportation, type of culture system, acclimation procedure, and water quality must all be considered for valid interpretation of hemato-biochemical parameters. Besides, blood collection, handling, and storage time of blood samples can all have significant impacts on the results of a hematological analysis, so it is optimal to perform hemato-biochemical evaluations immediately after blood collection because long-term storage can alter the results of the analyses, at least in part as a result of storage-related degenerative changes that may occur. However, the scarcity of high-throughput sophisticated approaches makes fish blood examination studies promising for climate-driven stress responses in fish.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Md Jakiul Islam
- Department of Fisheries Technology and Quality Control, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Moshiul Alam Mishu
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher Brown
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, South Korea
| |
Collapse
|
12
|
Samareh A, Asadikaram G, MojtabaAbbasi-Jorjandi, Abdollahdokht D, Abolhassani M, Khanjani N, Nematollahi MH. Occupational exposure to pesticides in farmworkers and the oxidative markers. Toxicol Ind Health 2022; 38:455-469. [PMID: 35701988 DOI: 10.1177/07482337221106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organophosphate (OPPs) and organochlorine pesticides (OCPs) are the two predominant forms of pesticides extensively used all around the world and are being reconsidered as environmental pollutants. The current study sought to assess the role of socioeconomic factors on the level of pesticides residues and the oxidative effects of exposure to OPPs and OCPs among the farmworkers of southeast Iran. In this cross-sectional study, 192 farmworkers and 74 non-farmworkers (controls) were involved. Gas chromatography (GC) was performed to measure the serum levels of organochlorine chemicals (2,4-DDT, 4,4-DDT, 2,4-DDE, 4,4-DDE, α-HCH, β-HCH, and γ-HCH). Furthermore, acetylcholinesterase (AChE) activity, arylesterase activity of paraoxonase-1 (PON-1), and several oxidative stress (OS) markers were assessed. In addition, the impact of several parameters such as home to farm distance, education level, ventilation status, and personal protective equipment (PPE) on pesticide levels was analyzed. The levels of OCPs in the farmworkers were significantly higher than the control subjects. In addition, AChE activity, arylesterase activity of PON-1, and total antioxidant capacity in farmworkers were significantly less, and MDA levels were higher than the controls. Education level was associated with farmworkers' protective behavior. The current findings suggested that some phased out OCPs can still be measured in human samples in the southeast of Iran. Furthermore, the current study demonstrated that exposure to OCPs and OPPs was accompanied by adverse consequences regarding OS parameters and subsequent health problems. In addition, the findings of the present study suggest that improving farmworkers' education might be associated with reduced exposure to pesticides and less adverse health effects.
Collapse
Affiliation(s)
- Ali Samareh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - MojtabaAbbasi-Jorjandi
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research center, Institute of Basic and Clinical Physiology Sciences, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Danial Abdollahdokht
- Physiology Research center, Institute of Basic and Clinical Physiology Sciences, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad H Nematollahi
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research center, Institute of Basic and Clinical Physiology Sciences, 48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
He Z, Li C, Xia W, Wang Z, Li R, Zhang Y, Wang M. Comprehensive Enantioselectivity Evaluation of Insecticidal Activity and Mammalian Toxicity of Fenobucarb. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5330-5338. [PMID: 35451821 DOI: 10.1021/acs.jafc.2c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To comprehensively evaluate the efficiency and risk of the chiral pesticide fenobucarb, the bioactivity, toxicity, and environmental behavior of fenobucarb (FNC) enantiomers were investigated. The results showed that R-FNC possesses 1.8-2.7 times more bioactivity than S-FNC but 1.3-3.0 times lower toxicity than S-FNC against four nontarget organisms: Chlorella pyrenoidosa, HepG2, and Danio rerio and its embryos. The corresponding enzyme inhibitory activity showed consistent results; the acetylcholinesterase inhibitory activity of target organisms was ordered as R-FNC > rac-FNC > S-FNC, while the reduction in catalase activity after exposure to R-FNC was 2.5 times that after exposure to S-FNC in zebrafish. The enantioselective bioactivity mechanism of FNC enantiomers was further explored in silico. No significant enantioselective degradation was found in soils or rat liver microsomes. In sum, R-FNC possesses higher insecticidal activity and lower toxicity. The development of R-FNC as a commercial agrochemical is beneficial for reducing pesticide inputs.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Chenglong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Weitong Xia
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
14
|
Taslima K, Al-Emran M, Rahman MS, Hasan J, Ferdous Z, Rohani MF, Shahjahan M. Impacts of heavy metals on early development, growth and reproduction of fish - A review. Toxicol Rep 2022; 9:858-868. [PMID: 36561955 PMCID: PMC9764183 DOI: 10.1016/j.toxrep.2022.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Heavy metals pollution causes a threat to the aquatic environment and to its inhabitants when their concentrations exceed safe limits. Heavy metals cause toxicity in fish due to their non-biodegradable properties and their long persistence in the environment. This review investigated the effects of heavy metals on early development, growth and reproduction of fish. Fish embryos/larvae and each developmental stage of embryo respond differently to the intoxication and vary from species to species, types of metals and their mode of actions, concentration of heavy metals and their exposure time. Many of the heavy metals are considered as essential nutrient elements that positively improve the growth and feed utilization of fishes but upon crossing the maximum tolerable limit these metals cause not only a hazard to fish health but also to human consumers and the disruption of ecological systems. Reduced gonadosomatic index (GSI), fecundity, hatching rate, fertilization success, abnormal shape of reproductive organs, and finally failure of reproduction in fish have been attributed to heavy metal toxicity. In summary, this review sheds light on the manipulation of fish physiology by heavy metals and seeks to raise sensitivity to the prevention and control of aquatic environmental contamination, particularly from heavy metals.
Collapse
Affiliation(s)
- Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zannatul Ferdous
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
15
|
Ritu RF, Islam SMM, Rashid H, Haque SM, Zulfahmi I, Sumon KA. Application of fenitrothion on Heteropneustes fossilis causes alteration in morphology of erythrocytes via modifying hematological parameters. Toxicol Rep 2022; 9:895-904. [PMID: 36518401 PMCID: PMC9742834 DOI: 10.1016/j.toxrep.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
In Bangladesh, the extensive use of fenitrothion on crops and in aquaculture ponds inevitably threatens a range of aquaculture species, including fish, owing to stress responses and physiological disturbances. The present study elucidated the potential toxic effects of fenitrothion on the blood biomarkers (haemato-biochemistry and structure of erythrocytes) of stinging catfish (Heteropneustes fossilis), a commercially significant aquaculture species. Fish were exposed to four sub-lethal concentrations (0%, 10%, 20%, and 40% of the 96-h LC50 value) of fenitrothion in triplicate and observed on the 7th, 14th, 21st, and 28th day following exposure. With increasing fenitrothion concentration, blood glucose and white blood cell levels increased significantly; in contrast, hemoglobin, red blood cell, and packed cell volume substantially decreased. However, the mean corpuscular volume and mean corpuscular hemoglobin did not change significantly during the exordial period (0-7 d); although, at a later stage, changes were observed. Frequencies of observed erythrocytic nuclear abnormalities, such as degeneration, bi-nucleus, micronucleus, notch nucleus, and nuclear bridge and erythrocytic cellular abnormalities, such as echinocytes, fusion, elongation, and tear drop morphology increased significantly in a concentration-dependent manner. Differences between the control individuals and those individuals under treatment were considered insignificant for twin cells on the 14th day of exposure. The study showed the pernicious impact of the effects of fenitrothion on H. fossilis through physiological alteration, which is likely to pose challenges for aquaculture production.
Collapse
Affiliation(s)
- Rifat Farjana Ritu
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - SM Majharul Islam
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Harunur Rashid
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahroz Mahean Haque
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Syiah Kuala University, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
16
|
Liang Y, Wang H, Xu Y, Pan H, Guo K, Zhang Y, Chen Y, Liu D, Zhang Y, Yao C, Yu Y, Shi G. A novel molecularly imprinted polymer composite based on polyaniline nanoparticles as sensitive sensors for parathion detection in the field. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Hasan M, Sumon KA, Siddiquee MM, Bhandari RK, Prodhan MDH, Rashid H. Thiamethoxam affects the developmental stages of banded gourami (Trichogaster fasciata). Toxicol Rep 2022; 9:1233-1239. [DOI: 10.1016/j.toxrep.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
|
18
|
Vasamsetti BMK, Chon K, Kim J, Oh JA, Yoon CY, Park HH. Transcriptome-Based Identification of Genes Responding to the Organophosphate Pesticide Phosmet in Danio rerio. Genes (Basel) 2021; 12:genes12111738. [PMID: 34828343 PMCID: PMC8624534 DOI: 10.3390/genes12111738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Organophosphate pesticides (OPPs) are one of the most widely used insecticides. OPPs exert their neurotoxic effects by inhibiting acetylcholine esterase (AChE). Most of the gross developmental abnormalities observed in OPP-treated fish, on the other hand, may not be explained solely by AChE inhibition. To understand the overall molecular mechanisms involved in OPP toxicity, we used the zebrafish (ZF) model. We exposed ZF embryos to an OPP, phosmet, for 96 h, and then analyzed developmental abnormalities and performed whole transcriptome analysis. Phenotypic abnormalities, such as bradycardia, spine curvature, and growth retardation, were observed in phosmet-treated ZF (PTZF). Whole transcriptome analysis revealed 2190 differentially expressed genes (DEGs), with 822 and 1368 significantly up-and downregulated genes, respectively. System process and sensory and visual perception were among the top biological pathways affected by phosmet toxicity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of metabolic pathways, calcium signaling pathway, regulation of actin cytoskeleton, cardiac muscle contraction, drug metabolism-other enzymes, and phototransduction. Quantitative real-time PCR results of six DEGs agreed with the sequencing data expression profile trend. Our findings provide insights into the consequences of phosmet exposure in ZF, as well as an estimate of the potential risk of OPPs to off-target species.
Collapse
|
19
|
Sornat R, Kalka J, Faron J, Napora-Rutkowska M, Krakowian D, Drzewiecka A. Developing a screening test for toxicity studies of prenatal development with the use of Hydra attenuata and embryos of zebrafish. Toxicol Rep 2021; 8:1742-1753. [PMID: 34660207 PMCID: PMC8503906 DOI: 10.1016/j.toxrep.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
A simple alternative method may replace the laboratory animals in teratogenic studies. A scoring system evaluates the changes of Hydra attenuata and zebrafish embryos. A potentially teratogenic substance can be easily classified.
11 active substances used in pesticides were selected. Substances were divided into three groups depending the effect on embryos or fetuses of laboratory animals: 1 – damaging effect on embryos or fetuses (embryotoxic, fetotoxic or teratogenic), 2 – damaging effect on embryos or fetuses, but only at dose toxic for mother (maternal toxicity), 3 – no damaging effect. Changes for hydra in acute toxicity tests and recovery tests were assessed on an change scale from 0 to 10. The index of the effect on development (TI) for hydras was calculated for every compound. Changes in zebrafish embryos were assessed using a descriptive method. Pearson correlation coefficient showed the correlation between the concentration and the toxic effect in the zebrafish embryos for the substances of the first group. The study showed that substances having a strong damaging effect on fetuses cause changes that are apparent and easy to evaluate both in hydras and zebrafish embryos. A scoring system was introduced to evaluate the changes of hydras and zebrafish embryos. The point system of evaluation of changes allows quick classification of a substance as potentially embryotoxic, fetotoxic or teratogenic. It allows developing a cheap and fast method alternative to prenatal developmental toxicity studies, a screening method that enables substances of great teratogenic potential to be excluded from studies on laboratory animals.
Collapse
Affiliation(s)
- Robert Sornat
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland.,Silesian University of Technology, The Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
| | - Joanna Kalka
- Silesian University of Technology, The Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
| | - Justyna Faron
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Marta Napora-Rutkowska
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland.,Veterinary Clinic LUX-VET, Słoneczna 118, 43-384, Jaworze, Poland
| | - Daniel Krakowian
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Agnieszka Drzewiecka
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| |
Collapse
|
20
|
Hansen BH, Farkas J, Piarulli S, Vicario S, Kvæstad B, Williamson DR, Sørensen L, Davies EJ, Nordtug T. Atlantic cod ( Gadus morhua) embryos are highly sensitive to short-term 3,4-dichloroaniline exposure. Toxicol Rep 2021; 8:1754-1761. [PMID: 34703771 PMCID: PMC8523877 DOI: 10.1016/j.toxrep.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 11/26/2022] Open
Abstract
3,4-dichloroaniline (3,4-DCA) is one of the most widely produced anilines world-wide, used in plastic packaging, fabrics, pharmaceuticals, pesticides, dyes and paints as well as being a degradation product of several pesticides. 3,4-DCA has been detected in freshwater, brackish and marine environments. Although freshwater toxicity thresholds exist, very little toxicological information is available on marine and cold-water species. In this study, we exposed Atlantic cod (Gadus morhua) embryos (3-7 days post fertilization) to 3,4-DCA concentrations ranging from 8-747 μg/L for 4 days followed by a recovery period in clean sea water until 14 days post fertilization (dpf). The cod embryos were significantly more sensitive to acute 3,4-DCA exposure compared to other species tested and reported in the literature. At the highest concentration (747 μg/L), no embryos survived until hatch, and even at the lowest concentration (8 μg/L), a small, but significant increase in mortality was observed at 14 dpf. Delayed and concentration-dependent effects on surviving yolk-sac larvae, manifested as cardiac, developmental and morphometric alterations, more than a week after exposure suggest potential long-term effects of transient embryonic exposure to low concentrations of 3,4-DCA.
Collapse
Affiliation(s)
| | | | | | - Silvia Vicario
- University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy
| | | | - David R. Williamson
- SINTEF Ocean, 7465, Trondheim, Norway
- Centre for Autonomous Marine Operations and System (AMOS), Department of Marine Technology, Norwegian University of Science and Technology, NTNU, Norway
| | | | | | | |
Collapse
|
21
|
Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Worldwide, pesticides have contaminated the environment, affecting non-target species. The aim of this work was to evaluate the effects of fosetyl-Al (FOS) on model organisms. Based on the 3 Rs for animal research and described guidelines, the OECD 236 and 220 were applied with some modifications. The FOS test concentrations were 0.02–0.2–2–20–200 mg/L for Danio rerio and 250–500–750–1000–1250 mg/kg for Enchytraeus crypticus. Besides the standard endpoints, additional endpoints were evaluated (D. rerio: behavior and biochemical responses; E. crypticus: extension of exposure duration (28 d (days) + 28 d) and organisms’ sizes). For D. rerio, after 96 h (h), hatching was inhibited (200 mg/L), proteins’ content increased (2 and 20 mg/L), lipids’ content decreased (2 mg/L), glutathione S-transferase activity increased (2 mg/L), and, after 120 h, larvae distance swam increased (20 mg/L). For E. crypticus, after 28 d, almost all the tested concentrations enlarged the organisms’ sizes and, after 56 d, 1250 mg/kg decreased the reproduction. In general, alterations in the organisms’ biochemical responses, behavior, and growth occurred at lower concentrations than the effects observed at the standard endpoints. This ecotoxicological assessment showed that FOS may not be considered safe for the tested species, only at higher concentrations than the predicted environmental concentrations (PECs). This research highlighted the importance of a multi-endpoint approach to assess the (eco)toxic effects of the contaminants.
Collapse
|
22
|
Sharmin S, Islam MT, Sadat MA, Jannat R, Alam MR, Shahjahan M. Sumithion induced structural erythrocyte alteration and damage to the liver and kidney of Nile tilapia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36695-36706. [PMID: 33694120 DOI: 10.1007/s11356-021-13263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Indiscriminate use of pesticides in agricultural land poses a potential threat to many non-target organisms, including fish. In the present study, we explored the toxicological effects of sumithion on Nile tilapia (Oreochromis niloticus) after exposure at different concentrations (0.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mg/L) in triplicate for 96 h. The 96-h LC50 value of the pesticide for the test fish was calculated by probit analysis, which was 2.579 mg/L. We also investigated the haematological parameters, erythrocytic alteration and histopathological responses of Nile tilapia. Red blood cell (RBC) and haemoglobin (Hb) level were significantly declined, whereas white blood cell (WBC) and blood glucose level were increased dramatically in the sumithion treated fish. The frequencies of erythrocytic cellular and nuclear alterations were significantly elevated in the fish after exposure to sumithion compared with the control group. The substantial histopathological alterations were observed in sumithion-exposed fish, including pyknotic nucleus, melano-macrophage centers and severe congestion of blood vessels in the liver and patch degeneration, vacuolation and intense form of pyknotic nuclei in the kidney. Observed alterations in this study exhibit that sumithion negatively impacts on Nile tilapia. It is recommended that the use of this pesticide in the agriculture field be monitored and controlled.
Collapse
Affiliation(s)
- Sadia Sharmin
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Department of Coastal Studies and Digester Management, University of Barishal, Barishal, 8200, Bangladesh
| | - Md Touhidul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anwar Sadat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rayeda Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Rushna Alam
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
- Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
23
|
Faria M, Prats E, Rosas Ramírez JR, Bellot M, Bedrossiantz J, Pagano M, Valls A, Gomez-Canela C, Porta JM, Mestres J, Garcia-Reyero N, Faggio C, Gómez Oliván LM, Raldua D. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145671. [PMID: 33621872 DOI: 10.1016/j.scitotenv.2021.145671] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low μg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Arnau Valls
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Jordi Mestres
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
24
|
Badruzzaman M, Shahjahan M, Roy PK, Islam MT. Rotenone alters behavior and reproductive functions of freshwater catfish, Mystus cavasius, through deficits of dopaminergic neurons in the brain. CHEMOSPHERE 2021; 263:128355. [PMID: 33297277 DOI: 10.1016/j.chemosphere.2020.128355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Rotenone, commonly used as a pesticide in agriculture and as a piscicide in aquaculture, is a toxic compound that causes dopaminergic neuronal cell loss in the substantia nigra pars compacta of the brain. At the neuroendocrine level, dopamine (DA) drives behavioral (locomotion, emotion, feeding, and social interactions, etc.) and reproductive functions of fish. In the current investigation, we examined effects of rotenone toxicity on neurobehavioral and reproductive functions in whole brain and in selected brain regions in an Indian freshwater catfish, locally known as gulsha (Mystus cavasius). After fish were exposed to water containing rotenone at 0, 2.5, 25, and 250 μg/L for 2 days, significant reductions of DA, 3,4-dihydroxyphenylacetic acid (DOPAC; a DA metabolite), and their ratio (DOPAC/DA) were observed in whole brain at 250 μg/L ambient concentrations of rotenone. When fish were treated with rotenone at 250 μg/L concentration for 2 days, there was a significant reduction of DA, DOPAC and DOPAC/DA in diencephalon, DA and DOPAC in pituitary, and only DA in the telencephalon, compared with control fish. In parallel, numbers of tyrosine hydroxylase-positive (TH+) neurons declined significantly in the diencephalon and pituitary after rotenone treatment. Slowed, spontaneous movement and reduced feeding behavior were observed in rotenone-treated fish. Rotenone treatment resulted in a significantly higher gonadosomatic index with many mature vitellogenic oocytes in ovaries and lowered dopaminergic activity in these fish. These results indicate that rotenone influences neurobehavioral and reproductive functions through dopaminergic neuronal cell loss in gulsha brain.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh.
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Prodip Kumar Roy
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Md Taimur Islam
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh
| |
Collapse
|
25
|
Raja prabu M, Murugan A. Impact of monocrotophos and its biodegraded metabolites on green gram seed germination and zebra fish embryo development. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Batista-Filho J, Falcão MAP, Maleski ALA, Soares ABS, Balan-Lima L, Disner GR, Lima C, Lopes-Ferreira M. Early preclinical screening using zebrafish ( Danio rerio) reveals the safety of the candidate anti-inflammatory therapeutic agent TnP. Toxicol Rep 2020; 8:13-22. [PMID: 33364179 PMCID: PMC7750688 DOI: 10.1016/j.toxrep.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
TnP has been indicated for chronic inflammatory diseases, multiple sclerosis. Zebrafish is an alternative animal model for preclinical drug development. Preclinical toxicology studies have shown that TnP has a wide therapeutic index range from 1 nM to 10 μM. TnP did not induce cardiotoxic effect or cardiac dysfunction. TnP crossed the blood-brain barrier without causing neurotoxicity.
The patented anti-inflammatory peptide TnP had its effectiveness recently confirmed in vivo in a murine model of multiple sclerosis and asthma. In this work, the safety of the TnP was evaluated in investigative toxicology tests using zebrafish (Danio rerio) as a model. We conducted the OECD #236 test to investigate effects of the TnP on the survival, hatching performance, and morphological formation of zebrafish embryos. After determining these endpoints, morphometric analysis termination of locomotion eartbeat rate in zebrafish larvae were evaluated to identify adverse effects such as neurotoxicity and cardiotoxicity. The results highlight a wide therapeutic index for TnP with non-lethal and safe doses rom 1 nM to 10 μM, without causing neurotoxicity or cardiotoxic effect. The low frequencyf abnormalities by TnP was associated with high safety of the molecule and the developing embryo's ability to process and eliminate it. TnP crossed the blood-brain barrier without disturbing the normal architecture of forebrain, midbrain and hindbrain. Our data reinforce the importance of zebrafish as an accurate investigative toxicology model to assess acute toxicity as well as cardiotoxicity and neurotoxicity of molecules in the preclinical phase of development.
Collapse
Affiliation(s)
- João Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Maria Alice Pimentel Falcão
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
| | - Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Beatriz Silva Soares
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
| | - Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, 05503-009, São Paulo, Brazil
- Corresponding author at: Immunoregulation Unit, Laboratory of Applied Toxinology, Butantan Institute, Brazil.
| |
Collapse
|
27
|
Hu P, Vinturache A, Li H, Tian Y, Yuan L, Cai C, Lu M, Zhao J, Zhang Q, Gao Y, Liu Z, Ding G. Urinary Organophosphate Metabolite Concentrations and Pregnancy Outcomes among Women Conceiving through in Vitro Fertilization in Shanghai, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97007. [PMID: 32997523 PMCID: PMC7526721 DOI: 10.1289/ehp7076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Animal studies suggest that pesticide exposure elicits endocrine changes, increases embryo implantation failure, and decreases litter size. However, only a few epidemiological studies have evaluated the effects of pesticides on the outcomes of in vitro fertilization (IVF) pregnancies. OBJECTIVES This study examined the associations between preconception organophosphate pesticides (OP) exposure and pregnancy outcomes among women undergoing IVF in a Chinese population. METHODS This study included 522 women with infertility who underwent IVF. Women were recruited from a prospective study, the China National Birth Cohort (CNBC), from Shanghai, China, between July 2017 and December 2018. Demographic and clinical information were collected from medical records and through questionnaires. Preconception exposure to OP was assessed by measuring six nonspecific dialkylphosphate (DAP) metabolites [diethylthiophosphate (DETP), diethylphosphate (DEP), diethyldithiophosphate (DEDTP), dimethylthiophosphate (DMTP), dimethylphosphate (DMP), dimethyldithiophosphate (DMDTP)] in urine samples collected at recruitment. Generalized estimating equation (GEE) models were used to evaluate the associations between OP and pregnancy outcomes. RESULTS Compared with women in the lowest quartile (Q1) of individual DEP and Σ4DAP (the sum of DMP, DMTP, DEP, and DETP), women in the highest quartile (Q4) had lower odds of successful implantation, clinical pregnancy, and live birth, and most of the negative trends were significant (p-trends<0.05). There were no significant associations between urinary DAP concentrations and early IVF outcomes, including total and mature oocyte counts, best embryo quality, fertilization, E2 trigger levels, and endometrial wall thickness. CONCLUSION Preconception OP exposure was inversely associated with successful implantation, clinical pregnancy, and live birth in women who underwent IVF. https://doi.org/10.1289/EHP7076.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada
| | - Hong Li
- Departments of Nursing, International Peace Maternity and Children Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yuan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cai
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lu
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiuru Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianqian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Liu
- Departments of Neonatology, International Peace Maternity and Children Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Embryonic toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese medaka ( Oryzias javanicus Bleeker, 1854). Toxicol Rep 2020; 7:1039-1045. [PMID: 32913717 PMCID: PMC7472802 DOI: 10.1016/j.toxrep.2020.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023] Open
Abstract
The 96 h LC50 of 3,4-dichloroaniline in Javanese medaka embryo is 32.87 mg.L−1. 3,4-DCA lowers heart rate of developing Javanese medaka embryos. The sublethal concentration of 3,4-DCA delays hatching in Javanese medaka embryo. The LOEC for deformities in embryos of Javanese medaka was 0.5 mg.L−1.
Early-life exposure to toxic chemicals causes irreversible morphological and physiological abnormalities that may last for a lifetime. The present study aimed to determine the toxicity effect of 3,4-Dichloroaniline (3,4-DCA) on Javanese medaka (Oryzias javanicus) embryos. Healthy embryos were exposed to various 3,4-DCA concentrations for acute toxicity (5, 10, 25, 50, and 100 mg.L−1) and sublethal toxicity (0.10, 0.50, 1.25, 2.50, and 5.00 mg.L−1) for 96 h and 20 days respectively. Acute toxicity test revealed that the median lethal concentration (96h-LC50) was 32.87 mg.L−1 (95 % CI = 27.90–38.74, R2 = 0.95). Sublethal exposure revealed that 1.25 mg.L-1 at 3 days post-exposure (3 dpe) has a significant lower heartrate (120 ± 12.3 beats/min., p < 0.01), while at 7 dpe those exposed to 5 mg.L−1 (141.8 ± 8.3 beats/min) had significantly (p < 0.01) lower heart rate compared to other treatments. Likewise, at 13 dpe, 5.00 mg.L−1 (110.4 ± 17.3 beats/min) and 2.5 mg.L-1 (130.4 ± 8.3 beats/min) were significantly lower (p < 0.001) compared to control. None of the embryos in 5.00 mg.L−1 and 2.50 mg.L-1 treatment groups survived at the end of the experiment. The results indicated a concentration-dependent response. The lowest observed effect concentration (LOEC) that exerted developmental deformities was 0.5 mg.L−1. Javanese medaka embryo have low sensitivity to acute toxicity of 3,4-DCA, but developmental abnormalities at sublethal concentrations were observed.
Collapse
|
29
|
Islam SMM, Rohani MF, Zabed SA, Islam MT, Jannat R, Akter Y, Shahjahan M. Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypophthalmus. Toxicol Rep 2020; 7:664-670. [PMID: 32489906 PMCID: PMC7260616 DOI: 10.1016/j.toxrep.2020.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 01/03/2023] Open
Abstract
Chromium is considered the most detrimental pollutant to the aquatic organisms. The present experiment was conducted to determine the acute toxicity of chromium in view of its effects on hemato-biochemical parameters and the structure of erythrocytes in striped catfish, Pangasianodon hypophthalmus. Fish were exposed to seven different concentrations (0, 10, 20, 30, 40, 50 and 60 mg/L) of chromium, each with three replications for 96 h. After 96 h of exposure, the survived fish were sacrificed to measure hemato-biochemical parameters (hemoglobin, Hb; red blood cell, RBC; white blood cell, WBC; packed cell volume, PCV; mean corpuscular volume, MCV; the mean corpuscular hemoglobin, MCH and blood glucose). In addition, erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) of peripheral erythrocytes were assayed. No mortality was observed up to 10 mg/L, but 90% and 100% mortality was observed at 50 mg/L and 60 mg/L, respectively after a 96 h exposure period. The 96 h LC50 value through probit analysis was 32.47 mg/L. Hb (%), RBC (×106/mm3) and PCV (%) significantly decreased at 20, 30 and 40 mg/L of chromium, whereas WBC (×103/mm3), MCV (μm3) and MCH (pg) showed the opposite scenario. Blood glucose (mg/dL) levels significantly increased at 10, 20, 30 and 40 mg/L of chromium compared to 0 mg/L. Frequencies of ECA and ENA significantly increased with increasing chromium concentrations. This study indicates that chromium is highly toxic to striped catfish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seyed Akib Zabed
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tarikul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Rayeda Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|