1
|
Younis AM, Elkady EM, Soliman NF. Fractionation, chemometric analysis, and sophisticated risk assessment indices to appraise sediment contamination of a tropical mangrove forests, the Red Sea. MARINE POLLUTION BULLETIN 2025; 214:117792. [PMID: 40068426 DOI: 10.1016/j.marpolbul.2025.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
This paper adds a new perspective to Ras Mohamed Protectorate mangrove sediment quality studies in terms of bioavailability, mobility, human and eco-environmental risk of various potential toxic elements (PTEs). Fe > Mn > Pb > Cu > Cd was the order in which the PTE levels declined. Residual fraction controlled the geochemical speciation of all elements. The following was the order of the mean percentages of mobile elements in sediments: Mn > Fe > Pb > Cu > Cd. All sediment samples had low to moderate risk, according to synergistic indices (GCF, mRAC, PETI-A and PTEI-B). Mn was the primary ecological risk PTE contributor. According to the suggested individual indices, Mn is the most mobile and bioavailable element (0.4-1), whereas Cd, Cu, Fe, and Pb have moderate mobility and bioavailability (MI 0.1-0.4 and BI 0.1-0.4, respectively). The current PTE exposure in sediments did not constitute a significant health concern (THQ < 1 and LCR < 10-4).
Collapse
Affiliation(s)
- Alaa M Younis
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Eman M Elkady
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Naglaa F Soliman
- Department of Marine Ecology, Faculty of Aquaculture and Marine Fisheries, Arish University, Egypt.
| |
Collapse
|
2
|
Ekperusi AO, Michael A, Chukwurah CH, Sunday NM. Evaluation of heavy metals and their potential risk to human health from seafood in Escravos Estuary, Southern Nigeria. MARINE POLLUTION BULLETIN 2024; 208:117014. [PMID: 39326331 DOI: 10.1016/j.marpolbul.2024.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
In this study, we investigated the levels of heavy metals in sediment, shrimps, silver catfish and their potential bioaccumulation, trophic transfer and the associated risk to human health from the Escravos estuary in southern Nigeria. The values of heavy metals in shrimps and silver catfish were disproportionately higher than the allowable limits for seafood, with values in the gills and the rest of the fish higher than those of the muscle, liver and gonads. Furthermore, the increased BSAF for Cd, Cr and Cu in the study, underscore the uptake of metals from sediments into shellfish. High EDI and HR values from silver catfish for adults and children indicate immediate health risks, with the values for children considerably high, emphasizing the urgent need for regulatory measures and continuous monitoring of seafood from the estuary to protect the health of coastal population within the subregion.
Collapse
Affiliation(s)
- Abraham O Ekperusi
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko 332105, Delta State, Nigeria; Centre for Coastal Research and Development, Sapele 331107, Delta State, Nigeria.
| | - Amaka Michael
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko 332105, Delta State, Nigeria
| | - Chidiogo H Chukwurah
- Department of Science Laboratory Technology, Federal Polytechnic Orogun, Delta State, Nigeria
| | - Naomi M Sunday
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko 332105, Delta State, Nigeria
| |
Collapse
|
3
|
Ekperusi AO, Asiwa DO. Trophodynamics and health risk assessment of heavy metals in seafood from a tropical estuary in the gulf of Guinea. ENVIRONMENTAL RESEARCH 2024; 252:118977. [PMID: 38649017 DOI: 10.1016/j.envres.2024.118977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Seafood is an essential protein source for coastal communities. However, they can accumulate heavy metals from human activities which could pose a potential health risk to consumers. In this study, we investigated the distribution, bioaccumulation, trophic transfer and potential human health risk of heavy metals in sediments, shell and fin fish collected from the Escravos Estuary in southern Nigeria. Heavy metals (Ni, Cd, V, Pb and Cu) in sediments, periwinkles and tongue soles from the two study sites were lower than the permissible limits for fishery products. The metal distribution in fish tissues was in the decreasing order of liver > gills > muscles > gonads > rest of the fish. Moderate to high BSAF (>1) was reported for Cd, Pb and Cu. All the studied metals, except Pb, showed evidence of biomagnification from periwinkle to tongue sole. The estimated daily intake (EDI) and hazard ratio (HR) for metals in periwinkles from both study sites were lower or within the USEPA reference doses (RfD) for the respective daily intake and HR value < 1, except for Cd, V and Pb for children. In contrast, EDI values in the muscle of tongue soles were higher than the RfD values for heavy metals except for Ni and Pb, whereas HR values > 1 except for Ni, Cd and V. In the whole fish, EDI and HR values were disproportionately high in both study sites with higher values reported for children. This study provides the first insights on the trophic transfer and risk assessment of heavy metals from petroleum and gas operations impacting the Escravos Estuary and the implications to public health.
Collapse
Affiliation(s)
- Abraham O Ekperusi
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko, 332105, Delta State, Nigeria.
| | - David O Asiwa
- Department of Environmental Management and Pollution, Faculty of Environmental Management, Nigeria Maritime University, Okerenkoko, 332105, Delta State, Nigeria
| |
Collapse
|
4
|
Ustaoğlu F, Yüksel B, Tepe Y, Aydın H, Topaldemir H. Metal pollution assessment in the surface sediments of a river system in Türkiye: Integrating toxicological risk assessment and source identification. MARINE POLLUTION BULLETIN 2024; 203:116514. [PMID: 38788275 DOI: 10.1016/j.marpolbul.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
This study investigates potentially toxic elements (PTEs) in the surface sediments of the Abdal River system, a critical water source for Samsun province, Türkiye, due to the presence of the Çakmak Dam. PTE concentrations, measured in mg/kg, show significant variability: Hg (0.03) < Cd (0.26) < As (10.98) < Pb (13.88) < Cu (48.61) < Ni (62.45) < Zn (70.97) < Cr (96.28) < Mn (1015) < Fe (38357). Seasonal variations were observed, in particular increased concentrations of As, Cd and Pb in summer (p < 0.05). Contamination and ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) indicate moderate to low levels of contamination, suggesting potential ecological effects. Health risk assessments suggest minimal risks to human health from sediment PTEs. Statistical analyses (PCC, PCA and HCA) improve the understanding of the sediment environment and contamination sources, while the coefficient of variation assists in source identification.
Collapse
Affiliation(s)
- Fikret Ustaoğlu
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Bayram Yüksel
- Giresun University, Department of Property Protection and Security, Espiye, 28600 Giresun, Türkiye.
| | - Yalçın Tepe
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Handan Aydın
- Giresun University, Department of Property Protection and Security, Espiye, 28600 Giresun, Türkiye
| | - Halim Topaldemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Ordu, Türkiye
| |
Collapse
|
5
|
Yüksel B, Ustaoğlu F, Aydın H, Tokatlı C, Topaldemir H, Islam MS, Muhammad S. Appraisal of metallic accumulation in the surface sediment of a fish breeding dam in Türkiye: A stochastical approach to ecotoxicological risk assessment. MARINE POLLUTION BULLETIN 2024; 203:116488. [PMID: 38759467 DOI: 10.1016/j.marpolbul.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
This study examines the levels and patterns of potentially toxic elements (PTEs) in surface sediment of Almus Dam Lake (ADL), a key fish breeding site in Türkiye. PTE concentrations in sediment were ranked: Hg (0.05 ± 0.01) < Cd (0.16 ± 0.01) < Pb (9.34 ± 1.42) < As (18.75 ± 15.65) < Cu (63.30 ± 15.17) < Ni (72.64 ± 20.54) < Zn (86.66 ± 11.95) < Cr (108.35 ± 36.40) < Mn (1008 ± 151) < Fe (53,998 ± 6468), with no significant seasonal or spatial differences. Ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) showed low contamination levels. Health risk assessments, including LCR, HQ, and THI, indicated minimal risks to humans from sediment PTEs. Statistical analyses (PCA, HCA, SCC) identified natural, transportation, and anthropogenic PTE sources, with slight impacts from agriculture and fish farming. This research underlines contamination status of ADL and emphasizes the need for targeted management strategies, offering critical insights for environmental safeguarding.
Collapse
Affiliation(s)
- Bayram Yüksel
- Giresun University, Department of Property Protection and Security, Espiye, 28600 Giresun, Türkiye.
| | - Fikret Ustaoğlu
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Handan Aydın
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye
| | - Cem Tokatlı
- Trakya University, İpsala Vocational School, Department of Laboratory Technology, Evrenos Gazi Campus, Edirne, Türkiye
| | - Halim Topaldemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Ordu, Türkiye
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki Patuakhali 8602, Bangladesh
| | - Said Muhammad
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
6
|
Enjavinejad SM, Zahedifar M, Moosavi AA, Khosravani P. Integrated application of multiple indicators and geographic information system-based approaches for comprehensive assessment of environmental impacts of toxic metals-contaminated agricultural soils and vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171747. [PMID: 38531460 DOI: 10.1016/j.scitotenv.2024.171747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Conventional monitoring and mapping approaches are laborious, expensive, and time-consuming because they need a large number of data and consequently extensive sampling and experimental operations. Therefore, due to the growing concern about the potential of contamination of soils and agricultural products with heavy metals (HMs), a field experiment was conducted on 77 farm lands in an area of 2300 ha in the southeast of Shiraz (Iran) to investigate the source of metal contamination in the soils and vegetables and to model spatial distribution of HMs (iron, Fe; manganese, Mn; copper, Cu; zinc, Zn; cadmium, Cd; nickel, Ni, and lead, Pb) over the region using geographic information system (GIS) and geostatistical (Ordinary Kriging, OK) approaches and compare the results with deterministic approaches (Inverse Distance Weighting, IDW with different weighting power). Furthermore, some ecological and health risks indices including Pollution index (PI), Nemerow integrated pollution index (NIPI), pollution load index (PLI), degree of contamination (Cdeg), modified contamination degree (mCd), PIaverage and PIvector for soil quality, multi-element contamination (MEC), the probability of toxicity (MERMQ), the potential ecological index (RI), total hazard index (THI) and total carcinogenic risk index (TCR) based on ingestion, inhalation, and dermal exposure pathways for adults and children respectively for analyzing the noncarcinogenic and carcinogenic risks were calculated. Experimental semivariogram of the mentioned HMs were calculated and theoretical models (i.e., exponential, spherical, Gaussian, and linear models) were fitted in order to model their spatial structures and to investigate the most representative models. Moreover, principal component analysis (PCA) and cluster analysis (CA) were used to identify sources of HMs in the soils. Results showed that IDW method was more efficient than the OK approach to estimate the properties and HMs contents in the soils and plants. The estimated daily intake of metals (DIM) values of Pb and Ni exceeded their safe limits. In addition, Cd was the main element responsible for ecological risk. The PIave and PIvector indices showed that soil quality in the study area is not suitable. According to mCd values, the soils classified as ultra-high contaminated for Cu and Cd, extremely high for Zn and Pb, very high, high, and very low degree of contamination for Ni, Mn, and Fe, respectively. 36, 60, and 4 % of the sampling sites had high, medium, and low risk levels with 49, 21, and 9 % probability of toxicity, respectively. The maximum health risk index (HRI) value of 20.42 with extremely high risk for children was obtained for Ni and the HI for adults and children were 0.22 and 1.55, respectively. The THI values of Pb and Cd were the highest compared to the other HMs studied, revealing a possible non-cancer risk in children associated with exposure to these metals. The routes of exposure with the greatest influence on the THI and TCR indices were in the order of ingestion > inhalation > dermal. Therefore, ingestion, as the main route of exposure, is the route of greatest contribution to health risks. PCA analysis revealed that Fe, Mn, Cu, and Ni may originate from natural sources, while Fe was appeared to be controlled by fertilizer, and Cu primarily coming from pesticide, while Cd and Pb were mainly associated with the anthropogenic contamination, atmospheric depositions, and terrific in the urban soils. While, Zn mainly originated from fertilization. Findings are vital for developing remediation approaches for controlling the contaminants distribution as well as for monitoring and mapping the quality and health of soil resources.
Collapse
Affiliation(s)
| | - Maryam Zahedifar
- Department of Range and Watershed Management (Nature Engineering), Faculty of Agriculture, Fasa University, Fasa, IR, Iran.
| | - Ali Akbar Moosavi
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, IR, Iran.
| | - Pegah Khosravani
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, IR, Iran
| |
Collapse
|
7
|
Unsal MH, Ignatavičius G, Valiulis A, Prokopciuk N, Valskienė R, Valskys V. Assessment of Heavy Metal Contamination in Dust in Vilnius Schools: Source Identification, Pollution Levels, and Potential Health Risks for Children. TOXICS 2024; 12:224. [PMID: 38535957 PMCID: PMC10974985 DOI: 10.3390/toxics12030224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 11/12/2024]
Abstract
The main objective of this study is to thoroughly evaluate the diversity and sources of heavy metals in the school environment. Specifically, this study examines the presence of heavy metals in the dust found and collected from 24 schools in Vilnius. Employing hierarchical cluster analysis, principal component analysis, and positive matrix factorization, we identified combustion-related activities as primary contributors to elevated metal concentrations, notably zinc, scandium, and copper, with PM2.5/PM10 ratios indicating a combustion source. They reveal significant differences in the levels of elements such as arsenic (4.55-69.96 mg/kg), copper (51.28-395.37 mg/kg), zinc, and lead, which are affected by both local environmental factors and human activities. Elevated pollution levels were found in certain school environments, indicating environmental degradation. Pollution assessment and specific element pairings' strong positive correlations suggested shared origins or deposition processes. While this study primarily assesses non-carcinogenic risks to children based on a health risk assessment model, it acknowledges the well-documented carcinogenic potential of substances such as lead and arsenic. The research emphasizes the immediate necessity for efficient pollution management in educational environments, as indicated by the elevated hazard index for substances such as lead and arsenic, which present non-carcinogenic risks to children. This research offers important insights into the composition and origins of dust pollution in schools. It also promotes the need for broader geographic sampling and prolonged data collection to improve our understanding of pollution sources, alongside advocating for actionable strategies such as environmental management and policy reforms to effectively reduce exposure risks in educational settings. Furthermore, it aims to develop specific strategies to safeguard the health of students in Vilnius and similar urban areas.
Collapse
Affiliation(s)
- Murat Huseyin Unsal
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (G.I.); (V.V.)
| | - Gytautas Ignatavičius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (G.I.); (V.V.)
| | - Arunas Valiulis
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Medical Faculty, Vilnius University, Antakalnio St. 57, 10207 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Medical Faculty, Vilnius University, M. K. Čiurlionio St. 21, 03101 Vilnius, Lithuania
| | - Nina Prokopciuk
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Medical Faculty, Vilnius University, Antakalnio St. 57, 10207 Vilnius, Lithuania
| | - Roberta Valskienė
- Nature Research Centre, Laboratory of Ecotoxicology, Akademijos St. 2, 08412 Vilnius, Lithuania;
| | - Vaidotas Valskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (G.I.); (V.V.)
- Nature Research Centre, Laboratory of Climate and Water Research, Akademijos St. 2, 08412 Vilnius, Lithuania
| |
Collapse
|
8
|
Tejada-Purizaca TR, Garcia-Chevesich PA, Ticona-Quea J, Martínez G, Martínez K, Morales-Paredes L, Romero-Mariscal G, Arenazas-Rodríguez A, Vanzin G, Sharp JO, McCray JE. Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products. Foods 2024; 13:762. [PMID: 38472875 DOI: 10.3390/foods13050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed. These analyses encompassed 239 reported species classified into five main food/medicinal groups-plants, fish, macroinvertebrates and mollusks, mammals, and "others" category. Our benchmark for comparison was the World Health Organization (Codex Alimentarius) standards. The organisms most frequently investigated included plants such as asparagus, corn, cacao, and rice; fish varieties like trout, tuna, and catfish; macroinvertebrates and mollusks including crab and shrimp; mammals such as alpaca, cow, chicken eggs, and milk; and other categories represented by propolis, honey, lichen, and edible frog. Bioaccumulation-related research increased from 2 to more than 25 publications per year between 2006 and 2022. The results indicate that Peruvian food and natural medicinal products can have dangerous levels of metal(loid)s, which can cause health problems for consumers. Many common and uncommon food/medicinal products and harmful metals identified in this analysis are not regulated on the WHO's advisory lists, suggesting the urgent need for stronger regulations to ensure public safety. In general, Cd and Pb are the metals that violated WHO standards the most, although commonly non-WHO regulated metals such as Hg, Al, As, Cr, and Ni are also a concern. Metal concentrations found in Peru are on many occasions much higher than what has been reported elsewhere. We conclude that determining the safety of food/medicinal products is challenging due to varying metal concentrations that are influenced not only by metal type but also geographical location. Given the scarcity of research findings in many regions of Peru, urgent attention is required to address this critical knowledge gap and implement effective regulatory measures to protect public health.
Collapse
Affiliation(s)
- Teresa R Tejada-Purizaca
- Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Pablo A Garcia-Chevesich
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Intergubernamental Hydrological Programme, United Nations Educational, Scientific, and Cultural Organization (UNESCO), Montevideo 11200, Uruguay
| | - Juana Ticona-Quea
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Gisella Martínez
- Facultad de Geología, Geofísica y Minas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Kattia Martínez
- Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Lino Morales-Paredes
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Giuliana Romero-Mariscal
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Armando Arenazas-Rodríguez
- Departamento Académico de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Gary Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
9
|
Córdoba-Tovar L, Marrugo-Negrete J, Ramos Barón PA, Díez S. Ecological and human health risk from exposure to contaminated sediments in a tropical river impacted by gold mining in Colombia. ENVIRONMENTAL RESEARCH 2023; 236:116759. [PMID: 37507038 DOI: 10.1016/j.envres.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Despite being one of the most important tropical biomes in the world, the Atrato River basin has experienced a critical ecological deterioration due to gold mining, posing a significant threat to wildlife and human health. In this study, we measured the concentrations of mercury (Hg) and arsenic (As) in sediments at various swamps within the basin. Classical indices were employed to assess the associated ecological and human health risks linked to exposure to these elements. The concentrations of Hg and As in the sediments ranged between 0.09 and 0.23 mg/kg and 0.59-2.68 mg/kg, respectively. The highest Hg values were found at upstream stations impacted by gold mining activities. For As, the highest levels were found near river mouth (except for station B), where agricultural practices are taken place. The contamination factor (CF) indicated that most of the sediments exhibited moderate contamination levels of Hg and As, depending on the specific sampling area. Conversely, the pollution load index (PLI) suggested a contamination level ranging from basic to moderate, with the exception of station B, which showed a progressive deterioration of the site. The geoaccumulation index (Igeo) indicated that the sediments were moderately contaminated with Hg, while showing signs of increasing contamination for As. According to the criteria for limiting effect concentrations (TEC), Hg concentrations exceeded the TEC at stations B and C, indicating a potential toxic risk to aquatic biota. A moderate potential ecological risk (PERI) was detected at downstream stations (D and E), and a high risk was detected at upstream stations (A, B and C). The hazard index (HI), used for non-carcinogenic risk assessment, suggested a risk of adverse effects on the population, particularly in children, with HI values exceeding 1. However, all lifetime cancer risk (TLCR) values fell within the acceptable range (1 × 10-6 to 1 × 10-4), indicating a negligible risk. Oral ingestion and inhalation were identified as the two primary routes of concern. This study serves as a valuable reference for risk assessment regarding exposures to environmental matrices that may not pose an immediate risk to human health.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Transversal 4#42-00, Bogotá, D.C, Colombia; Environmental Toxicology and Natural Resources Group, Universidad Tecnológica del Chocó, Quibdó, Chocó, A.A. 292, Colombia
| | | | - Pablo Andrés Ramos Barón
- Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Transversal 4#42-00, Bogotá, D.C, Colombia
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
10
|
Mousavi Khaneghah A, Kamalabadi M, Heshmati A, Hadian Z. The concentration of potentially toxic elements (PTEs) in Iranian rice: a dietary health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90757-90771. [PMID: 37462870 DOI: 10.1007/s11356-023-28442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
In the present study, six potentially toxic elements (PTEs), including chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), copper (Cu), and nickel (Ni), were determined in 41 domestic rice samples collected from Tehran using ICP-OES (inductively coupled plasma-optical emission spectrometry). The mean concentration of Cd, As, Cu, Pb, Cr, and Ni was found as 0.014 ± 0.01, 0.018 ± 0.005, 2.15 ± 1.84, 0.42 ± 0.31, 0.1 ± 0.16, and 0.48 ± 0.36 mg kg-1, respectively. Possible risks due to ingestion of PTEs via rice consumption for children and adults were assessed by Monte Carlo simulation. The 50th percentile of estimated Cr intake for children through domestic rice consumption exceeded the maximum tolerable daily intake. There was only a potential non-carcinogenic risk for single Cr exposure for children. The 95th percentile of the estimated hazard index (HI) for children and adults was 4.34 and 1.05, indicating a potential non-carcinogenic risk related to multiple PTE exposure. The lifetime cancer risk (ILCR) values derived from Cr, Ni, As, and Cd exposure exceeded the threshold value, indicating a carcinogenic risk due to PTEs' exposure. The deterministic assessment demonstrates that the Tehran population may be at risk through domestic rice consumption. This study indicates that risk related to the exposure to multiple PTEs through the consumption of rice in adults and children in Tehran is recognized as an important issue, thus supporting the importance of cumulative analysis of the risk of exposure to PTEs through food. Finally, national strategic environmental assessment and technological solutions for monitoring and protecting freshwater, soil, waste management, and chemicals as a global concern policy are needed for public health.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Sahiti H, Bislimi K, Abdurrahmani Gagica N, Bajra Brahimaj T, Dalo E. Bioaccumulation and distribution of Pb, Ni, Zn and Fe in stinging nettle ( Urtica dioica) tissues and heavy metal-contamination assessment in the industrial zone of smelter Ferronikeli (Drenas-Kosovo). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-6. [PMID: 37463563 DOI: 10.1080/10934529.2023.2236535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
Here, we determined the concentrations of Pb, Ni, Zn and Fe in the soil and in vegetative organs of stinging nettle (Urtica dioica) collected from the banks of the Drenica River in the vicinity of the Ferronikeli smelter. The results were compared with samples collected from the banks 20 km (Shalë village) upriver. In addition, the bioaccumulation factor (BCF) and translocation factor (TF) were determined. Meanwhile, to evaluate the level of pollution in the study area was used the contamination factor (CF), potential ecological risk factor (Eri) and the potential ecological risk index (RI). The order of heavy metals according to their concentration in the soil samples at both sampling sites was as follows: Fe > Ni > Zn > Pb. Concentrations in excess of the limits allowed for soils in the samples collected in the vicinity of the smelter were recorded for Pb (173.13 mg kg-1), Zn (1217.48 mg kg-1), and Ni (1443.93 mg kg-1), while at the control site, Zn (270.82 mg kg-1) and Ni (375.47 mg kg-1) were found in excess concentrations. But lead (Pb) level was under allowed limit. The data showed that the stinging nettle is not a hyperaccumulator because BCF < 1 at both sites for all metals under study. Furthermore, analysis of the translocation factor (TFsteam/root) showed that at low of heavy metal concentrations, their mobility was higher (TF > 1). The lowest mobility (TF < 1) was observed at site I (Poklek), where the concentration of heavy metals was higher, except for Fe. The opposite was shown for mobility of metals from stems to leaves (TFleave/steam). The evaluation of CF showed that the area near the Ferronikeli smelter had low degree of Pb, moderate degree of Zn and considerable degree of Ni contamination. The values of RI indicate low potential ecological risk index.
Collapse
Affiliation(s)
- Hazbije Sahiti
- Department of Biology, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| | - Kemajl Bislimi
- Department of Biology, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| | | | | | - Enis Dalo
- Department of Biology, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| |
Collapse
|
12
|
Valdés J, Marambio-Alfaro Y, Castillo A, Guiñez M, Cooper O. Metal(oid)s content in High-Andean aquatic systems of the Atacama Desert, Chile: environmental assessment of extreme ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33018-33039. [PMID: 36471151 DOI: 10.1007/s11356-022-24294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The high-Andean mountain of northern Chile host numerous water systems that is in risk due to increased mining activities. Total and dissolved Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn in water, and Cd, Cu, Fe, Ni, Pb, Zn, As, Mo, Al, and V in sediments of 21 aquatic systems (rivers, saline lakes, salt flats), were studied. The presence of Pb, Cd, and As in waters and sediments could be explained, in part, by mining activities. Waters are not suitable for human consumption or irrigation due to high content of Cu and As and high pH that exceed Chilean water quality guideline values. The use of different background reference values influences noticeably the conclusion related to environmental quality of sediments, measured with different environmental indexes. The local geological background suggest that Cd, Mo, Pb, and As generate some degree of contamination, while the use of unpolluted systems as background suggest that all metals measured in sediments represent a low contamination risk. The use of background values of local unpolluted systems seems to be more realistic than geological formation or Upper Continental Crust reference values to assess the environmental condition. The ecological risk assessment suggests that Cd and As are threat for communities living in these aquatic environments. However, these systems support abundant wildlife, developing unique extreme ecosystems with great potential for non-consumptive use such as special interest tourism and conservation.
Collapse
Affiliation(s)
- Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes (LASPAL), Instituto de Ciencias Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
| | - Yery Marambio-Alfaro
- Laboratorio de Sedimentología y Paleoambientes (LASPAL), Instituto de Ciencias Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Parménides Limitada, Plaza Wheelwright 1265, Copiapó, Atacama, Chile
| | - Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- J'EAI-CHARISMA UMNG-Colombia, UPCH-Perú, IGP-Peru, UCM-Chile, UCh-Chile, UA-Chile, France
- ANID-Millenium Science Initiative Program Nucleo Milenio UPWELL, La Serena, Chile
| | - Marcos Guiñez
- Departamento de Ciencias Acuáticas y Ambientales, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Oliver Cooper
- Laboratorio de Sedimentología y Paleoambientes (LASPAL), Instituto de Ciencias Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Magister en Ecología de Sistemas Acuáticos, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|