1
|
Mao K, Li P, Niu Z, Zhang Q, Chen Q, Zhang P, Lv J, Gao C, Yang H, Tian W, Wei Q, Wan D. The additional phosphosites of PalPIN6b contribute to the modulation of growth and stress responses in poplars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109917. [PMID: 40245554 DOI: 10.1016/j.plaphy.2025.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/22/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The PIN-FORMED (PIN) family plays vital roles in plant growth and development by orchestrating the distribution of auxin across disparate tissues and organs. As an intermediate member, the functional characteristics of PIN6 proteins remain largely unexplored. Our findings indicate that PIN6s originated in the core angiosperms, and were subsequently lost in monocotyledons. Additionally, we identified a gene duplication event involving PIN6s in the Populus genome. Overexpression of PalPIN6a or PalPIN6b resulted in the inhibition of plant growth and the induction of root malformation, accompanied by local auxin accumulation at the apex and the bent regions of roots, as well as the leaf veins and the leaf margins, where the fluxes of IAA and proton (H+) were significantly suppressed. Furthermore, three additional phosphosites unique to Populus-specific PIN6s, were identified to determine the subcellular localization of PIN6 and to modulate its auxin transport function, thereby increased the plant sensitivity to salt stress. Our results offer new insights into auxin transport mechanisms and stress responses associated with PIN6s, and highlight the role of PalPIN6 phosphorylation.
Collapse
Affiliation(s)
- Kaili Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peng Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qi Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qingyuan Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jiaojiao Lv
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chengyu Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Haohong Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Gou H, Lu S, Guo L, Che L, Li M, Zeng B, Yang J, Chen B, Mao J. Evolution of PIN gene family between monocotyledons and dicotyledons and VvPIN1 negatively regulates freezing tolerance in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14464. [PMID: 39157882 DOI: 10.1111/ppl.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The PIN-FORMED (PIN) proteins mediate the auxin flow throughout the plant and have been identified in many species. However, evolution differences in the PIN gene families have not been systematically analyzed, and their functions under abiotic stresses in grape are largely unexplored. In this study, 373 PIN genes were identified from 25 species and divided into 3 subgroups. Physicochemical properties analysis indicated that most of the PIN proteins were unstable alkaline hydrophobic proteins in nature. The synteny analysis showed that the PINs contained strong gene duplication. Motif composition revealed that PIN gene sequence differences between monocotyledons and dicotyledons were due to evolutionary-induced base loss, and the loss was more common in dicotyledonous. Meanwhile, the codon usage bias showed that the PINs showed stronger codon preference in monocotyledons, monocotyledons biased towards C3s and G3s, and dicotyledons biased towards A3s and T3s. In addition, the VvPIN1 can interact with VvCSN5. Significantly, under freezing treatment, the ion leakage,O 2 · - $$ \left({O}_2^{\cdotp -}\right) $$ , H2O2, and malondialdehyde (MDA) were obviously increased, while the proline (Pro) content, peroxidase (POD) activity, and glutathione (GSH) content were decreased in VvPIN1-overexpressing Arabidopsis compared to the wild type (WT). And quantitative real-time PCR (qRT-PCR) showed that AtICE1, AtICE2, AtCBF1, AtCBF2, and AtCBF3 were down-regulated in overexpression lines. These results demonstrated that VvPIN1 negatively regulated the freezing tolerance in transgenic Arabidopsis. Collectively, this study provides a novel insight into the evolution and a basis for further studies on the biological functions of PIN genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Baozhen Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| |
Collapse
|
4
|
Hammes UZ, Pedersen BP. Structure and Function of Auxin Transporters. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:185-209. [PMID: 38211951 DOI: 10.1146/annurev-arplant-070523-034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | | |
Collapse
|
5
|
Seifu YW, Pukyšová V, Rýdza N, Bilanovičová V, Zwiewka M, Sedláček M, Nodzyński T. Mapping the membrane orientation of auxin homeostasis regulators PIN5 and PIN8 in Arabidopsis thaliana root cells reveals their divergent topology. PLANT METHODS 2024; 20:84. [PMID: 38825682 PMCID: PMC11145782 DOI: 10.1186/s13007-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 06/04/2024]
Abstract
PIN proteins establish the auxin concentration gradient, which coordinates plant growth. PIN1-4 and 7 localized at the plasma membrane (PM) and facilitate polar auxin transport while the endoplasmic reticulum (ER) localized PIN5 and PIN8 maintain the intracellular auxin homeostasis. Although an antagonistic activity of PIN5 and PIN8 proteins in regulating the intracellular auxin homeostasis and other developmental events have been reported, the membrane topology of these proteins, which might be a basis for their antagonistic function, is poorly understood. In this study we optimized digitonin based PM-permeabilizing protocols coupled with immunocytochemistry labeling to map the membrane topology of PIN5 and PIN8 in Arabidopsis thaliana root cells. Our results indicate that, except for the similarities in the orientation of the N-terminus, PIN5 and PIN8 have an opposite orientation of the central hydrophilic loop and the C-terminus, as well as an unequal number of transmembrane domains (TMDs). PIN8 has ten TMDs with groups of five alpha-helices separated by the central hydrophilic loop (HL) residing in the ER lumen, and its N- and C-terminals are positioned in the cytoplasm. However, the topology of PIN5 comprises nine TMDs. Its N-terminal end and the central HL face the cytoplasm while its C-terminus resides in the ER lumen. Overall, this study shows that PIN5 and PIN8 proteins have a divergent membrane topology while introducing a toolkit of methods for studying membrane topology of integral proteins including those localized at the ER membrane.
Collapse
Affiliation(s)
- Yewubnesh Wendimu Seifu
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Nikola Rýdza
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Veronika Bilanovičová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Marek Sedláček
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
6
|
Tang H, Lu KJ, Zhang Y, Cheng YL, Tu SL, Friml J. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. PLANT COMMUNICATIONS 2024; 5:100669. [PMID: 37528584 PMCID: PMC10811345 DOI: 10.1016/j.xplc.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 08/03/2023]
Abstract
The phytohormone auxin, and its directional transport through tissues, plays a fundamental role in the development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using a radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In the Arabidopsis root epidermis, bryophytic PINs have no defined polarity. Pharmacological interference revealed a strong cytoskeletal dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal the divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and the co-evolution of PIN sequence-based and cell-based polarity mechanisms.
Collapse
Affiliation(s)
- Han Tang
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Kuan-Ju Lu
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 40227, Taiwan, R.O.C
| | - YuZhou Zhang
- College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, China
| | - You-Liang Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
7
|
Ung KL, Schulz L, Kleine-Vehn J, Pedersen BP, Hammes UZ. Auxin transport at the endoplasmic reticulum: roles and structural similarity of PIN-FORMED and PIN-LIKES. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6893-6903. [PMID: 37279330 DOI: 10.1093/jxb/erad192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Auxin is a crucial plant hormone that controls a multitude of developmental processes. The directional movement of auxin between cells is largely facilitated by canonical PIN-FORMED proteins in the plasma membrane. In contrast, non-canonical PIN-FORMED proteins and PIN-LIKES proteins appear to reside mainly in the endoplasmic reticulum. Despite recent progress in identifying the roles of the endoplasmic reticulum in cellular auxin responses, the transport dynamics of auxin at the endoplasmic reticulum are not well understood. PIN-LIKES are structurally related to PIN-FORMED proteins, and recently published structures of these transporters have provided new insights into PIN-FORMED proteins and PIN-LIKES function. In this review, we summarize current knowledge on PIN-FORMED proteins and PIN-LIKES in intracellular auxin transport. We discuss the physiological properties of the endoplasmic reticulum and the consequences for transport processes across the ER membrane. Finally, we highlight the emerging role of the endoplasmic reticulum in the dynamics of cellular auxin signalling and its impact on plant development.
Collapse
Affiliation(s)
- Kien Lam Ung
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | | | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Wong ACS, van Oosterom EJ, Godwin ID, Borrell AK. Integrating stay-green and PIN-FORMED genes: PIN-FORMED genes as potential targets for designing climate-resilient cereal ideotypes. AOB PLANTS 2023; 15:plad040. [PMID: 37448862 PMCID: PMC10337860 DOI: 10.1093/aobpla/plad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Plant architecture modification (e.g. short-stature crops) is one of the key outcomes of modern crop breeding for high-yielding crop varieties. In cereals, delayed senescence, or stay-green, is an important trait that enables post-anthesis drought stress adaptation. Stay-green crops can prolong photosynthetic capacity during grain-filling period under post-anthesis drought stress, which is essential to ensure grain yield is not impacted under drought stress conditions. Although various stay-green quantitative trait loci have been identified in cereals, the underlying molecular mechanisms regulating stay-green remain elusive. Recent advances in various gene-editing technologies have provided avenues to fast-track crop improvement, such as the breeding of climate-resilient crops in the face of climate change. We present in this viewpoint the focus on using sorghum as the model cereal crop, to study PIN-FORMED (PIN) auxin efflux carriers as means to modulate plant architecture, and the potential to employ it as an adaptive strategy to address the environmental challenges posed by climate uncertainties.
Collapse
Affiliation(s)
- Albert Chern Sun Wong
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Erik J van Oosterom
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Andrew K Borrell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, 604 Yangan Road, Warwick, Queensland 4370, Australia
| |
Collapse
|
9
|
Monroy-González Z, Uc-Chuc MA, Quintana-Escobar AO, Duarte-Aké F, Loyola-Vargas VM. Characterization of the PIN Auxin Efflux Carrier Gene Family and Its Expression during Zygotic Embryogenesis in Persea americana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2280. [PMID: 37375905 DOI: 10.3390/plants12122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Auxins are responsible for a large part of the plant development process. To exert their action, they must move throughout the plant and from cell to cell, which is why plants have developed complex transport systems for indole-3-acetic acid (IAA). These transporters involve proteins that transport IAA into cells, transporters that move IAA to or from different organelles, mainly the endoplasmic reticulum, and transporters that move IAA out of the cell. This research determined that Persea americana has 12 PIN transporters in its genome. The twelve transporters are expressed during different stages of development in P. americana zygotic embryos. Using different bioinformatics tools, we determined the type of transporter of each of the P. americana PIN proteins and their structure and possible location in the cell. We also predict the potential phosphorylation sites for each of the twelve-PIN proteins. The data show the presence of highly conserved sites for phosphorylation and those sites involved in the interaction with the IAA.
Collapse
Affiliation(s)
- Zurisadai Monroy-González
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Miguel A Uc-Chuc
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Avenida Itzáes, No. 490 x Calle 59, Col. Centro, Merida CP 97000, Yucatan, Mexico
| | - Ana O Quintana-Escobar
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Fátima Duarte-Aké
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| |
Collapse
|
10
|
Fisher TJ, Flores-Sandoval E, Alvarez JP, Bowman JL. PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 238:1498-1515. [PMID: 36880411 DOI: 10.1111/nph.18854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
PIN-FORMED auxin efflux transporters, a subclass of which is plasma membrane-localised, mediate a variety of land-plant developmental processes via their polar localisation and subsequent directional auxin transport. We provide the first characterisation of PIN proteins in liverworts using Marchantia polymorpha as a model system. Marchantia polymorpha possesses a single PIN-FORMED gene, whose protein product is predicted to be plasma membrane-localised, MpPIN1. To characterise MpPIN1, we created loss-of-function alleles and produced complementation lines in both M. polymorpha and Arabidopsis. In M. polymorpha, gene expression and protein localisation were tracked using an MpPIN1 transgene encoding a translationally fused fluorescent protein. Overexpression of MpPIN1 can partially complement loss of an orthologous gene, PIN-FORMED1, in Arabidopsis. In M. polymorpha, MpPIN1 influences development in numerous ways throughout its life cycle. Most notably, MpPIN1 is required to establish gemmaling dorsiventral polarity and for orthotropic growth of gametangiophore stalks, where MpPIN1 is basally polarised. PIN activity is largely conserved within land plants, with PIN-mediated auxin flow providing a flexible mechanism to organise growth. Specifically, PIN is fundamentally linked to orthotropism and to the establishment of de novo meristems, the latter potentially involving the formation of both auxin biosynthesis maxima and auxin-signalling minima.
Collapse
Affiliation(s)
- Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - John P Alvarez
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
11
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
12
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
13
|
Tissue specificity and responses to abiotic stresses and hormones of PIN genes in rice. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Liu J, Shi X, Chang Z, Ding Y, Ding C. Auxin Efflux Transporters OsPIN1c and OsPIN1d Function Redundantly in Regulating Rice (Oryza sativa L.) Panicle Development. PLANT & CELL PHYSIOLOGY 2022; 63:305-316. [PMID: 34888695 DOI: 10.1093/pcp/pcab172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
The essential role of auxin in plant growth and development is well known. Pathways related to auxin synthesis, transport and signaling have been extensively studied in recent years, and the PIN-FORMED (PIN) protein family has been identified as being pivotal for polar auxin transport and distribution. However, research focused on the functional characterization of PIN proteins in rice is still lacking. In this study, we investigated the expression and function of OsPIN1c and OsPIN1d in the japonica rice variety (Nipponbare) using gene knockout and high-throughput RNA sequencing analysis. The results showed that OsPIN1c and OsPIN1d were mainly expressed in young panicles and exhibited a redundant function. Furthermore, OsPIN1c or OsPIN1d loss-of-function mutants presented a mild phenotype compared with the wild type. However, in addition to significantly decreased plant height and tiller number, panicle development was severely disrupted in double-mutant lines of OsPIN1c and OsPIN1d. Severe defects included smaller inflorescence meristem and panicle sizes, fewer primary branches, elongated bract leaves, non-degraded hair and no spikelet growth. Interestingly, ospin1cd-3, a double-mutant line with functional retention of OsPIN1d, showed milder defects than those observed in other mutants. Additionally, several critical regulators of reproductive development, such as OsPID, LAX1, OsMADS1 and OsSPL14/IPA1, were differentially expressed in ospin1c-1 ospin1d-1, supporting the hypothesis that OsPIN1c and OsPIN1d are involved in regulating panicle development. Therefore, this study provides novel insights into the auxin pathways that regulate plant reproductive development in monocots.
Collapse
Affiliation(s)
- Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Xi'an Shi
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Zhongyuan Chang
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, No.1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, No.1 Weigang, Nanjing 210095, People's Republic of China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, People's Republic of China
| |
Collapse
|
15
|
Bogaert KA, Blomme J, Beeckman T, De Clerck O. Auxin's origin: do PILS hold the key? TRENDS IN PLANT SCIENCE 2022; 27:227-236. [PMID: 34716098 DOI: 10.1016/j.tplants.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 05/12/2023]
Abstract
Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context.
Collapse
Affiliation(s)
- Kenny Arthur Bogaert
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Jonas Blomme
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Abstract
From embryogenesis to fruit formation, almost every aspect of plant development and differentiation is controlled by the cellular accumulation or depletion of auxin from cells and tissues. The respective auxin maxima and minima are generated by cell-to-cell auxin transport via transporter proteins. Differential auxin accumulation as a result of such transport processes dynamically regulates auxin distribution during differentiation. In this review, we introduce all auxin transporter (families) identified to date and discuss the knowledge on prominent family members, namely, the PIN-FORMED exporters, ATP-binding cassette B (ABCB)-type transporters, and AUX1/LAX importers. We then concentrate on the biochemical features of these transporters and their regulation by posttranslational modifications and interactors.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture
- Agriculture Biotechnology Center, University of Maryland, College Park, Maryland 20742, USA
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
17
|
Naramoto S, Hata Y, Fujita T, Kyozuka J. The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. THE PLANT CELL 2022; 34:228-246. [PMID: 34459922 PMCID: PMC8773975 DOI: 10.1093/plcell/koab218] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.
Collapse
Affiliation(s)
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
18
|
Gao S, Zhang X, Wang L, Wang X, Zhang H, Xie H, Ma Y, Qiu QS. Arabidopsis antiporter CHX23 and auxin transporter PIN8 coordinately regulate pollen growth. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153539. [PMID: 34628190 DOI: 10.1016/j.jplph.2021.153539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/08/2023]
Abstract
Both the antiporter CHX23 (Cation/Proton Exchangers 23) and auxin transporter PIN8 (PIN-FORMED 8) are localized in the ER and regulate pollen growth in Arabidopsis. But how these two proteins regulate pollen growth remains to be studied. Here, we report that CHX23 and PIN8 act coordinately in regulating pollen growth. The chx23 mutant was reduced in pollen growth and normally shaped pollen grains, and complementation with CHX23 restored both pollen growth and normal pollen morphology. NAA treatments showed that CHX23 was crucial for pollen auxin homeostasis. The pin8 chx23 double mutant was decreased in pollen growth and normal pollen grains, indicating the joint effort of CHX23 and PIN8 in pollen growth. In vivo germination assay showed that CHX23 and PIN8 were involved in the early stage of pollen growth. CHX23 and PIN8 also function collaboratively in maintaining pollen auxin homeostasis. PIN8 depends on CHX23 in regulating pollen morphology and response to NAA treatments. CHX23 co-localized with PIN8, but there was no physical interaction. KCl and NaCl treatments showed that pollen growth of chx23 was reduced less than Col-0; pin8 chx23 was reduced less than chx23 and pin8. Together, CHX23 may regulate PIN8 function and hence pollen growth through controlling K+ and Na+ homeostasis mediated by its transport activity.
Collapse
Affiliation(s)
- Shenglan Gao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiufang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yonggui Ma
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Abstract
There can be no doubt that early land plant evolution transformed the planet but, until recently, how and when this was achieved was unclear. Coincidence in the first appearance of land plant fossils and formative shifts in atmospheric oxygen and CO2 are an artefact of the paucity of earlier terrestrial rocks. Disentangling the timing of land plant bodyplan assembly and its impact on global biogeochemical cycles has been precluded by uncertainty concerning the relationships of bryophytes to one another and to the tracheophytes, as well as the timescale over which these events unfolded. New genome and transcriptome sequencing projects, combined with the application of sophisticated phylogenomic modelling methods, have yielded increasing support for the Setaphyta clade of liverworts and mosses, within monophyletic bryophytes. We consider the evolution of anatomy, genes, genomes and of development within this phylogenetic context, concluding that many vascular plant (tracheophytes) novelties were already present in a comparatively complex last common ancestor of living land plants (embryophytes). Molecular clock analyses indicate that embryophytes emerged in a mid-Cambrian to early Ordovician interval, compatible with hypotheses on their role as geoengineers, precipitating early Palaeozoic glaciations.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| |
Collapse
|
20
|
Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. THE PLANT CELL 2021; 33:2981-3003. [PMID: 34240197 PMCID: PMC8462816 DOI: 10.1093/plcell/koab183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.
Collapse
Affiliation(s)
- Zhen Gao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiwei Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Cui
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huifang Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinzhen Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hong Zhao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
21
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
22
|
Xiao S, Chu Y, Chen Y, Zhao Q, Liao B, Zhang J, Gao Y, Xu J, Chen S. Genome-wide identification and transcriptional profiling analysis of PIN/PILS auxin transporter gene families in Panax ginseng. CHINESE HERBAL MEDICINES 2021; 14:48-57. [PMID: 36120122 PMCID: PMC9476816 DOI: 10.1016/j.chmed.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanjun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding author.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
23
|
Hu L, Wang P, Long X, Wu W, Zhang J, Pan Y, Cheng T, Shi J, Chen J. The PIN gene family in relic plant L. chinense: Genome-wide identification and gene expression profiling in different organizations and abiotic stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:634-646. [PMID: 33774468 DOI: 10.1016/j.plaphy.2021.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The auxin efflux carrier PIN-FORMED (PIN) proteins are required for the polar transport of auxin between cells through their asymmetric distribution on the plasma membrane, thus mediating the differential distribution of auxin in plants, finally, affecting plant growth and developmental processes. In this study, 11 LcPIN genes were identified. The structural characteristics and evolutionary status of LcPIN genes were thoroughly investigated and interpreted combining physicochemical property analysis, evolutionary analysis, gene structure analysis, chromosomal localization, etc. Multi-species protein sequence analysis showed that angiosperm PIN genes have strong purification options and some functional sites were predicted about PIN protein polarity, trafficking and activity in L. chinense. Further qRT-PCR and transcriptome data analysis indicated that the long LcPINs have highly expressed from globular embryo to plantlet, and the LcPIN6a started upregulated in cotyledon embryo. The LcPIN3 and LcPIN6a are both highly expressed during the development of stamens and petals and the expression of LcPIN2 is related to root elongation, suggesting that they may play an important role in these processes. Experiment data indicates that LcPIN5 and LcPIN8 might play a key role in auxin transport in Liriodendron stems and leaves under abiotic stress. Analyzed the response of LcPIN genes to abiotic stress and as a basis for uncovering the biological role of LcPIN genes in development and adaption to adverse environments. This study provides a foundation for further genetic and functional analyses.
Collapse
Affiliation(s)
- Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengkai Wang
- College of Horticulture Technology, Suzhou Agricultural Vocational and Technical College, Suzhou, 215000, China
| | - Xiaofei Long
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Pan
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Geisler MM. A Retro-Perspective on Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:756968. [PMID: 34675956 PMCID: PMC8524130 DOI: 10.3389/fpls.2021.756968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
|
26
|
Lv S, Wang L, Zhang X, Li X, Fan L, Xu Y, Zhao Y, Xie H, Sawchuk MG, Scarpella E, Qiu QS. Arabidopsis NHX5 and NHX6 regulate PIN6-mediated auxin homeostasis and growth. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153305. [PMID: 33129075 DOI: 10.1016/j.jplph.2020.153305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
NHX5 and NHX6, endosomal Na+,K+/H+ antiporters in Arabidopsis thaliana, play a vital role in growth and development. Our previous study has shown that NHX5 and NHX6 function as H+ leak to regulate auxin-mediated growth in Arabidopsis. In this report, we investigated the function of NHX5 and NHX6 in controlling PIN6-mediated auxin homeostasis and growth in Arabidopsis. Phenotypic analyses found that NHX5 and NHX6 were critical for the function of PIN6, an auxin transporter. We further showed that PIN6 depended on NHX5 and NHX6 in regulating auxin homeostasis. NHX5 and NHX6 were colocalized with PIN6, but they did not interact physically. The conserved acidic residues that are vital for the activity of NHX5 and NHX6 were critical for PIN6 function. Together, NHX5 and NHX6 may regulate PIN6 function by their transport activity.
Collapse
Affiliation(s)
- Shasha Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yanli Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yingjia Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| |
Collapse
|
27
|
Zhang Y, Rodriguez L, Li L, Zhang X, Friml J. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. SCIENCE ADVANCES 2020; 6:6/50/eabc8895. [PMID: 33310852 PMCID: PMC7732203 DOI: 10.1126/sciadv.abc8895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 05/31/2023]
Abstract
Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Xixi Zhang
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
28
|
Zhang Y, Hartinger C, Wang X, Friml J. Directional auxin fluxes in plants by intramolecular domain-domain coevolution of PIN auxin transporters. THE NEW PHYTOLOGIST 2020; 227:1406-1416. [PMID: 32350870 PMCID: PMC7496279 DOI: 10.1111/nph.16629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/12/2020] [Indexed: 05/16/2023]
Abstract
Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane-based PIN-FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown. In this study, we systematically swapped the domains between ER- and PM-localized PIN proteins, as well as between apical and basal PM-localized PINs from Arabidopsis thaliana, to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells. Our results show that not only do the N- and C-terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise-matched N- and C-terminal TMDs resulting from intramolecular domain-domain coevolution are also crucial for their divergent patterns of localization. These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) AustriaKlosterneuburg3400Austria
| | - Corinna Hartinger
- Institute of Science and Technology (IST) AustriaKlosterneuburg3400Austria
| | - Xiaojuan Wang
- College of Life SciencesNorthwest UniversityXi’an710069China
| | - Jiří Friml
- Institute of Science and Technology (IST) AustriaKlosterneuburg3400Austria
| |
Collapse
|
29
|
Characterization of the Auxin Efflux Transporter PIN Proteins in Pear. PLANTS 2020; 9:plants9030349. [PMID: 32164258 PMCID: PMC7154836 DOI: 10.3390/plants9030349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
PIN-FORMED (PIN) encodes a key auxin polar transport family that plays a crucial role in the outward transport of auxin and several growth and development processes, including dwarfing trees. We identified a dwarfing pear rootstock 'OHF51' (Pyrus communis), which limits the growth vigor of the 'Xueqing' (Pyrus bretschneideri × Pyrus pyrifolia) scion, and isolated 14 putative PbPINs from the pear Pyrus bretschneideri. The phylogenic relationships, structure, promoter regions, and expression patterns were analyzed. PbPINs were classified into two main groups based on the protein domain structure and categorized into three major groups using the neighbor-joining algorithm. Promoter analysis demonstrated that PbPINs might be closely related to plant growth and development. Through quantitative real-time PCR (qRT-PCR) analysis, we found that the expression patterns of 14 PbPINs varied upon exposure to different organs in dwarfing and vigorous stocks, 'OHF51' and 'QN101' (Pyrus betulifolia), indicating that they might play varying roles in different tissues and participated in the regulation of growth vigor. These results provide fundamental insights into the characteristics and evolution of the PINs family, as well as the possible relationship between dwarfing ability and auxin polar transport.
Collapse
|
30
|
Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, Xian W, Song B, Liang H, Cheng S, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang H, Wang J, Melkonian B, Van de Peer Y, Xu X, Wong GKS, Melkonian M, Liu H, Liu X. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. NATURE PLANTS 2020; 6:95-106. [PMID: 31844283 PMCID: PMC7027972 DOI: 10.1038/s41477-019-0560-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/28/2019] [Indexed: 05/18/2023]
Abstract
Mounting evidence suggests that terrestrialization of plants started in streptophyte green algae, favoured by their dual existence in freshwater and subaerial/terrestrial environments. Here, we present the genomes of Mesostigma viride and Chlorokybus atmophyticus, two sister taxa in the earliest-diverging clade of streptophyte algae dwelling in freshwater and subaerial/terrestrial environments, respectively. We provide evidence that the common ancestor of M. viride and C. atmophyticus (and thus of streptophytes) had already developed traits associated with a subaerial/terrestrial environment, such as embryophyte-type photorespiration, canonical plant phytochrome, several phytohormones and transcription factors involved in responses to environmental stresses, and evolution of cellulose synthase and cellulose synthase-like genes characteristic of embryophytes. Both genomes differed markedly in genome size and structure, and in gene family composition, revealing their dynamic nature, presumably in response to adaptations to their contrasting environments. The ancestor of M. viride possibly lost several genomic traits associated with a subaerial/terrestrial environment following transition to a freshwater habitat.
Collapse
Affiliation(s)
- Sibo Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linzhou Li
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Haoyuan Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hongli Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wenfei Xian
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Hongping Liang
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shifeng Cheng
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yue Chang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yue Song
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zehra Çebi
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Tanja Reder
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Morten Peterson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Barbara Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
- University of Duisburg-Essen, Campus Essen, Faculty of Biology, Essen, Germany
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB/UGent Center for Plant Systems Biology, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- BGI-Shenzhen, Shenzhen, China.
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany.
- University of Duisburg-Essen, Campus Essen, Faculty of Biology, Essen, Germany.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
31
|
Deletion in the Promoter of PcPIN-L Affects the Polar Auxin Transport in Dwarf Pear (Pyrus communis L.). Sci Rep 2019; 9:18645. [PMID: 31819123 PMCID: PMC6901534 DOI: 10.1038/s41598-019-55195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Dwarf cultivars or dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern pear production. Previously, we found that the dwarf growth habit of pear is controlled by a single dominant gene PcDw. In this study, PcPIN-L (PCP021016) was cloned from dwarf-type and standard-type pears. PcPIN-L expression was significantly lower in the dwarf-type pears than in standard-type pears, which was caused by the CT repeat deletion in the promoter of dwarf-type pears. PcPIN-L overexpression in tobacco plants enhanced the growth of the stems and the roots. Notably, the indole acetic acid (IAA) content decreased in the shoot tips and increased in the stems of transgenic lines compared with wild type, which is consistent with the greater IAA content in the shoot tips and lower IAA content in the stems of dwarf-type pears than in standard-type pears. The CT repeat deletion in the promoter that causes a decrease in promoter activity is associated with lower PcPIN-L expression in the dwarf-type pears, which might limit the polar auxin transport and in turn result in the dwarf phenotype. Taken together, the results provide a novel dwarfing molecular mechanism in perennial woody plants.
Collapse
|
32
|
Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E. Coordination of tissue cell polarity by auxin transport and signaling. eLife 2019; 8:51061. [PMID: 31793881 PMCID: PMC6890459 DOI: 10.7554/elife.51061] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023] Open
Abstract
Plants coordinate the polarity of hundreds of cells during vein formation, but how they do so is unclear. The prevailing hypothesis proposes that GNOM, a regulator of membrane trafficking, positions PIN-FORMED auxin transporters to the correct side of the plasma membrane; the resulting cell-to-cell, polar transport of auxin would coordinate tissue cell polarity and induce vein formation. Contrary to predictions of the hypothesis, we find that vein formation occurs in the absence of PIN-FORMED or any other intercellular auxin-transporter; that the residual auxin-transport-independent vein-patterning activity relies on auxin signaling; and that a GNOM-dependent signal acts upstream of both auxin transport and signaling to coordinate tissue cell polarity and induce vein formation. Our results reveal synergism between auxin transport and signaling, and their unsuspected control by GNOM in the coordination of tissue cell polarity during vein patterning, one of the most informative expressions of tissue cell polarization in plants. Plants, animals and other living things grow and develop over their lifetimes: for example, oak trees come from acorns and chickens begin their lives as eggs. To achieve these transformations, the cells in those living things must grow, divide and change their shape and other features. Plants and animals specify the directions in which their cells will grow and develop by gathering specific proteins to one side of the cells. This makes one side different from all the other sides, which the cells use as an internal compass that points in one direction. To align their internal compasses, animal cells touch one another and often move around inside the body. Plant cells, on the other hand, are surrounded by a wall that keeps them apart and prevents them from moving around. So how do plant cells align their internal compasses? Scientists have long thought that a protein called GNOM aligns the internal compasses of plant cells. The hypothesis proposes that GNOM gathers another protein, called PIN1, to one side of a cell. PIN1 would then pump a plant hormone known as auxin out of this first cell and, in doing so, would also drain auxin away from the cell on the opposite side. In this second cell, GNOM would then gather PIN1 to the side facing the first cell, and this process would repeat until all the cells' compasses were aligned. To test this hypothesis, Verna et al. combined microscopy with genetic approaches to study how cells' compasses are aligned in the leaves of a plant called Arabidopsis thaliana. The experiments revealed that auxin needs to move from cell-to-cell to align the cells’ compasses. However, contrary to the above hypothesis, this movement of auxin was not sufficient: the cells also needed to be able to detect and respond to the auxin that entered them. Along with controlling how auxin moved between the cells, GNOM also regulated how the cells responded to the auxin. These findings reveal how plants specify which directions their cells grow and develop. In the future, this knowledge may eventually aid efforts to improve crop yields by controlling the growth and development of crop plants.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
33
|
Zhang Y, Xiao G, Wang X, Zhang X, Friml J. Evolution of fast root gravitropism in seed plants. Nat Commun 2019; 10:3480. [PMID: 31375675 PMCID: PMC6677796 DOI: 10.1038/s41467-019-11471-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023] Open
Abstract
An important adaptation during colonization of land by plants is gravitropic growth of roots, which enabled roots to reach water and nutrients, and firmly anchor plants in the ground. Here we provide insights into the evolution of an efficient root gravitropic mechanism in the seed plants. Architectural innovation, with gravity perception constrained in the root tips along with a shootward transport route for the phytohormone auxin, appeared only upon the emergence of seed plants. Interspecies complementation and protein domain swapping revealed functional innovations within the PIN family of auxin transporters leading to the evolution of gravitropism-specific PINs. The unique apical/shootward subcellular localization of PIN proteins is the major evolutionary innovation that connected the anatomically separated sites of gravity perception and growth response via the mobile auxin signal. We conclude that the crucial anatomical and functional components emerged hand-in-hand to facilitate the evolution of fast gravitropic response, which is one of the major adaptations of seed plants to dry land.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China
| | - Xiaojuan Wang
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China
- College of Life Sciences, Northwest University, 710069, Xi'an, China
| | - Xixi Zhang
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
34
|
Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development 2019; 146:146/15/dev168088. [PMID: 31371525 DOI: 10.1242/dev.168088] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytohormone auxin influences virtually all aspects of plant growth and development. Auxin transport across membranes is facilitated by, among other proteins, members of the PIN-FORMED (PIN) and the structurally similar PIN-LIKES (PILS) families, which together govern directional cell-to-cell transport and intracellular accumulation of auxin. Canonical PIN proteins, which exhibit a polar localization in the plasma membrane, determine many patterning and directional growth responses. Conversely, the less-studied non-canonical PINs and PILS proteins, which mostly localize to the endoplasmic reticulum, attenuate cellular auxin responses. Here, and in the accompanying poster, we provide a brief summary of current knowledge of the structure, evolution, function and regulation of these auxin transport facilitators.
Collapse
Affiliation(s)
- Michael Sauer
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
35
|
Zwiewka M, Bilanovičová V, Seifu YW, Nodzyński T. The Nuts and Bolts of PIN Auxin Efflux Carriers. FRONTIERS IN PLANT SCIENCE 2019; 10:985. [PMID: 31417597 PMCID: PMC6685051 DOI: 10.3389/fpls.2019.00985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
The plant-specific proteins named PIN-FORMED (PIN) efflux carriers facilitate the direction of auxin flow and thus play a vital role in the establishment of local auxin maxima within plant tissues that subsequently guide plant ontogenesis. They are membrane integral proteins with two hydrophobic regions consisting of alpha-helices linked with a hydrophilic loop, which is usually longer for the plasma membrane-localized PINs. The hydrophilic loop harbors molecular cues important for the subcellular localization and thus auxin efflux function of those transporters. The three-dimensional structure of PIN has not been solved yet. However, there are scattered but substantial data concerning the functional characterization of amino acid strings that constitute these carriers. These sequences include motifs vital for vesicular trafficking, residues regulating membrane diffusion, cellular polar localization, and activity of PINs. Here, we summarize those bits of information striving to provide a reference to structural motifs that have been investigated experimentally hoping to stimulate the efforts toward unraveling of PIN structure-function connections.
Collapse
Affiliation(s)
| | | | | | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| |
Collapse
|
36
|
Comparative Analysis of the PIN Auxin Transporter Gene Family in Different Plant Species: A Focus on Structural and Expression Profiling of PINs in Solanum tuberosum. Int J Mol Sci 2019; 20:ijms20133270. [PMID: 31277248 PMCID: PMC6650889 DOI: 10.3390/ijms20133270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Plant growth and morphogenesis largely benefit from cell elongation and expansion and are normally regulated by environmental stimuli and endogenous hormones. Auxin, as one of the most significant plant growth regulators, controls various phases of plant growth and development. The PIN-FORMED (PIN) gene family of trans-membrane proteins considered as auxin efflux carriers plays a pivotal role in polar auxin transport and then mediates the growth of different plant tissues. In this study, the phylogenetic relationship and structural compositions of the PIN gene family in 19 plant species covering plant major lineages from algae to angiosperms were identified and analyzed by employing multiple bioinformatics methods. A total of 155 PIN genes were identified in these species and found that representative of the PIN gene family in algae came into existence and rapidly expanded in angiosperms (seed plants). The phylogenetic analysis indicated that the PIN proteins could be divided into 14 distinct clades, and the origin of PIN proteins could be traced back to the common ancestor of green algae. The structural analysis revealed that two putative types (canonical and noncanonical PINs) existed among the PIN proteins according to the length and the composition of the hydrophilic domain of the protein. The expression analysis of the PIN genes exhibited inordinate responsiveness to auxin (IAA) and ABA both in shoots and roots of Solanum tuberosum. While the majority of the StPINs were up-regulated in shoot and down-regulated in root by the two hormones. The majority of PIN genes had one or more putative auxin responses and ABA-inducible response elements in their promoter regions, respectively, implying that these phytohormones regulated the expression of StPIN genes. Our study emphasized the origin and expansion of the PIN gene family and aimed at providing useful insights for further structural and functional exploration of the PIN gene family in the future.
Collapse
|
37
|
Fang T, Motte H, Parizot B, Beeckman T. Root Branching Is Not Induced by Auxins in Selaginella moellendorffii. FRONTIERS IN PLANT SCIENCE 2019; 10:154. [PMID: 30842783 PMCID: PMC6391681 DOI: 10.3389/fpls.2019.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Angiosperms develop intensively branched root systems that are accommodated with the high capacity to produce plenty of new lateral roots throughout their life-span. Root branching can be dynamically regulated in response to edaphic conditions and provides the plants with a soil-mining potential. This highly specialized branching capacity has most likely been key in the colonization success of the present flowering plants on our planet. The initiation, formation and outgrowth of branching roots in Angiosperms are dominated by the plant hormone auxin. Upon auxin treatment root branching through the formation of lateral roots can easily be induced. In this study, we questioned whether this strong branching-inducing action of auxin is part of a conserved mechanism that was already active in the earliest diverging lineage of vascular plants with roots. In Selaginella, an extant representative species of this early clade of root forming plants, components of the canonical auxin signaling pathway are retrieved in its genome. Although we observed a clear physiological response and an indirect effect on root branching, we were not able to directly induce root branching in this species by application of different auxins. We conclude that the structural and developmental difference of the Selaginella root, which branches via bifurcation of the root meristem, or the absence of an auxin-mediated root development program, is most likely causative for the absence of an auxin-induced branching mechanism.
Collapse
Affiliation(s)
- Tao Fang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
38
|
Motte H, Beeckman T. The evolution of root branching: increasing the level of plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:785-793. [PMID: 30481325 DOI: 10.1093/jxb/ery409] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 05/26/2023]
Abstract
Plant roots and root systems are indispensable for water and nutrient foraging, and are a major evolutionary achievement for plants to cope with dry land conditions. The ability of roots to branch contributes substantially to their capacity to explore the soil for water and nutrients, and led ~400 million years ago to the successful colonization of land by plants, eventually even in arid regions. During this colonization, different forms of root branching evolved, reinforcing step by step the phenotypic plasticity of the root system. Whereas the lycophytes, the most ancient land plants with roots, only branch at the root tip, ferns are able to form roots laterally in a fixed pattern along the main root. Finally, roots of seed plants show the highest phenotypic plasticity, because lateral roots can possibly, dependent on internal and/or external signals, be produced at almost any position along the main root. The competence to form lateral roots in seed plants is based on the presence of internal cell files with stem cell-like features. Despite the dissimilarities between the different clades, a number of genetic modules seem to be co-opted in order to acquire root branching capacity. In this review, starting from the lateral root pathways in seed plants, we review root branching in the different land plant lineages and discuss the hitherto described genetic modules that contribute to their root branching capacity. We try to obtain insight into how land plants have acquired an increasing root branching plasticity during evolution that contributed to the successful colonization of our planet by seed plants.
Collapse
Affiliation(s)
- Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
39
|
Wang F, Yu G, Liu P. Transporter-Mediated Subcellular Distribution in the Metabolism and Signaling of Jasmonates. FRONTIERS IN PLANT SCIENCE 2019; 10:390. [PMID: 31001304 PMCID: PMC6454866 DOI: 10.3389/fpls.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates (jasmonic acid and its relatives) are a group of oxylipin phytohormones that are implicated in the regulation of a range of developmental processes and responses to environmental stimuli in plants. The biosynthesis of JAs occur sequentially in various subcellular compartments including the chloroplasts, peroxisomes and the cytoplasm. The biologically active jasmonoyl-isoleucine (JA-Ile) activates the core JA signaling in the nucleus by binding with its coreceptor, SCFCOI1-JAZ. Five members of a clade of ATP-binding cassette G (ABCG) transporters of Arabidopsis thaliana were identified as the candidates of jasmonate transporters (JATs) in yeast cells. Among these JATs, AtJAT1/AtABCG16, has a dual localization in the plasma membrane and nuclear envelop and mediates the efflux of jasmonic acid (JA) across the plasma membrane and influx of JA-Ile into the nucleus. Genetic, cellular and biochemical analyses have demonstrated that AtJAT1/AtABCG16 is crucial for modulating JA-Ile concentration in the nucleus to orchestrate JA signaling. AtJAT1 could also be involved in modulating the biosynthesis of JA-Ile by regulating the distribution of JA and JA-Ile in the cytoplasm and nucleus, which would contribute to the highly dynamic JA signaling. Furthermore, other JAT members are localized in the plasma membrane and possibly in peroxisomes. Characterization of these JATs will provide further insights into a crucial role of transporter-mediated subcellular distribution in the metabolism and signaling of plant hormones, an emerging theme supported by the identification of increasing number of endomembrane-localized transporters.
Collapse
|
40
|
Zhou JJ, Luo J. The PIN-FORMED Auxin Efflux Carriers in Plants. Int J Mol Sci 2018; 19:E2759. [PMID: 30223430 PMCID: PMC6164769 DOI: 10.3390/ijms19092759] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Auxin plays crucial roles in multiple developmental processes, such as embryogenesis, organogenesis, cell determination and division, as well as tropic responses. These processes are finely coordinated by the auxin, which requires the polar distribution of auxin within tissues and cells. The intercellular directionality of auxin flow is closely related to the asymmetric subcellular location of PIN-FORMED (PIN) auxin efflux transporters. All PIN proteins have a conserved structure with a central hydrophilic loop domain, which harbors several phosphosites targeted by a set of protein kinases. The activities of PIN proteins are finely regulated by diverse endogenous and exogenous stimuli at multiple layers-including transcriptional and epigenetic levels, post-transcriptional modifications, subcellular trafficking, as well as PINs' recycling and turnover-to facilitate the developmental processes in an auxin gradient-dependent manner. Here, the recent advances in the structure, evolution, regulation and functions of PIN proteins in plants will be discussed. The information provided by this review will shed new light on the asymmetric auxin-distribution-dependent development processes mediated by PIN transporters in plants.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Vigneron N, Radhakrishnan GV, Delaux PM. What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis? CURRENT OPINION IN PLANT BIOLOGY 2018; 44:49-56. [PMID: 29510317 DOI: 10.1016/j.pbi.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/22/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is a nearly ubiquitous association formed by most land plants. Numerous insights into the molecular mechanisms governing this symbiosis have been obtained in recent years leading to the identification of a core set of plant genes essential for successful formation of the AM symbiosis by angiosperm hosts. Recent phylogenetic analyses indicate that while the origin of some of these symbiotic genes predated the first land plants, the rest appeared through processes including de novo evolution and gene duplication that occurred specifically in the land plants. Purifying selection on this core gene set has been maintained over millions of years of plant evolution to conserve the AM symbiosis. However, several independent losses of this association have been recorded in numerous embryophyte lineages. In these lineages, potential compensatory mechanisms have been identified that could have helped these plants overcome the adversities imposed by the loss of the AM symbiosis. This review will focus on the processes governing the conservation of the AM symbiosis in the land plant lineage.
Collapse
Affiliation(s)
- Nicolas Vigneron
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet Tolosan, France
| | - Guru V Radhakrishnan
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet Tolosan, France.
| |
Collapse
|
42
|
Fan L, Zhao L, Hu W, Li W, Novák O, Strnad M, Simon S, Friml J, Shen J, Jiang L, Qiu QS. Na + ,K + /H + antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. PLANT, CELL & ENVIRONMENT 2018; 41:850-864. [PMID: 29360148 DOI: 10.1111/pce.13153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/30/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
AtNHX5 and AtNHX6 are endosomal Na+ ,K+ /H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin-mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin-related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the endoplasmic reticulum (ER)-localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were colocalized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+ -leak pathway provides a fine-tuning mechanism that controls cellular auxin fluxes.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Lei Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Weina Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Sibu Simon
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
43
|
Abstract
500Ma ago the terrestrial habitat was a barren, unwelcoming place for species other than, for example, bacteria or fungi. Most probably, filamentous freshwater algae adapted to aerial conditions and eventually conquered land. Adaptation to a severely different habitat apparently included sturdy cell walls enabling an erect body plan as well as protection against abiotic stresses such as ultraviolet radiation, drought and varying temperature. To thrive on land, plants probably required more elaborate signaling pathways to react to diverse environmental conditions, and phytohormones to control developmental programs. Many such plant-typical features have been studied in flowering plants, but their evolutionary origins were long clouded. With the sequencing of a moss genome a decade ago, inference of ancestral land plant states using comparative genomics, phylogenomics and evolutionary developmental approaches began in earnest. In the past few years, the ever increasing availability of genomic and transcriptomic data of organisms representing the earliest common ancestors of the plant tree of life has much informed our understanding of the conquest of land by plants.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
44
|
Thelander M, Landberg K, Sundberg E. Auxin-mediated developmental control in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:277-290. [PMID: 28992074 DOI: 10.1093/jxb/erx255] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
The signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin. By sequencing the P. patens genome, it became clear that it encodes many core proteins important for auxin homeostasis, perception, and signalling, which have also been identified in flowering plants. This suggests that the auxin molecular network was present in the last common ancestor of flowering plants and mosses. Despite fundamental differences in their life cycles, key processes such as organ initiation and outgrowth, branching, tropic responses, as well as cell differentiation, division, and expansion appear to be regulated by auxin in the two lineages. This knowledge paves the way for studies aimed at a better understanding of the origin and evolution of auxin function and how auxin may have contributed to the evolution of land plants.
Collapse
Affiliation(s)
- Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| |
Collapse
|
45
|
Lora J, Herrero M, Tucker MR, Hormaza JI. The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. THE NEW PHYTOLOGIST 2017; 216:495-509. [PMID: 27878998 DOI: 10.1111/nph.14330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 05/27/2023]
Abstract
How and why specific plant cells adopt germline identity during ovule development has proved challenging to address, and the pathways that are active in the ovules of basal/early-divergent angiosperms possessing a multilayered nucellus are still unclear. Here, we compare megasporogenesis between two early-divergent angiosperms (Annona cherimola and Persea americana) and the evolutionarily derived Arabidopsis thaliana, studying the three-dimensional spatial position of the megaspore mother cell (MMC), the compositional details of the MMC wall and the location of PIN1 expression. Specific wall polymers distinguished the central position of the MMC and its meiotic products from surrounding tissues in early-divergent angiosperms, whereas, in A. thaliana, only callose (in mature MMCs) and arabinogalactan proteins (AGPs) (in megaspores) distinguished the germline. However, PIN1 expression, which regulates polar auxin transport, was observed around the MMC in the single-layer nucellus of A. thaliana and in the multilayered nucellus of A. cherimola, or close to the MMC in P. americana. The data reveal a similar microenvironment in relation to auxin during megasporogenesis in all three species. However, the different wall polymers that mark MMC fate in early-divergent angiosperms may reflect a specific response to mechanical stress during differentiation, or the specific recruitment of polymers to sustain MMC growth.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Algarrobo-Costa, 29750, Málaga, Spain
| | - María Herrero
- Department of Pomology, Estación Experimental Aula Dei, CSIC, Apdo. 13034, Zaragoza, 50080, Spain
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - José I Hormaza
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Algarrobo-Costa, 29750, Málaga, Spain
| |
Collapse
|
46
|
Liu Y, Wei H. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max. Genome 2017; 60:564-571. [PMID: 28314115 DOI: 10.1139/gen-2016-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (Ka/Ks < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Haichao Wei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
47
|
Xie X, Qin G, Si P, Luo Z, Gao J, Chen X, Zhang J, Wei P, Xia Q, Lin F, Yang J. Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth. PHYSIOLOGIA PLANTARUM 2017; 160:222-239. [PMID: 28128458 DOI: 10.1111/ppl.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The plant-specific PIN-FORMED (PIN) auxin efflux proteins have been well characterized in many plant species, where they are crucial in the regulation of auxin transport in various aspects of plant development. However, little is known about the exact roles of the PIN genes during plant development in Nicotiana species. This study investigated the PIN genes in tobacco (Nicotiana tabacum) and in two ancestral species (Nicotiana sylvestris and Nicotiana tomentosiformis). Genome-wide analysis of the N. tabacum genome identified 20 genes of the PIN family. An in-depth phylogenetic analysis of the PIN genes of N. tabacum, N. sylvestris and N. tomentosiformis was conducted. NtPIN4 expression was strongly induced by the application of exogenous indole-3-acetic acid (IAA), but was downregulated by the application of ABA, a strigolactone analogue, and cytokinin, as well as by decapitation treatments, suggesting that the NtPIN4 expression level is likely positively regulated by auxin. Expression analysis indicated that NtPIN4 was highly expressed in tobacco stems and shoots, which was further validated through analysis of the activity of the NtPIN4 promoter. We used CRISPR-Cas9 technology to generate mutants for NtPIN4 and observed that both T0 and T1 plants had a significantly increased axillary bud growth phenotype, as compared with the wild-type plants. Therefore, NtPIN4 offers an opportunity for studying auxin-dependent branching processes.
Collapse
Affiliation(s)
- Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- College of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyong Qin
- College of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Si
- Centre for Plant Genetics and Breeding, School of Plant Biology, The University of Western Australia, Crawley, 6009, Australia
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Junping Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pan Wei
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Fucheng Lin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| |
Collapse
|
48
|
Han GZ. Evolution of jasmonate biosynthesis and signaling mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1323-1331. [PMID: 28007954 DOI: 10.1093/jxb/erw470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Jasmonates are phytohormones that modulate a wide spectrum of plant physiological processes, especially defense against herbivores and necrotrophs. The molecular mechanisms of jasmonate biosynthesis and signaling have been well characterized in model plants. In this review, we provide an in-depth analysis and overview of the origin and evolution of the jasmonate biosynthesis and signaling pathways. Furthermore, we discuss the striking parallels between jasmonate and auxin signaling mechanisms, which reveals a common ancestry of these signaling mechanisms. Finally, we highlight the importance of studying jasmonate biosynthesis and signaling in lower plants.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
49
|
Field Guide to Plant Model Systems. Cell 2017; 167:325-339. [PMID: 27716506 DOI: 10.1016/j.cell.2016.08.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.
Collapse
|
50
|
Nodzyński T, Vanneste S, Zwiewka M, Pernisová M, Hejátko J, Friml J. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components. MOLECULAR PLANT 2016; 9:1504-1519. [PMID: 27622590 PMCID: PMC5106287 DOI: 10.1016/j.molp.2016.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 05/25/2023]
Abstract
Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants.
Collapse
Affiliation(s)
- Tomasz Nodzyński
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Marta Zwiewka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Markéta Pernisová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Hejátko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|