1
|
Li K, Li H, Liang WL, Liu JJ, Tian HY, Wang LH, Wei YH. Identification of the AHP family reveals their critical response to cytokinin regulation during adventitious root formation in apple rootstock. FRONTIERS IN PLANT SCIENCE 2025; 15:1511713. [PMID: 39881729 PMCID: PMC11776435 DOI: 10.3389/fpls.2024.1511713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Adventitious root (AR) formation is a bottleneck for vegetative proliferation. In this study, 13 AHP genes (MdAHPs) were identified in the apple genome. Phylogenetic analysis grouped them into 3 clusters (I, II, III), with 4, 4, and 5 genes respectively. The 13 MdAHPs family members were named MdAHP1 to MdAHP13 by chromosome positions. The physicochemical properties, phylogenetic relationship, motifs, and elements of their proteins were also analyzed. The amino acid quantity varied from 60~189 aa, isoelectric point lay between 4.10 and 8.93, and there were 3~7 protein-conserving motifs. Excluding MdAHP6, other members' promoter sequences behaved 2-4 CTK response elements. Additionally, the expression characteristics of MdAHPs family members at key stages of AR formation and in different tissues were also examined with exogenous 6-BA and Lov treatments. The results showed that MdAHP3 might be a key member in AR formation. GUS staining indicated that the activity of the MdAHP3 promoter was also significantly enhanced by CTK treatment. The protein interactions of MdAHP3/MdAHP1 and MdAHP3/MdAHP6 were verified. Compared with WT, 35S::MdAHP3 transgenic poplars inhibited AR formation. The above experimental results suggested that MdAHP3, as a key family member, interacts with MdAHP1 and MdAHP6 proteins to jointly mediate AR formation in apple rootstocks.
Collapse
Affiliation(s)
- Ke Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- Institute of Forestry and Fruit Science, Hebei University of Engineering, Handan, Hebei, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| | - Huan Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Wei Ling Liang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Jing Ju Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Hui Yue Tian
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| | - Li Hu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- Institute of Forestry and Fruit Science, Hebei University of Engineering, Handan, Hebei, China
| | - Yan Hong Wei
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
2
|
Moore S, Jervis G, Topping JF, Chen C, Liu J, Lindsey K. A predictive model for ethylene-mediated auxin and cytokinin patterning in the Arabidopsis root. PLANT COMMUNICATIONS 2024; 5:100886. [PMID: 38504522 PMCID: PMC11287175 DOI: 10.1016/j.xplc.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
The interaction between auxin and cytokinin is important in many aspects of plant development. Experimental measurements of both auxin and cytokinin concentration and reporter gene expression clearly show the coexistence of auxin and cytokinin concentration patterning in Arabidopsis root development. However, in the context of crosstalk among auxin, cytokinin, and ethylene, little is known about how auxin and cytokinin concentration patterns simultaneously emerge and how they regulate each other in the Arabidopsis root. This work utilizes a wide range of experimental observations to propose a mechanism for simultaneous patterning of auxin and cytokinin concentrations. In addition to revealing the regulatory relationships between auxin and cytokinin, this mechanism shows that ethylene signaling is an important factor in achieving simultaneous auxin and cytokinin patterning, while also predicting other experimental observations. Combining the mechanism with a realistic in silico root model reproduces experimental observations of both auxin and cytokinin patterning. Predictions made by the mechanism can be compared with a variety of experimental observations, including those obtained by our group and other independent experiments reported by other groups. Examples of these predictions include patterning of auxin biosynthesis rate, changes in PIN1 and PIN2 patterns in pin3,4,7 mutants, changes in cytokinin patterning in the pls mutant, PLS patterning, and various trends in different mutants. This research reveals a plausible mechanism for simultaneous patterning of auxin and cytokinin concentrations in Arabidopsis root development and suggests a key role for ethylene pattern integration.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - George Jervis
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jennifer F Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
3
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Kandhol N, Srivastava A, Rai P, Sharma S, Pandey S, Singh VP, Tripathi DK. Cytokinin and indole-3-acetic acid crosstalk is indispensable for silicon mediated chromium stress tolerance in roots of wheat seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133134. [PMID: 38387171 DOI: 10.1016/j.jhazmat.2023.133134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
5
|
Zeng J, Geng X, Zhao Z, Zhou W. Tipping the balance: The dynamics of stem cell maintenance and stress responses in plant meristems. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102510. [PMID: 38266375 DOI: 10.1016/j.pbi.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Plant meristems contain pools of dividing stem cells that produce new organs for plant growth and development. Environmental factors, including biotic and abiotic stresses and nutrient availability, affect meristem activity and thus the architecture of roots and shoots; understanding how meristems react to changing environmental conditions will shed light on how plants optimize nutrient acquisition and acclimate to different environmental conditions. This review highlights recent exciting advances in this field, mainly in Arabidopsis. We discuss the signaling pathways, genetic regulators, and molecular mechanisms involved in the response of plant meristems to environmental and nutrient cues, and compare the similarities and differences of stress responses between the shoot and root apical meristems.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Xin Geng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhong Zhao
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Wiśniewska J, Kęsy J, Mucha N, Tyburski J. Auxin resistant 1 gene (AUX1) mediates auxin effect on Arabidopsis thaliana callus growth by regulating its content and distribution pattern. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154168. [PMID: 38176282 DOI: 10.1016/j.jplph.2023.154168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Callus sustained growth relies heavily on auxin, which is supplied to the culture medium. Surprisingly, there is a noticeable absence of information regarding the involvement of carrier-mediated auxin polar transport gene in callus growth regulation. Here, we delve into the role of the AUXIN RESISTANT 1 (AUX1) influx transporter in the regulation of callus growth, comparing the effects under conditions of light versus darkness. It was observed that callus growth was significantly enhanced under light illumination. This growth-stimulatory effect was accompanied by a decrease in the levels of free auxin within the callus cells when compared to conditions of darkness. In the aux1-22 mutant callus, which lacks functional AUX1, there was a substantial reduction in IAA levels. Nonetheless, the mutant callus exhibited markedly higher growth rates compared to the wild type. This suggests that the reduction in exogenous auxin uptake through the AUX1-dependent pathway may prevent the overaccumulation of growth-restricting hormone concentrations. The growth-stimulatory effect of AUX1 deficiency was counteracted by nonspecific auxin influx transport inhibitors. This finding shows that other auxin influx carriers likely play a role in facilitating the diffusion of auxin from the culture medium to sustain high growth rates. AUX1 was primarily localized in the plasma membranes of the two outermost cell layers of the callus clump and the parenchyma cells adjacent to tracheary elements. Significantly, these locations coincided with the regions of maximal auxin concentration. Consequently, it can be inferred that AUX1 mediates the auxin distribution within the callus.
Collapse
Affiliation(s)
- Justyna Wiśniewska
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Jacek Kęsy
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Natalia Mucha
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
7
|
Tian Y, Yang W, Wan S, Fang S. Insights into the Hormone-Regulating Mechanism of Adventitious Root Formation in Softwood Cuttings of Cyclocarya paliurus and Optimization of the Hormone-Based Formula for Promoting Rooting. Int J Mol Sci 2024; 25:1343. [PMID: 38279343 PMCID: PMC10816064 DOI: 10.3390/ijms25021343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Adventitious root (AR) formation is vital for successful cutting propagation in plants, while the dynamic regulation of phytohormones is viewed as one of the most important factors affecting AR formation. Cyclocarya paliurus, a hard-to-root plant, is faced with the bottleneck of cloning its superior varieties in practice. In this study, ten treatments were designed to figure out the best hormone-based formula for promoting AR formation in softwood cuttings and explore their hormone-regulating mechanisms. Both the rooting process and the rooting parameters of the softwood cuttings were significantly affected by different hormone-based formulas (p < 0.05), while the greatest rooting rate (93%) and root quality index were achieved in the H3 formula (SR3:IR3 = 1:1). Significant differences in the measured phytohormone concentrations, as well as in their ratios, were detected among the cuttings sampled at various AR formation stages (p < 0.05), whereas the dynamics for each phytohormone varied greatly during AR formation. The transcriptome analysis showed 12,028 differentially expressed genes (DEGs) identified during the rooting process of C. paliurus cuttings, while the KEGG enrichment analysis indicated that a total of 20 KEGG terms were significantly enriched in all the comparison samples, with 253 DEGs detected in signal transduction. Furthermore, 19 genes with vital functions in regulating the hormone signaling pathway were identified by means of a WGCNA analysis. Our results not only optimize a hormone-based formula for improving the rooting of C. paliurus cuttings but also provide an insight into the hormonal regulatory network during AR formation in softwood C. paliurus cuttings.
Collapse
Affiliation(s)
- Yuan Tian
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
| | - Wanxia Yang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shiying Wan
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; (Y.T.); (W.Y.); (S.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Zhou CM, Li JX, Zhang TQ, Xu ZG, Ma ML, Zhang P, Wang JW. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A 2024; 121:e2319335121. [PMID: 38198526 PMCID: PMC10801921 DOI: 10.1073/pnas.2319335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.
Collapse
Affiliation(s)
- Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai201602, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Miao-Lian Ma
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- New Cornerstone Science Laboratory, Shanghai200032, China
| |
Collapse
|
9
|
Xu L, Jia W, Tao X, Ye F, Zhang Y, Ding ZJ, Zheng SJ, Qiao S, Su N, Zhang Y, Wu S, Guo J. Structures and mechanisms of the Arabidopsis cytokinin transporter AZG1. NATURE PLANTS 2024; 10:180-191. [PMID: 38172575 DOI: 10.1038/s41477-023-01590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Cytokinins are essential for plant growth and development, and their tissue distributions are regulated by transmembrane transport. Recent studies have revealed that members of the 'Aza-Guanine Resistant' (AZG) protein family from Arabidopsis thaliana can mediate cytokinin uptake in roots. Here we present 2.7 to 3.3 Å cryo-electron microscopy structures of Arabidopsis AZG1 in the apo state and in complex with its substrates trans-zeatin (tZ), 6-benzyleaminopurine (6-BAP) or kinetin. AZG1 forms a homodimer and each subunit shares a similar topology and domain arrangement with the proteins of the nucleobase/ascorbate transporter (NAT) family. These structures, along with functional analyses, reveal the molecular basis for cytokinin recognition. Comparison of the AZG1 structures determined in inward-facing conformations and predicted by AlphaFold2 in the occluded conformation allowed us to propose that AZG1 may carry cytokinins across the membrane through an elevator mechanism.
Collapse
Affiliation(s)
- Lingyi Xu
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Calibra Lab at DIAN Diagnostics, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provinces, Hangzhou, Zhejiang, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Fan Ye
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuai Qiao
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Nannan Su
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Li L, Sun X, Yu W, Gui M, Qiu Y, Tang M, Tian H, Liang G. Comparative transcriptome analysis of high- and low-embryogenic Hevea brasiliensis genotypes reveals involvement of phytohormones in somatic embryogenesis. BMC PLANT BIOLOGY 2023; 23:489. [PMID: 37828441 PMCID: PMC10571474 DOI: 10.1186/s12870-023-04432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Rubber plant (Hevea brasiliensis) is one of the major sources of latex. Somatic embryogenesis (SE) is a promising alterative to its propagation by grafting and seed. Phytohormones have been shown to influence SE in different plant species. However, limited knowledge is available on the role of phytohormones in SE in Hevea. The anther cultures of two Hevea genotypes (Yunyan 73477-YT and Reken 628-RT) with contrasting SE rate were established and four stages i.e., anthers (h), anther induced callus (y), callus differentiation state (f), and somatic embryos (p) were studied. UPLC-ESI-MS/MS and transcriptome analyses were used to study phytohormone accumulation and related expression changes in biosynthesis and signaling genes. RESULTS YT showed higher callus induction rate than RT. Of the two genotypes, only YT exhibited successful SE. Auxins, cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins (GAs), and ethylene (ETH) were detected in the two genotypes. Indole-3-acetic acid (IAA), CKs, ABA, and ETH had notable differences in the studied stages of the two genotypes. The differentially expressed genes identified in treatment comparisons were majorly enriched in MAPK and phytohormone signaling, biosynthesis of secondary metabolites, and metabolic pathways. The expression changes in IAA, CK, ABA, and ETH biosynthesis and signaling genes confirmed the differential accumulation of respective phytohormones in the two genotypes. CONCLUSION These results suggest potential roles of phytohormones in SE in Hevea.
Collapse
Affiliation(s)
- Ling Li
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Xiaolong Sun
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Wencai Yu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Mingchun Gui
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Yanfen Qiu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Min Tang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Hai Tian
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Guoping Liang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China.
| |
Collapse
|
11
|
Chen Q, Guo Y, Zhang J, Zheng N, Wang J, Liu Y, Lu J, Zhen S, Du X, Li L, Fu J, Wang G, Gu R, Wang J, Liu Y. RNA polymerase common subunit ZmRPABC5b is transcriptionally activated by Opaque2 and essential for endosperm development in maize. Nucleic Acids Res 2023; 51:7832-7850. [PMID: 37403778 PMCID: PMC10450181 DOI: 10.1093/nar/gkad571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.
Collapse
Affiliation(s)
- Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiawen Lu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sihan Zhen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Maize Bio-breeding; Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
13
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
14
|
Liu Y, Liu Y, He Y, Yan Y, Yu X, Ali M, Pan C, Lu G. Cytokinin-inducible response regulator SlRR6 controls plant height through gibberellin and auxin pathways in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4471-4488. [PMID: 37115725 DOI: 10.1093/jxb/erad159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Plant height is a key agronomic trait regulated by several phytohormones such as gibberellins (GAs) and auxin. However, little is known about how cytokinin (CK) participates in this process. Here, we report that SlRR6, a type-A response regulator in the CK signaling pathway, positively regulates plant height in tomato. SlRR6 was induced by exogenous kinetin and GA3, but inhibited by indole-3-acetic acid (IAA). Knock out of SlRR6 reduced tomato plant height through shortening internode length, while overexpression of SlRR6 caused taller plants due to increased internode number. Cytological observation of longitudinal stems showed that both knock out and overexpression of SlRR6 generated larger cells, but significantly reduced cell numbers in each internode. Further studies demonstrated that overexpression of SlRR6 enhanced GA accumulation and lowered IAA content, along with expression changes in GA- and IAA-related genes. Exogenous paclobutrazol and IAA treatments restored the increased plant height phenotype in SlRR6-overexpressing lines. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays showed that SlRR6 interacts with a small auxin up RNA protein, SlSAUR58. Moreover, SlSAUR58-overexpressing plants were dwarf with decreased internode length. Overall, our findings establish SlRR6 as a vital component in the CK signaling, GA, and IAA regulatory network that controls plant height.
Collapse
Affiliation(s)
- Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yichen Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanjun He
- Institute of Vegetable Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Yanqiu Yan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Wang F, Cai X, Wei H, Zhang L, Dong A, Su W. Histone methylation readers MRG1/MRG2 interact with the transcription factor TCP14 to positively modulate cytokinin sensitivity in Arabidopsis. J Genet Genomics 2023; 50:589-599. [PMID: 36870415 DOI: 10.1016/j.jgg.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Cytokinins influence many aspects of plant growth and development. Although cytokinin biosynthesis and signaling have been well studied in planta, little is known about the regulatory effects of epigenetic modifications on the cytokinin response. Here, we reveal that mutations to Morf Related Gene (MRG) proteins MRG1/MRG2, which are readers of trimethylated histone H3 lysine 4 and lysine 36 (H3K4me3 and H3K36me3), result in cytokinin hyposensitivity during various developmental processes, including callus induction and root and seedling growth inhibition. Similar to the mrg1 mrg2 mutant, plants with a defective AtTCP14, which belongs to the TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) transcription factor family, are insensitive to cytokinin. Furthermore, the transcription of several genes related to cytokinin signaling pathway is altered. Specifically, the expression of Arabidopsis thalianaHISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2 (AHP2) decreases significantly in the mrg1 mrg2 and tcp14-2 mutants. We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo. Thus, MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression. In summary, our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xixi Cai
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huizhe Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Linghao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wei Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
16
|
Bai Y, Cai M, Dou Y, Xie Y, Zheng H, Gao J. Phytohormone Crosstalk of Cytokinin Biosynthesis and Signaling Family Genes in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2023; 24:10863. [PMID: 37446040 DOI: 10.3390/ijms241310863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Cytokinin is widely involved in the regulation of plant growth, but its pathway-related genes have not been reported in Moso bamboo. In this study, a total of 129 candidate sequences were identified by bioinformatic methods. These included 15 IPT family genes, 19 LOG family genes, 22 HK family genes, 11 HP family genes and 62 RR family genes. Phylogenetic analysis revealed that the cytokinin pathway was closely related to rice, and evolutionary pattern analysis found that most of the genes have syntenic relationship with rice-related genes. The Moso bamboo cytokinin pathway was evolutionarily conservative and mainly underwent purifying selection, and that gene family expansion was mainly due to whole-gene duplication events. Analysis of transcriptome data revealed a tissue-specific expression pattern of Moso bamboo cytokinin family genes, with auxin and gibberellin response patterns. Analysis of co-expression patterns at the developmental stages of Moso bamboo shoots revealed the existence of a phytohormone co-expression pattern centered on cytokinin signaling genes. The auxin signaling factor PheARF52 was identified by yeast one-hybrid assay as regulating the PheRR3 gene through a P-box element in the PheRR3 promoter region. Auxin and cytokinin signaling crosstalk to regulate Moso bamboo growth. Overall, we systematically identified and analyzed key gene families of the cytokinin pathway in Moso bamboo and obtained key factors for auxin and cytokinin crosstalk, laying the foundation for the study of hormone regulation in Moso bamboo.
Collapse
Affiliation(s)
- Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Miaomiao Cai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yali Xie
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Huifang Zheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
17
|
Wang H, Li X, Wolabu T, Wang Z, Liu Y, Tadesse D, Chen N, Xu A, Bi X, Zhang Y, Chen J, Tadege M. WOX family transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2022; 34:3737-3753. [PMID: 35766878 PMCID: PMC9516142 DOI: 10.1093/plcell/koac188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific family of WUSCHEL (WUS)-related homeobox (WOX) transcription factors is key regulators of embryogenesis, meristem maintenance, and lateral organ development in flowering plants. The modern/WUS clade transcriptional repressor STENOFOLIA/LAMINA1(LAM1), and the intermediate/WOX9 clade transcriptional activator MtWOX9/NsWOX9 antagonistically regulate leaf blade expansion, but the molecular mechanism is unknown. Using transcriptome profiling and biochemical methods, we determined that NsCKX3 is the common target of LAM1 and NsWOX9 in Nicotiana sylvestris. LAM1 and NsWOX9 directly recognize and bind to the same cis-elements in the NsCKX3 promoter to repress and activate its expression, respectively, thus controlling the levels of active cytokinins in vivo. Disruption of NsCKX3 in the lam1 background yielded a phenotype similar to the knockdown of NsWOX9 in lam1, while overexpressing NsCKX3 resulted in narrower and shorter lam1 leaf blades reminiscent of NsWOX9 overexpression in the lam1 mutant. Moreover, we established that LAM1 physically interacts with NsWOX9, and this interaction is required to regulate NsCKX3 transcription. Taken together, our results indicate that repressor and activator WOX members oppositely regulate a common downstream target to function in leaf blade outgrowth, offering a novel insight into the role of local cytokinins in balancing cell proliferation and differentiation during lateral organ development.
Collapse
Affiliation(s)
- Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tezera Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Ziyao Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ye Liu
- Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dimiru Tadesse
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Naichong Chen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
18
|
Bellande K, Trinh DC, Gonzalez AA, Dubois E, Petitot AS, Lucas M, Champion A, Gantet P, Laplaze L, Guyomarc’h S. PUCHI represses early meristem formation in developing lateral roots of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3496-3510. [PMID: 35224628 PMCID: PMC9162184 DOI: 10.1093/jxb/erac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/25/2022] [Indexed: 05/21/2023]
Abstract
Lateral root organogenesis is a key process in the development of a plant's root system and its adaptation to the environment. During lateral root formation, an early phase of cell proliferation first produces a four-cell-layered primordium, and only from this stage onwards is a root meristem-like structure, expressing root stem cell niche marker genes, being established in the developing organ. Previous studies reported that the gene regulatory network controlling lateral root formation is organized into two subnetworks whose mutual inhibition may contribute to organ patterning. PUCHI encodes an AP2/ERF transcription factor expressed early during lateral root primordium development and required for correct lateral root formation. To dissect the molecular events occurring during this early phase, we generated time-series transcriptomic datasets profiling lateral root development in puchi-1 mutants and wild types. Transcriptomic and reporter analyses revealed that meristem-related genes were expressed ectopically at early stages of lateral root formation in puchi-1 mutants. We conclude that, consistent with the inhibition of genetic modules contributing to lateral root development, PUCHI represses ectopic establishment of meristematic cell identities at early stages of organ development. These findings shed light on gene network properties that orchestrate correct timing and patterning during lateral root formation.
Collapse
Affiliation(s)
| | | | - Anne-Alicia Gonzalez
- Univ Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier GenomiX, France Génomique, Montpellier, France
| | - Emeric Dubois
- Univ Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier GenomiX, France Génomique, Montpellier, France
| | | | - Mikaël Lucas
- DIADE, Univ Montpellier, IRD, Montpellier, France
| | | | | | | | | |
Collapse
|
19
|
Abstract
Adventitious root (AR) formation is required for the vegetative propagation of economically important horticultural crops, such as apples. Asexual propagation is commonly utilized for breeding programs because of its short life cycle, true-to-typeness, and high efficiency. The lack of AR formation from stem segments is a barrier to segment survival. Therefore, understanding the AR regulatory mechanisms is vital for the prolonged and effective use of biological resources. Several studies have been undertaken to comprehend the molecular and physiological control of AR, which has greatly extended our knowledge regarding AR formation in apples and other crops. Auxin, a master controller of AR formation, is widely used for inducing AR formation in stem cutting. At the same time, cytokinins (CKs) are important for cell division and molecular reprograming, and other hormones, sugars, and nutrients interact with auxin to control excision-induced AR formation. In this review, we discuss the present understandings of ARs’ formation from physiological and molecular aspects and highlight the immediate advancements made in identifying underlying mechanisms involved in the regulation of ARs. Despite the progress made in the previous decades, many concerns about excision-induced AR formation remain unanswered. These focus on the specific functions and interactions of numerous hormonal, molecular, and metabolic components and the overall framework of the entire shoot cutting in a demanding environment.
Collapse
|
20
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
21
|
Min Y, Conway SJ, Kramer EM. Quantitative live imaging of floral organ initiation and floral meristem termination in Aquilegia. Development 2022; 149:274399. [DOI: 10.1242/dev.200256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FMs) produce floral organs, after which they undergo floral meristem termination (FMT); precise control of organ initiation and FMT is crucial to the reproductive success of any flowering plant. Using live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results uncover distinct patterns of primordium initiation between stamens and staminodes compared with carpels, and provide insight into the process of FMT, which is discernable based on cell division dynamics that precede carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs, as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both evolutionary and developmental contexts.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stephanie J. Conway
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
22
|
Biotechnological Advances in Pharmacognosy and In Vitro Manipulation of Pterocarpus marsupium Roxb. PLANTS 2022; 11:plants11030247. [PMID: 35161227 PMCID: PMC8839240 DOI: 10.3390/plants11030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Trees are vital resources for economic, environmental, and industrial growth, supporting human life directly or indirectly through a wide variety of therapeutic compounds, commodities, and ecological services. Pterocarpus marsupium Roxb. (Fabaceae) is one of the most valuable multipurpose forest trees in India and Sri Lanka, as it is cultivated for quality wood as well as pharmaceutically bioactive compounds, especially from the stem bark and heartwood. However, propagation of the tree in natural conditions is difficult due to the low percentage of seed germination coupled with overexploitation of this species for its excellent multipurpose properties. This overexploitation has ultimately led to the inclusion of P. marsupium on the list of endangered plant species. However, recent developments in plant biotechnology may offer a solution to the overuse of such valuable species if such advances are accompanied by technology transfer in the developing world. Specifically, techniques in micropropagation, genetic manipulation, DNA barcoding, drug extraction, delivery, and targeting as well as standardization, are of substantial concern. To date, there are no comprehensive and detailed reviews of P. marsupium in terms of biotechnological research developments, specifically pharmacognosy, pharmacology, tissue culture, authentication of genuine species, and basic gene transfer studies. Thus, the present review attempts to present a comprehensive overview of the biotechnological studies centered on this species and some of the recent novel approaches for its genetic improvement.
Collapse
|
23
|
Li S, Tahir MM, Wu T, Xie L, Zhang X, Mao J, Ayyoub A, Xing L, Zhang D, Shao Y. Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple. Int J Mol Sci 2022; 23:ijms23020976. [PMID: 35055162 PMCID: PMC8779459 DOI: 10.3390/ijms23020976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Adventitious root (AR) formation is a bottleneck for the mass propagation of apple rootstocks, and water stress severely restricts it. Different hormones and sugar signaling pathways in apple clones determine AR formation under water stress, but these are not entirely understood. To identify them, GL-3 stem cuttings were cultured on polyethylene glycol (PEG) treatment. The AR formation was dramatically decreased compared with the PEG-free control (CK) cuttings by increasing the endogenous contents of abscisic acid (ABA), zeatin riboside (ZR), and methyl jasmonate (JA-me) and reducing the indole-3-acetic acid (IAA) and gibberellic acid 3 (GA3) contents. We performed a transcriptomic analysis to identify the responses behind the phenotype. A total of 3204 differentially expressed genes (DEGs) were identified between CK and PEG, with 1702 upregulated and 1502 downregulated genes. Investigation revealed that approximately 312 DEGs were strongly enriched in hormone signaling, sugar metabolism, root development, and cell cycle-related pathways. Thus, they were selected for their possible involvement in adventitious rooting. However, the higher accumulation of ABA, ZR, and JA-me contents and the upregulation of their related genes, as well as the downregulation of sugar metabolism-related genes, lead to the inhibition of ARs. These results indicate that AR formation is a complicated biological process chiefly influenced by multiple hormonal signaling pathways and sugar metabolism. This is the first study to demonstrate how PEG inhibits AR formation in apple plants.
Collapse
Affiliation(s)
- Shaohuan Li
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Muhammad Mobeen Tahir
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Tong Wu
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Lingling Xie
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Xiaoyun Zhang
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi 832003, China;
| | - Jiangping Mao
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Anam Ayyoub
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China;
| | - Libo Xing
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Dong Zhang
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
- Correspondence: (D.Z.); (Y.S.)
| | - Yun Shao
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
- Correspondence: (D.Z.); (Y.S.)
| |
Collapse
|
24
|
Abstract
Plants exhibit remarkable lineage plasticity, allowing them to regenerate organs that differ from their respective origins. Such developmental plasticity is dependent on the activity of pluripotent founder cells or stem cells residing in meristems. At the shoot apical meristem (SAM), the constant flow of cells requires continuing cell specification governed by a complex genetic network, with the WUSCHEL transcription factor and phytohormone cytokinin at its core. In this review, I discuss some intriguing recent discoveries that expose new principles and mechanisms of patterning and cell specification acting both at the SAM and, prior to meristem organogenesis during shoot regeneration. I also highlight unanswered questions and future challenges in the study of SAM and meristem regeneration. Finally, I put forward a model describing stochastic events mediated by epigenetic factors to explain how the gene regulatory network might be initiated at the onset of shoot regeneration. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
25
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
26
|
Neogy A, Singh Z, Mushahary KKK, Yadav SR. Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development. PLANT CELL REPORTS 2021; 40:1367-1375. [PMID: 33047229 DOI: 10.1007/s00299-020-02618-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
We reveal the onset and dynamic tissue-specific cytokinin signaling domains and functional importance of auxin in the auxin-cytokinin interaction domains in shaping root architecture in the economically important rice plant. Plant hormones such as auxin and cytokinin are central regulators of root organogenesis. Typical in the grass species, the root system in rice is primarily composed of post-embryonic adventitious/crown roots (ARs/CRs). Antagonistic auxin-cytokinin activities mutually balance each other to ensure proper root development. Cytokinin has been shown to inhibit crown root initiation in rice; albeit, the responsive domains remain elusive during the initiation and outgrowth of crown root primordia (CRP). Here, we show the cytokinin response domains during various stages of CRP development. RNA-RNA in situ hybridization and protein immunohistochemistry studies of the reporter gene expressed under the cytokinin responsive synthetic promoter revealed detailed spatio-temporal cytokinin signaling domains in the developing CRP. Furthermore, rice lines genetically depleted for endogenous auxin in the cytokinin responsive domains provided insight into the functional importance of auxin signaling during crown root development. Thus, our study demonstrates the onset and dynamic tissue-specific cytokinin response and functional significance of auxin-cytokinin interaction during root architecture formation in rice, a model grass species.
Collapse
Affiliation(s)
- Ananya Neogy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Zeenu Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
27
|
Hormonal Regulation and Crosstalk of Auxin/Cytokinin Signaling Pathways in Potatoes In Vitro and in Relation to Vegetation or Tuberization Stages. Int J Mol Sci 2021; 22:ijms22158207. [PMID: 34360972 PMCID: PMC8347663 DOI: 10.3390/ijms22158207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.
Collapse
|
28
|
Chen Q, Zhang J, Wang J, Xie Y, Cui Y, Du X, Li L, Fu J, Liu Y, Wang J, Wang G, Gu R. Small kernel 501 (smk501) encodes the RUBylation activating enzyme E1 subunit ECR1 (E1 C-TERMINAL RELATED 1) and is essential for multiple aspects of cellular events during kernel development in maize. THE NEW PHYTOLOGIST 2021; 230:2337-2354. [PMID: 33749863 DOI: 10.1111/nph.17354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
RUBylation plays essential roles in plant growth and development through regulating Cullin-RING ubiquitin E3 ligase (CRL) activities and the CRL-mediated protein degradations. However, the function of RUBylation in regulating kernel development remains unclear. Through genetic and molecular analyses of a small kernel 501 (smk501) mutant in maize (Zea mays), we cloned the smk501 gene, revealed its molecular function, and defined its roles in RUBylation pathway and seed development. Smk501 encodes a RUBylation activating enzyme E1 subunit ZmECR1 (E1 C-TERMINAL RELATED 1) protein. Destruction in RUBylation by smk501 mutation resulted in less embryo and endosperm cell number and smaller kernel size. The transcriptome and proteome profiling, hormone evaluation and cell proliferation observation revealed that disturbing ZmECR1 expression mainly affects pathways on hormone signal transduction, cell cycle progression and starch accumulation during kernel development. In addition, mutant in zmaxr1 (Auxin resistant 1), another RUB E1 subunit, also showed similar defects in kernel development. Double mutation of zmecr1 and zmaxr1 lead to empty pericarp kernel phenotype. RUBylation is a novel regulatory pathway affecting maize kernel development, majorly through its functions in modifying multiple cellular progresses.
Collapse
Affiliation(s)
- Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Cytokinin-Controlled Gradient Distribution of Auxin in Arabidopsis Root Tip. Int J Mol Sci 2021; 22:ijms22083874. [PMID: 33918090 PMCID: PMC8069370 DOI: 10.3390/ijms22083874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The plant root is a dynamic system, which is able to respond promptly to external environmental stimuli by constantly adjusting its growth and development. A key component regulating this growth and development is the finely tuned cross-talk between the auxin and cytokinin phytohormones. The gradient distribution of auxin is not only important for the growth and development of roots, but also for root growth in various response. Recent studies have shed light on the molecular mechanisms of cytokinin-mediated regulation of local auxin biosynthesis/metabolism and redistribution in establishing active auxin gradients, resulting in cell division and differentiation in primary root tips. In this review, we focus our attention on the molecular mechanisms underlying the cytokinin-controlled auxin gradient in root tips.
Collapse
|
30
|
Steiner E, Israeli A, Gupta R, Shwartz I, Nir I, Leibman-Markus M, Tal L, Farber M, Amsalem Z, Ori N, Müller B, Bar M. Characterization of the cytokinin sensor TCSv2 in arabidopsis and tomato. PLANT METHODS 2020; 16:152. [PMID: 33292327 PMCID: PMC7670716 DOI: 10.1186/s13007-020-00694-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/04/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Hormones are crucial to plant life and development. Being able to follow the plants hormonal response to various stimuli and throughout developmental processes is an important and increasingly widespread tool. The phytohormone cytokinin (CK) has crucial roles in the regulation of plant growth and development. RESULTS Here we describe a version of the CK sensor Two Component signaling Sensor (TCS), referred to as TCSv2. TCSv2 has a different arrangement of binding motifs when compared to previous TCS versions, resulting in increased sensitivity in some examined tissues. Here, we examine the CK responsiveness and distribution pattern of TCSv2 in arabidopsis and tomato. CONCLUSIONS The increased sensitivity and reported expression pattern of TCSv2 make it an ideal TCS version to study CK response in particular hosts, such as tomato, and particular tissues, such as leaves and flowers.
Collapse
Affiliation(s)
- Evyatar Steiner
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Alon Israeli
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel
| | - Ido Shwartz
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ido Nir
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel
| | - Lior Tal
- Department of Plant and Environmental Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Plant Biology, University of California - Davis, Davis, CA, 95616, USA
| | - Mika Farber
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ziva Amsalem
- Department of Plant and Environmental Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naomi Ori
- Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Bruno Müller
- Leibniz-Institut Für Pflanzengenetik Und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466, Seeland, Germany
- Microsynth AG, Schützenstrasse 15, 9436, Balgach, Switzerland
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
31
|
Min Y, Kramer EM. Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Sci Rep 2020; 10:19637. [PMID: 33184405 PMCID: PMC7665038 DOI: 10.1038/s41598-020-76750-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
The earliest phases of floral development include a number of crucial processes that lay the foundation for the subsequent morphogenesis of floral organs and success in reproduction. Currently, key transcriptional changes during this developmental window have been characterized in the model species Arabidopsis thaliana, but little is known about how transcriptional dynamics change over the course of these developmental processes in other plant systems. Here, we have conducted the first in-depth transcriptome profiling of early floral development in Aquilegia at four finely dissected developmental stages, with eight biological replicates per stage. Using differential gene expression analysis and weighted gene co-expression network analysis, we identified both crucial genes whose expression changes mark the transitions between developmental stages and hub genes in co-expression modules. Our results support the potential functional conservation of key genes in early floral development that have been identified in other systems, but also reveal a number of previously unknown or overlooked loci that are worthy of further investigation. In addition, our results highlight not only the dynamics of transcriptional regulation during early floral development, but also the potential involvement of the complex, essential networks of small RNA and post-translational regulation to these developmental stages.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA.
| |
Collapse
|
32
|
Mao J, Niu C, Li K, Mobeen Tahir M, Khan A, Wang H, Li S, Liang Y, Li G, Yang Z, Zuo L, Han M, Ren X, An N, Zhang D. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1150-1159. [PMID: 32597557 DOI: 10.1111/plb.13154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Malus hupehensis is an extensively used apple rootstock in China. In the current study, M. hupehensis seedlings were treated with exogenous 2.2 µm 6-benzyladenine (6-BA) so as to investigate the mechanism by which 6-BA affects lateral root development. The results indicate that 6-BA treatment promotes elongation and thickening of both root and shoot in M. hupehensis, but reduces the number of lateral roots, as well as reducing the auxin level after 6-BA treatment. Moreover, MhAHK4, MhRR1 and MhRR2 were also significantly up-regulated in response to 6-BA treatment. Expression levels of auxin synthesis- and transport-related genes, such as MhYUCCA6, MhYUCCA10, MhPIN1 and MhPIN2, were down-regulated, which corresponds with lower auxin levels in the 6-BA-treated seedlings. A negative regulator of auxin, MhIAA3, was induced by 6-BA treatment, leading to reduced expression of MhARF7 and MhARF19 in 6-BA-treated seedlings. As a result, expression of MhWOX11, MhWOX5, MhLBD16 and MhLBD29 was blocked, which in turn inhibited lateral root initiation. In addition, a lower auxin level decreased expression of MhRR7 and MhRR15, which repressed expression of key transcription factors associated with root development, thus inhibiting lateral root development. In contrast, 6-BA treatment promoted secondary growth (thickening) of the root by inducing expression of MhCYCD3;1 and MhCYCD3;2. Collectively, the changes in hormone levels and gene expression resulted in a reduced number of lateral roots and thicker roots in 6-BA-treated plants.
Collapse
Affiliation(s)
- J Mao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| | - C Niu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - K Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - M Mobeen Tahir
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - A Khan
- Department of Agricultural Sciences, the University of Haripur, Haripur, Pakistan
| | - H Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - S Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Y Liang
- Beijing Ori-Gene Science and Technology Corp., Ltd., Beijing, China
| | - G Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Z Yang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - L Zuo
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - M Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - X Ren
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - N An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| | - D Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
33
|
González AD, Pabón-Mora N, Alzate JF, González F. Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Montesinos JC, Abuzeineh A, Kopf A, Juanes-Garcia A, Ötvös K, Petrášek J, Sixt M, Benková E. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. EMBO J 2020; 39:e104238. [PMID: 32667089 PMCID: PMC7459425 DOI: 10.15252/embj.2019104238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.
Collapse
Affiliation(s)
| | - Anas Abuzeineh
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Aglaja Kopf
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Alba Juanes-Garcia
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Krisztina Ötvös
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Jan Petrášek
- Institute of Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
35
|
Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen X, Li T. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:166-183. [PMID: 32031710 DOI: 10.1111/tpj.14717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Phytohormonal interactions are crucial for plant development. Auxin and cytokinin (CK) both play critical roles in regulating plant growth and development; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a wild apple (Malus sieversii Roem) GRETCHEN HAGEN3 (GH3) gene, MsGH3.5, encoding an indole-3-acetic acid (IAA)-amido synthetase. Overexpression of MsGH3.5 significantly reduced the free IAA content and increased the content of some IAA-amino acid conjugates, and MsGH3.5-overexpressing lines were dwarfed and produced fewer adventitious roots (ARs) than the control. This phenotype is consistent with the role of GH3 in conjugating excess free active IAA to amino acids in auxin homeostasis. Surprisingly, overexpression of MsGH3.5 significantly increased CK concentrations in the whole plant, and altered the expression of genes involved in CK biosynthesis, metabolism and signaling. Furthermore, exogenous CK application induced MsGH3.5 expression through the activity of the CK type-B response regulator, MsRR1a, which mediates the CK primary response. MsRR1a activated MsGH3.5 expression by directly binding to its promoter, linking auxin and CK signaling. Plants overexpressing MsRR1a also displayed fewer ARs, in agreement with the regulation of MsGH3.5 expression by MsRR1a. Taken together, we reveal that MsGH3.5 affects apple growth and development by modulating auxin and CK levels and signaling pathways. These findings provide insight into the interaction between the auxin and CK pathways, and might have substantial implications for efforts to improve apple architecture.
Collapse
Affiliation(s)
- Di Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chen Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Wei
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Peng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinwei Guo
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zefeng Zhai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoshuai Shen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China
| |
Collapse
|
36
|
Hu S, Zhang M, Yang Y, Xuan W, Zou Z, Arkorful E, Chen Y, Ma Q, Jeyaraj A, Chen X, Li X. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC PLANT BIOLOGY 2020; 20:232. [PMID: 32448156 PMCID: PMC7247184 DOI: 10.1186/s12870-020-02448-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/17/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Tea plant (Camellia sinensis) is one of the most popular non-alcoholic beverages worldwide. In tea, lateral roots (LRs) are the main organ responsible for the absorption of moisture and mineral nutrients from the soil. Lateral roots formation and development are regulated by the nitrogen and auxin signaling pathways. In order to understand the role of auxin and nitrogen signaling in LRs formation and development, transcriptome analysis was employed to investigate the differentially expressed genes involved in lateral roots of tea plants treated with indole-3-butyric acid (IBA), N-1-naphthylphthalamic acid (NPA), low and high concentrations of nitrogen. RESULTS A total of 296 common differentially expressed genes were identified and annotated to four signaling pathways, including nitrogen metabolism, plant hormone signal transduction, glutathione metabolism and transcription factors. RNA-sequencing results revealed that majority of differentially expressed genes play important roles in nitrogen metabolism and hormonal signal transduction. Low nitrogen condition induced the biosynthesis of auxin and accumulation of transcripts, thereby, regulating lateral roots formation. Furthermore, metabolism of cytokinin and ethylene biosynthesis were also involved in lateral roots development. Transcription factors like MYB genes also contributed to lateral roots formation of tea plants through secondary cell wall biosynthesis. Reversed phase ultra performance liquid chromatography (RP-UPLC) results showed that the auxin concentration increased with the decreased nitrogen level in lateral roots. Thus, tea plant lateral roots formation could be induced by low nitrogen concentration via auxin biosynthesis and accumulation. CONCLUSION This study provided insights into the mechanisms associated with nitrogen and auxin signaling pathways in LRs formation and provides information on the efficient utilization of nitrogen in tea plant at the genetic level.
Collapse
Affiliation(s)
- Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Emmanuel Arkorful
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingping Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
37
|
Comelli P, Glowa D, Frerichs A, Engelhorn J, Chandler JW, Werr W. Functional dissection of the DORNRÖSCHEN-LIKE enhancer 2 during embryonic and phyllotactic patterning. PLANTA 2020; 251:90. [PMID: 32236749 DOI: 10.1007/s00425-020-03381-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis DORNRÖSCHEN-LIKE enhancer 2 comprises a high-occupancy target region in the IM periphery that integrates signals for the spiral phyllotactic pattern and cruciferous arrangement of sepals. Transcription of the DORNRÖSCHEN-LIKE (DRNL) gene marks lateral organ founder cells (LOFCs) in the peripheral zone of the inflorescence meristem (IM) and enhancer 2 (En2) in the DRNL promoter upstream region essentially contributes to this phyllotactic transcription pattern. Further analysis focused on the phylogenetically highly conserved 100-bp En2core element, which was sufficient to promote the phyllotactic pattern, but was recalcitrant to further shortening. Here, we show that En2core functions independent of orientation and create a series of mutations to study consequences on the transcription pattern. Their analysis shows that, first, in addition to in the inflorescence apex, En2core acts in the embryo; second, cis-regulatory target sequences are distributed throughout the 100-bp element, although substantial differences exist in their function between embryo and IM. Third, putative core auxin response elements (AuxREs) spatially activate or restrict DRNL expression, and fourth, according to chromatin configuration data, En2core enhancer activity in LOFCs correlates with an open chromatin structure at the DRNL transcription start. In combination, mutational and chromatin analyses imply that En2core comprises a high-occupancy target (HOT) region for transcription factors, which implements phyllotactic information for the spiral LOFC pattern in the IM periphery and coordinates the cruciferous array of floral sepals. Our data disfavor a contribution of activating auxin response factors (ARFs) but do not exclude auxin as a morphogenetic signal.
Collapse
Affiliation(s)
- Petra Comelli
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Dorothea Glowa
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Anneke Frerichs
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Julia Engelhorn
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Institute for Molecular Physiology, Heinrich-Heine-Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - John W Chandler
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Wolfgang Werr
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany.
| |
Collapse
|
38
|
Sun X, Chen F, Yuan L, Mi G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. PLANTA 2020; 251:84. [PMID: 32189077 DOI: 10.1007/s00425-020-03376-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation. Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
39
|
Zubo YO, Schaller GE. Role of the Cytokinin-Activated Type-B Response Regulators in Hormone Crosstalk. PLANTS 2020; 9:plants9020166. [PMID: 32019090 PMCID: PMC7076656 DOI: 10.3390/plants9020166] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) and integrated these into the cytokinin-activated transcriptional network. Primary targets of the type-B ARRs are enriched for genes involved in hormonal regulation, emphasizing the extensive crosstalk that can occur between cytokinin, auxin, abscisic acid, brassinosteroids, gibberellic acid, ethylene, jasmonic acid, and salicylic acid. Examination of hormone-related targets reveals multiple regulatory points including biosynthesis, degradation/inactivation, transport, and signal transduction. Here, we consider this early response to cytokinin in terms of the hormones involved, points of regulatory crosstalk, and physiological significance.
Collapse
|
40
|
Crosstalk with Jasmonic Acid Integrates Multiple Responses in Plant Development. Int J Mol Sci 2020; 21:ijms21010305. [PMID: 31906415 PMCID: PMC6981462 DOI: 10.3390/ijms21010305] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role in the modulation of plant growth and development under stress conditions, and crosstalk between JA and other phytohormones involved in growth and development, such as gibberellic acid (GA), cytokinin, and auxin modulate various developmental processes. This review summarizes recent findings of JA crosstalk in the modulation of plant growth and development, focusing on JA–GA, JA–cytokinin, and JA–auxin crosstalk. The molecular mechanisms underlying this crosstalk are also discussed.
Collapse
|
41
|
Xi D, Chen X, Wang Y, Zhong R, He J, Shen J, Ming F. Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1015-1031. [PMID: 30415491 DOI: 10.1111/jipb.12735] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Auxin is an important plant hormone that is essential for growth and development due to its effects on organogenesis, morphogenesis, tropisms, and apical dominance. The functional diversity of auxin highlights the importance of its biosynthesis, transport, and associated responses. In this study, we show that a NAC transcription factor, ANAC092 (also named AtNAC2 and ORESARA1), known to positively regulate leaf senescence and contribute to abiotic stress responses, also affects primary root development. Plants overexpressing ANAC092 had altered root meristem lengths and shorter primary roots compared with the wild-type control. Additionally, expression of the proANAC092::GUS was strongly induced by indole-3-acetic acid. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the YUCCA2, PIN, and ARF expression levels were downregulated in ANAC092-overexpressing plants. Moreover, yeast one-hybrid and chromatin immunoprecipitation assays confirmed that ANAC092 binds to the promoters of AUXIN RESPONSE FACTOR 8 (ARF8) and PIN-FORMED 4 (PIN4). Furthermore, a dual-luciferase assay indicated that ANAC092 decreases ARF8 and PIN4 promoter activities. We also applied a CRISPR/Cas9 system to mutate ANAC092. The roots of three of the analyzed mutants were longer than normal. Collectively, our findings indicate that ANAC092 negatively affects root development by controlling the auxin pathway.
Collapse
Affiliation(s)
- Dandan Xi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xu Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuxia Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ruiling Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianmei He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiabin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Feng Ming
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
42
|
Molecular Responses during Plant Grafting and Its Regulation by Auxins, Cytokinins, and Gibberellins. Biomolecules 2019; 9:biom9090397. [PMID: 31443419 PMCID: PMC6770456 DOI: 10.3390/biom9090397] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Plant grafting is an important horticulture technique used to produce a new plant after joining rootstock and scion. This is one of the most used techniques by horticulturists to enhance the quality and production of various crops. Grafting helps in improving the health of plants, their yield, and the quality of plant products, along with the enhancement of their postharvest life. The main process responsible for successful production of grafted plants is the connection of vascular tissues. This step determines the success rate of grafts and hence needs to be studied in detail. There are many factors that regulate the connection of scion and stock, and plant hormones are of special interest for researchers in the recent times. These phytohormones act as signaling molecules and have the capability of translocation across the graft union. Plant hormones, mainly auxins, cytokinins, and gibberellins, play a major role in the regulation of various key physiological processes occurring at the grafting site. In the current review, we discuss the molecular mechanisms of graft development and the phytohormone-mediated regulation of the growth and development of graft union.
Collapse
|
43
|
Gasparis S, Przyborowski M, Kała M, Nadolska-Orczyk A. Knockout of the HvCKX1 or HvCKX3 Gene in Barley ( Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease Affects the Regulation of Cytokinin Metabolism and Root Morphology. Cells 2019; 8:E782. [PMID: 31357516 PMCID: PMC6721474 DOI: 10.3390/cells8080782] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Barley is among four of the most important cereal crops with respect to global production. Increasing barley yields to desired levels can be achieved by the genetic manipulation of cytokinin content. Cytokinins are plant hormones that regulate many developmental processes and have a strong influence on grain yield. Cytokinin homeostasis is regulated by members of several multigene families. CKX genes encode the cytokinin oxidase/dehydrogenase enzyme, which catalyzes the irreversible degradation of cytokinin. Several recent studies have demonstrated that the RNAi-based silencing of CKX genes leads to increased grain yields in some crop species. To assess the possibility of increasing the grain yield of barley by knocking out CKX genes, we used an RNA-guided Cas9 system to generate ckx1 and ckx3 mutant lines with knockout mutations in the HvCKX1 and HvCKX3 genes, respectively. Homozygous, transgene-free mutant lines were subsequently selected and analyzed. A significant decrease in CKX enzyme activity was observed in the spikes of the ckx1 lines, while in the ckx3 lines, the activity remained at a similar level to that in the control plants. Despite these differences, no changes in grain yield were observed in either mutant line. In turn, differences in CKX activity in the roots between the ckx1 and ckx3 mutants were reflected via root morphology. The decreased CKX activity in the ckx1 lines corresponded to greater root length, increased surface area, and greater numbers of root hairs, while the increased CKX activity in the ckx3 mutants gave the opposite results. RNA-seq analysis of the spike and root transcriptomes revealed an altered regulation of genes controlling cytokinin metabolism and signaling, as well as other genes that are important during seed development, such as those that encode nutrient transporters. The observed changes suggest that the knockout of a single CKX gene in barley may be not sufficient for disrupting cytokinin homeostasis or increasing grain yields.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland.
| | - Mateusz Przyborowski
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Maciej Kała
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
44
|
Michniewicz M, Ho CH, Enders TA, Floro E, Damodaran S, Gunther LK, Powers SK, Frick EM, Topp CN, Frommer WB, Strader LC. TRANSPORTER OF IBA1 Links Auxin and Cytokinin to Influence Root Architecture. Dev Cell 2019; 50:599-609.e4. [PMID: 31327740 DOI: 10.1016/j.devcel.2019.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Developmental processes that control root system architecture are critical for soil exploration by plants, allowing for uptake of water and nutrients. Conversion of the auxin precursor indole-3-butyric acid (IBA) to active auxin (indole-3-acetic acid; IAA) modulates lateral root formation. However, mechanisms governing IBA-to-IAA conversion have yet to be elucidated. We identified TRANSPORTER OF IBA1 (TOB1) as a vacuolar IBA transporter that limits lateral root formation. Moreover, TOB1, which is transcriptionally regulated by the phytohormone cytokinin, is necessary for the ability of cytokinin to exert inhibitory effects on lateral root production. The increased production of lateral roots in tob1 mutants, TOB1 transport of IBA into the vacuole, and cytokinin-regulated TOB1 expression provide a mechanism linking cytokinin signaling and IBA contribution to the auxin pool to tune root system architecture.
Collapse
Affiliation(s)
- Marta Michniewicz
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Cheng-Hsun Ho
- Institute for Molecular Physiology, Heinrich Heine Universität Düsseldorf, Institute for Biotransformative Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tara A Enders
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Eric Floro
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Suresh Damodaran
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Lauren K Gunther
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Samantha K Powers
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Elizabeth M Frick
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine Universität Düsseldorf, Institute for Biotransformative Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, USA; Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, USA; Center for Science & Engineering of Living Systems, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
45
|
Zeng J, Zhang M, Hou L, Bai W, Yan X, Hou N, Wang H, Huang J, Zhao J, Pei Y. Cytokinin inhibits cotton fiber initiation by disrupting PIN3a-mediated asymmetric accumulation of auxin in the ovule epidermis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3139-3151. [PMID: 30970146 PMCID: PMC6598071 DOI: 10.1093/jxb/erz162] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 05/23/2023]
Abstract
Auxin-dependent cell expansion is crucial for initiation of fiber cells in cotton (Gossypium hirsutum), which ultimately determines fiber yield and quality. However, the regulation of this process is far from being well understood. In this study, we demonstrate an antagonistic effect between cytokinin (CK) and auxin on cotton fiber initiation. In vitro and in planta experiments indicate that enhanced CK levels can reduce auxin accumulation in the ovule integument, which may account for the defects in the fiberless mutant xu142fl. In turn, supplementation with auxin can recover fiber growth of CK-treated ovules and mutant ovules. We further found that GhPIN3a is a key auxin transporter for fiber-cell initiation and is polarly localized to the plasma membranes of non-fiber cells, but not to those of fiber cells. This polar localization allows auxin to be transported within the ovule integument while specifically accumulating in fiber cells. We show that CKs antagonize the promotive effect of auxin on fiber cell initiation by undermining asymmetric accumulation of auxin in the ovule epidermis through down-regulation of GhPIN3a and disturbance of the polar localization of the protein.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Wenqin Bai
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Nan Hou
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Hongxing Wang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Juan Huang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| |
Collapse
|
46
|
Basso A, Barcaccia G, Galla G. Annotation and Expression of IDN2-like and FDM-like Genes in Sexual and Aposporous Hypericum perforatum L. accessions. PLANTS (BASEL, SWITZERLAND) 2019; 8:E158. [PMID: 31181659 PMCID: PMC6631971 DOI: 10.3390/plants8060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
The protein IDN2, together with the highly similar interactors FDM1 and FDM2, is required for RNA-directed DNA methylation (RdDM) and siRNA production. Epigenetic regulation of gene expression is required to restrict cell fate determination in A. thaliana ovules. Recently, three transcripts sharing high similarity with the A. thaliana IDN2 and FDM1-2 were found to be differentially expressed in ovules of apomictic Hypericum perforatum L. accessions. To gain further insight into the expression and regulation of these genes in the context of apomixis, we investigated genomic, transcriptional and functional aspects of the gene family in this species. The H. perforatum genome encodes for two IDN2-like and 7 FDM-like genes. Differential and heterochronic expression of FDM4-like genes was found in H. perforatum pistils. The involvement of these genes in reproduction and seed development is consistent with the observed reduction of the seed set and high variability in seed size in A. thaliana IDN2 and FDM-like knockout lines. Differential expression of IDN2-like and FDM-like genes in H. perforatum was predicted to affect the network of potential interactions between these proteins. Furthermore, pistil transcript levels are modulated by cytokinin and auxin but the effect operated by the two hormones depends on the reproductive phenotype.
Collapse
Affiliation(s)
- Andrea Basso
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| |
Collapse
|
47
|
Mao J, Zhang D, Meng Y, Li K, Wang H, Han M. Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. PHYSIOLOGIA PLANTARUM 2019; 166:663-676. [PMID: 30098023 DOI: 10.1111/ppl.12817] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 05/13/2023]
Abstract
Cytokinin (CK) inhibits adventitious root (AR) formation in stem cuttings. Little is known, however, about the mechanism underlying the inhibitory effect. In this study, 2 mg l-1 of exogenous 6-benzyl adenine (6-BA) was administered to 3 and 7-day-old apple rootstocks 'M.26' cuttings (3 and 7 days 6-BA) by transferring them from a rooting medium containing indole-3-butanoic acid to the medium containing 6-BA. Anatomical and morphological observations revealed that the exogenous application of 6-BA inhibited primordia formation in the 3 days 6-BA but not the 7 days 6-BA group. The concentration of auxin (IAA), the ratios of IAA/CK and IAA/abscisic acid were lower in 3 days 6-BA than in 7 days 6-BA. Expression analysis of genes known to be associated with AR formation was also analyzed. In the 3 days 6-BA group, high level of CK inhibited the synthesis and transport of auxin, as a result, low endogenous auxin level suppressed the auxin signaling pathway genes, as were other AR development and cell cycle related genes; all of which had an inhibitory impact on AR primordium formation. On the contrary, low CK level in the 7 days 6-BA, reduced the inhibitory impact on auxin levels, leading to an upregulated expression of genes known to promote AR primordia formation. Collectively, our data indicated that 3-7 days is the time period in which AR primordia formation occurs in cuttings of 'M.26' and that the inhibition of AR development by CK is due to the suppression of AR primordia development over 3-7 days period after culturing in rooting medium.
Collapse
Affiliation(s)
- Jiangping Mao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Dong Zhang
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Yuan Meng
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Ke Li
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Hui Wang
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Mingyu Han
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China
| |
Collapse
|
48
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
49
|
Jing H, Strader LC. Interplay of Auxin and Cytokinin in Lateral Root Development. Int J Mol Sci 2019; 20:ijms20030486. [PMID: 30678102 PMCID: PMC6387363 DOI: 10.3390/ijms20030486] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/19/2023] Open
Abstract
The spacing and distribution of lateral roots are critical determinants of plant root system architecture. In addition to providing anchorage, lateral roots explore the soil to acquire water and nutrients. Over the past several decades, we have deepened our understanding of the regulatory mechanisms governing lateral root formation and development. In this review, we summarize these recent advances and provide an overview of how auxin and cytokinin coordinate the regulation of lateral root formation and development.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
50
|
Pierre-Jerome E, Drapek C, Benfey PN. Regulation of Division and Differentiation of Plant Stem Cells. Annu Rev Cell Dev Biol 2018; 34:289-310. [PMID: 30134119 DOI: 10.1146/annurev-cellbio-100617-062459] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.
Collapse
Affiliation(s)
- Edith Pierre-Jerome
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| | - Colleen Drapek
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|