1
|
Castrejón-Varela A, Monribot-Villanueva JL, Pérez-García B, Moya-Hernández A, Guerrero-Analco JA, Mehltreter K. Metabolomic Diversity and Defensive Phenolic Compounds in Cloud Forest Ferns. Chem Biodivers 2025; 22:e202401676. [PMID: 39680754 DOI: 10.1002/cbdv.202401676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The few current metabolomic studies on ferns are mostly restricted to a single species or focused on specific compounds. We performed an untargeted metabolomic study on six of the most common fern species from the cloud forest, followed by a targeted analysis of 64 phenolic compounds, many of which have been associated with herbivore defense. The untargeted analysis revealed a total of 232 putative identified metabolites from 463 to 1427 signals per fern species, each with its proper chemical signature but not necessarily correlated to their phylogenetic relationship. The flavonoid, flavone, and flavonol biosynthesis were the most expressed pathways in all species except for Marattia laxa. Fern species also differed strongly in the concentrations of the 10 detected phenolic compounds. Our results show that ferns, including the most ancestral species, such as M. laxa, display a high metabolomic diversity comparable to seed plants. Each fern species held a different combination of defensive phenolic compounds. Further research is needed to explore the metabolic diversity, to identify the biochemical defenses of ferns, and, in particular, to detect the chemical compounds that act against their specific herbivorous insects in the cloud forest ecosystem.
Collapse
Affiliation(s)
- Alejandra Castrejón-Varela
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | | | - Blanca Pérez-García
- Área de Botánica Estructural y Sistemática Vegetal, Depto. de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Araceli Moya-Hernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Klaus Mehltreter
- Red de Ecología Funcional, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| |
Collapse
|
2
|
Nascimento J, Sader M, Ribeiro T, Pedrosa-Harand A. Influence of Ty3/gypsy and Ty1/copia LTR-retrotransposons on the large genomes of Alstroemeriaceae: genome landscape of Bomarea edulis (Tussac) Herb. PROTOPLASMA 2025:10.1007/s00709-025-02036-2. [PMID: 39883160 DOI: 10.1007/s00709-025-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Repetitive elements are the main components of many plant genomes and play a crucial role in the variation of genome size and structure, ultimately impacting species diversification and adaptation. Alstroemeriaceae exhibits species with large genomes, not attributed to polyploidy. In this study, we analysed the repetitive fraction of the genome of Bomarea edulis through low-coverage sequencing and in silico characterization, and compared it to the repeats of Alstroemeria longistaminea, a species from a sister genus that has been previously characterized. LTR-retrotransposons were identified as the most abundant elements in the B. edulis genome (50.22%), with significant variations in abundance for specific lineages between the two species. The expansion of the B. edulis genome was likely due to three main lineages of LTR retrotransposons, Ty3/gypsy Tekay and Retand and Ty1/copia SIRE, all represented by truncated elements which were probably active in the past. Furthermore, the proportion of satDNA (~ 7%) was six times higher in B. edulis compared to A. longistaminea, with most families exhibiting a dispersed, uniform distribution in the genome. SatDNAs, thus, contributed to some extent to genome obesity. Despite diverging around 29 Mya, both species still share some satDNA families and retrotransposons. However, differences in repeat abundances and sequence variants led to genome differentiation despite their similar sizes and structure.
Collapse
Affiliation(s)
- Jéssica Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology (National Council for Scientific and Technical Research - National University of Córdoba), Córdoba, Argentina
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
3
|
Xu S, Chen R, Zhang X, Wu Y, Yang L, Sun Z, Zhu Z, Song A, Wu Z, Li T, Jin B, Niu S, Huang XC, Liu SJ, Yang CA, Jia G, He Y, Du F, Chen M, Chen F, Wang W, Sun H, Fu Y, Liao W, Pei H, Wu X, Zheng S, Xue JY, Ning G, Ming R, Teng N. The evolutionary tale of lilies: Giant genomes derived from transposon insertions and polyploidization. Innovation (N Y) 2024; 5:100726. [PMID: 39529947 PMCID: PMC11551468 DOI: 10.1016/j.xinn.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Sujuan Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Science and Technology Backyard Qixia of Jiangsu, Nanjing 210043, China
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqi Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Science and Technology Backyard Qixia of Jiangsu, Nanjing 210043, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210000, China
| | - Liuyan Yang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zongyi Sun
- Grandomics Biosciences, Wuhan 430070, China
| | - Zhitao Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210000, China
| | - Aiping Song
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Science and Technology Backyard Qixia of Jiangsu, Nanjing 210043, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Science and Technology Backyard Qixia of Jiangsu, Nanjing 210043, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Shihui Niu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xin-Cheng Huang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210000, China
| | - Si-Jie Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210000, China
| | - Cheng-Ao Yang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210000, China
| | - Guixia Jia
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Du
- Shanxi Agricultural University, Jinzhong 030801, China
| | - Minmin Chen
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Fei Chen
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya 572025, China
| | - Wenhe Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Hongmei Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaidi Pei
- Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xuewei Wu
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Sixiang Zheng
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jia-Yu Xue
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210000, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Lily Science and Technology Backyard Qixia of Jiangsu, Nanjing 210043, China
| |
Collapse
|
4
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
5
|
Decena MÁ, Sancho R, Inda LA, Pérez-Collazos E, Catalán P. Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in Brachypodium model grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1419255. [PMID: 39049853 PMCID: PMC11266827 DOI: 10.3389/fpls.2024.1419255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Brachypodium grass species have been selected as model plants for functional genomics of grass crops, and to elucidate the origins of allopolyploidy and perenniality in monocots, due to their small genome sizes and feasibility of cultivation. However, genome sizes differ greatly between diploid or polyploid Brachypodium lineages. We have used genome skimming sequencing data to uncover the composition, abundance, and phylogenetic value of repetitive elements in 44 representatives of the major Brachypodium lineages and cytotypes. We also aimed to test the possible mechanisms and consequences of the "polyploid genome shock hypothesis" (PGSH) under three different evolutionary scenarios of variation in repeats and genome sizes of Brachypodium allopolyploids. Our data indicated that the proportion of the genome covered by the repeatome in the Brachypodium species showed a 3.3-fold difference between the highest content of B. mexicanum-4x (67.97%) and the lowest of B. stacei-2x (20.77%), and that changes in the sizes of their genomes were a consequence of gains or losses in their repeat elements. LTR-Retand and Tekay retrotransposons were the most frequent repeat elements in the Brachypodium genomes, while Ogre retrotransposons were found exclusively in B. mexicanum. The repeatome phylogenetic network showed a high topological congruence with plastome and nuclear rDNA and transcriptome trees, differentiating the ancestral outcore lineages from the recently evolved core-perennial lineages. The 5S rDNA graph topologies had a strong match with the ploidy levels and nature of the subgenomes of the Brachypodium polyploids. The core-perennial B. sylvaticum presents a large repeatome and characteristics of a potential post-polyploid diploidized origin. Our study evidenced that expansions and contractions in the repeatome were responsible for the three contrasting responses to the PGSH. The exacerbated genome expansion of the ancestral allotetraploid B. mexicanum was a consequence of chromosome-wide proliferation of TEs and not of WGD, the additive repeatome pattern of young allotetraploid B. hybridum of stabilized post-WGD genome evolution, and the genomecontraction of recent core-perennials polyploids (B. pinnatum, B. phoenicoides) of repeat losses through recombination of these highly hybridizing lineages. Our analyses have contributed to unraveling the evolution of the repeatome and the genome size variation in model Brachypodium grasses.
Collapse
Affiliation(s)
- María Ángeles Decena
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Rubén Sancho
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Centro de Investigaciones Tecnológicas y Agroalimentarias de Aragón (CITA), Zaragoza, Spain
| | - Ernesto Pérez-Collazos
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| |
Collapse
|
6
|
Fernández P, Amice R, Bruy D, Christenhusz MJ, Leitch IJ, Leitch AL, Pokorny L, Hidalgo O, Pellicer J. A 160 Gbp fork fern genome shatters size record for eukaryotes. iScience 2024; 27:109889. [PMID: 39055604 PMCID: PMC11270024 DOI: 10.1016/j.isci.2024.109889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
Vascular plants are exceptional among eukaryotes due to their outstanding genome size diversity which ranges ∼2,400-fold, including the largest genome so far recorded in the angiosperm Paris japonica (148.89 Gbp/1C). Despite available data showing that giant genomes are restricted across the Tree of Life, the biological limits to genome size expansion remain to be established. Here, we report the discovery of an even larger eukaryotic genome in Tmesipteris oblanceolata, a New Caledonian fork fern. At 160.45 Gbp/1C, this record-breaking genome challenges current understanding and opens new avenues to explore the evolutionary dynamics of genomic gigantism.
Collapse
Affiliation(s)
- Pol Fernández
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Passeig del Migdia s.n, 08038 Barcelona, Spain
- Facultat de Farmàcia i Ciències de l’alimentació, Campus Diagonal, Universitat de Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Rémy Amice
- Independent researcher, Nouméa, New Caledonia
| | - David Bruy
- AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa 98848, New Caledonia
- UMR AMAP, Université de Montpellier, IRD, CIRAD, CNRS, INRAE, F-34000 Montpellier, France
| | - Maarten J.M. Christenhusz
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, 6845 Perth, WA, Australia
| | | | - Andrew L. Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Passeig del Migdia s.n, 08038 Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Passeig del Migdia s.n, 08038 Barcelona, Spain
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| |
Collapse
|
7
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Ekrt L, Férová A, Koutecký P, Vejvodová K, Hori K, Hornych O. An adventurous journey toward and away from fern apomixis: Insights from genome size and spore abortion patterns. AMERICAN JOURNAL OF BOTANY 2024; 111:e16332. [PMID: 38762794 DOI: 10.1002/ajb2.16332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/20/2024]
Abstract
PREMISE Apomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long-term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo-sex hybrid ferns. METHODS We analyzed the genome size of 15 fern species or hybrids ("taxa") via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo-sex hybrid Dryopteris × critica and its 16 apomictically formed offspring. RESULTS Four of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12-451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation. CONCLUSIONS Our results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.
Collapse
Affiliation(s)
- Libor Ekrt
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Alžběta Férová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Kateřina Vejvodová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Kiyotaka Hori
- The Kochi Prefectural Makino Botanical Garden, Godaisan 4200-6, Kochi, 781-8125, Japan
| | - Ondřej Hornych
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
9
|
Galià-Camps C, Pegueroles C, Turon X, Carreras C, Pascual M. Genome composition and GC content influence loci distribution in reduced representation genomic studies. BMC Genomics 2024; 25:410. [PMID: 38664648 PMCID: PMC11046876 DOI: 10.1186/s12864-024-10312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genomic architecture is a key evolutionary trait for living organisms. Due to multiple complex adaptive and neutral forces which impose evolutionary pressures on genomes, there is a huge variability of genomic features. However, their variability and the extent to which genomic content determines the distribution of recovered loci in reduced representation sequencing studies is largely unexplored. RESULTS Here, by using 80 genome assemblies, we observed that whereas plants primarily increase their genome size by expanding their intergenic regions, animals expand both intergenic and intronic regions, although the expansion patterns differ between deuterostomes and protostomes. Loci mapping in introns, exons, and intergenic categories obtained by in silico digestion using 2b-enzymes are positively correlated with the percentage of these regions in the corresponding genomes, suggesting that loci distribution mostly mirrors genomic architecture of the selected taxon. However, exonic regions showed a significant enrichment of loci in all groups regardless of the used enzyme. Moreover, when using selective adaptors to obtain a secondarily reduced loci dataset, the percentage and distribution of retained loci also varied. Adaptors with G/C terminals recovered a lower percentage of selected loci, with a further enrichment of exonic regions, while adaptors with A/T terminals retained a higher percentage of loci and slightly selected more intronic regions than expected. CONCLUSIONS Our results highlight how genome composition, genome GC content, RAD enzyme choice and use of base-selective adaptors influence reduced genome representation techniques. This is important to acknowledge in population and conservation genomic studies, as it determines the abundance and distribution of loci.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, Blanes, 17300, Spain.
| | - Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, Blanes, 17300, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
10
|
Herrick J. DNA Damage, Genome Stability, and Adaptation: A Question of Chance or Necessity? Genes (Basel) 2024; 15:520. [PMID: 38674454 PMCID: PMC11049855 DOI: 10.3390/genes15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNA damage causes the mutations that are the principal source of genetic variation. DNA damage detection and repair mechanisms therefore play a determining role in generating the genetic diversity on which natural selection acts. Speciation, it is commonly assumed, occurs at a rate set by the level of standing allelic diversity in a population. The process of speciation is driven by a combination of two evolutionary forces: genetic drift and ecological selection. Genetic drift takes place under the conditions of relaxed selection, and results in a balance between the rates of mutation and the rates of genetic substitution. These two processes, drift and selection, are necessarily mediated by a variety of mechanisms guaranteeing genome stability in any given species. One of the outstanding questions in evolutionary biology concerns the origin of the widely varying phylogenetic distribution of biodiversity across the Tree of Life and how the forces of drift and selection contribute to shaping that distribution. The following examines some of the molecular mechanisms underlying genome stability and the adaptive radiations that are associated with biodiversity and the widely varying species richness and evenness in the different eukaryotic lineages.
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher at 3, Rue des Jeûneurs, 75002 Paris, France
| |
Collapse
|
11
|
Peng Y, Wang Z, Li M, Wang T, Su Y. Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC PLANT BIOLOGY 2024; 24:73. [PMID: 38273309 PMCID: PMC10811885 DOI: 10.1186/s12870-024-04746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Collapse
Affiliation(s)
- Yang Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
12
|
Ptáček J, Ekrt L, Hornych O, Urfus T. Interploidy gene flow via a 'pentaploid bridge' and ploidy reduction in Cystopteris fragilis fern complex (Cystopteridaceae: Polypodiales). PLANT REPRODUCTION 2023; 36:321-331. [PMID: 37532893 DOI: 10.1007/s00497-023-00476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Our results indicate the existence of interploidy gene flow in Cystopteris fragilis, resulting in sexual triploid and diploid gametophytes from pentaploid parents. Similar evolutionary dynamics might operate in other fern complexes and need further investigation. Polyploidization and hybridization are a key evolutionary processes in ferns. Here, we outline an interploidy gene flow pathway operating in the polyploid Cystopteris fragilis complex. The conditions necessary for the existence of this pathway were tested. A total of 365 C. fragilis individuals were collected covering representatives of all three predominant ploidy levels (tetraploid, pentaploid, and hexaploid), cultivated, had their ploidy level estimated by flow cytometry, and their spores collected. The spores, as well as gametophytes and sporophytes established from them, were analysed by flow cytometry. Spore abortion rate was also estimated. In tetraploids, we observed the formation of unreduced (tetraploid) spores (ca 2%). Collected pentaploid individuals indicate ongoing hybridization between ploidy levels. Pentaploids formed up to 52% viable spores, ca 79% of them reduced, i.e. diploid and triploid. Reduced spores formed viable gametophytes, and, in the case of triploids, filial hexaploid sporophytes, showing evidence of sexual reproduction. Some tetraploid sporophytes reproduce apomictically (based on uniform ploidy of their metagenesis up to filial sporophytes). Triploid and diploid gametophytes from pentaploid parents are able to mate among themselves, or with "normal" reduced gametophytes from the sexual tetraploid sporophytes (the dominant ploidy level in the sporophytes in this populations), to produce tetraploid, pentaploid, and hexaploid sporophytes, allowing for geneflow from the pentaploids to both the tetraploid and hexaploid populations. Similar evolutionary dynamics might operate in other fern complexes and need further investigation.
Collapse
Affiliation(s)
- Jan Ptáček
- Department of Botany, Faculty of Science, Charles University, Benátská 2, , 128 00, Praha, Czech Republic
| | - Libor Ekrt
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ondřej Hornych
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Tomáš Urfus
- Department of Botany, Faculty of Science, Charles University, Benátská 2, , 128 00, Praha, Czech Republic.
| |
Collapse
|
13
|
Carnicer O, Hu YY, Ebenezer V, Irwin AJ, Finkel ZV. Genomic architecture constrains macromolecular allocation in dinoflagellates. Protist 2023; 174:125992. [PMID: 37738738 DOI: 10.1016/j.protis.2023.125992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Dinoflagellate genomes have a unique architecture that may constrain their physiological and biochemical responsiveness to environmental stressors. Here we quantified how nitrogen (N) starvation influenced macromolecular allocation and C:N:P of three photosynthetic marine dinoflagellates, representing different taxonomic classes and genome sizes. Dinoflagellates respond to nitrogen starvation by decreasing cellular nitrogen, protein and RNA content, but unlike many other eukaryotic phytoplankton examined RNA:protein is invariant. Additionally, 2 of the 3 species exhibit increases in cellular phosphorus and very little change in cellular carbon with N-starvation. As a consequence, N starvation induces moderate increases in C:N, but extreme decreases in N:P and C:P, relative to diatoms. Dinoflagellate DNA content relative to total C, N and P is much higher than similar sized diatoms, but similar to very small photosynthetic picoeukaryotes such as Ostreococcus. In aggregate these results indicate the accumulation of phosphate stores may be an important strategy employed by dinoflagellates to meet P requirements associated with the maintenance and replication of their large genomes.
Collapse
Affiliation(s)
- Olga Carnicer
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Ying-Yu Hu
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Vinitha Ebenezer
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, Canada.
| |
Collapse
|
14
|
Xu J, Liao B, Guo S, Xiao S, Liao X, Jiang H, Zang C, Shen X, Chu Y, Wu W, Dou D, Luo L, Li Q, Yang TJ, Guo Y, Huang Z, Chen S. MOMS: A pipeline for scaffolding using multi-optical maps. Mol Ecol Resour 2023; 23:1914-1929. [PMID: 37475148 DOI: 10.1111/1755-0998.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Here, we report a new multi-optical maps scaffolder (MOMS) aiming at utilizing complementary information among optical maps labelled by distinct enzymes. This pipeline was designed for data structure organization, scaffolding by path traversal, gap-filling and molecule reuse of optical maps. Our testing showed that this pipeline has uncapped enzyme tolerance in scaffolding. This means that there are no inbuilt limits as to the number of maps generated by different enzymes that can be utilized by MOMS. For the genome assembly of the human GM12878 cell line, MOMS significantly improved the contiguity and completeness with an up to 144-fold increase of scaffold N50 compared with initial assemblies. Benchmarking on the genomes of human and O. sativa showed that MOMS is more effective and robust compared with other optical-map-based scaffolders. We believe this pipeline will contribute to high-fidelity chromosome assembly and chromosome-level evolutionary analysis.
Collapse
Affiliation(s)
- Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejiao Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongshan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenguang Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiushi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tae-Jin Yang
- Department of Plant Science, Seoul National University, Seoul, South Korea
| | - Yiming Guo
- Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Fuselli S, Greco S, Biello R, Palmitessa S, Lago M, Meneghetti C, McDougall C, Trucchi E, Rota Stabelli O, Biscotti AM, Schmidt DJ, Roberts DT, Espinoza T, Hughes JM, Ometto L, Gerdol M, Bertorelle G. Relaxation of Natural Selection in the Evolution of the Giant Lungfish Genomes. Mol Biol Evol 2023; 40:msad193. [PMID: 37671664 PMCID: PMC10503785 DOI: 10.1093/molbev/msad193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/16/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Nonadaptive hypotheses on the evolution of eukaryotic genome size predict an expansion when the process of purifying selection becomes weak. Accordingly, species with huge genomes, such as lungfish, are expected to show a genome-wide relaxation signature of selection compared with other organisms. However, few studies have empirically tested this prediction using genomic data in a comparative framework. Here, we show that 1) the newly assembled transcriptome of the Australian lungfish, Neoceratodus forsteri, is characterized by an excess of pervasive transcription, or transcriptional leakage, possibly due to suboptimal transcriptional control, and 2) a significant relaxation signature in coding genes in lungfish species compared with other vertebrates. Based on these observations, we propose that the largest known animal genomes evolved in a nearly neutral scenario where genome expansion is less efficiently constrained.
Collapse
Affiliation(s)
- Silvia Fuselli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Biello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Marta Lago
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Corrado Meneghetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carmel McDougall
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Omar Rota Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, 38010 San Michele all'Adige, Italy
| | - Assunta Maria Biscotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Daniel J Schmidt
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | | | | | - Jane Margaret Hughes
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Zhang M, Qiu X. Genetic basis of genome size variation of wheat. Funct Integr Genomics 2023; 23:285. [PMID: 37648783 DOI: 10.1007/s10142-023-01194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023]
Abstract
Research on various species has revealed a connection between genome size variation and the physiological and ecological characteristics of the species, suggesting that it could be a crucial factor influencing a species' adaptability to different environments. Wheat, being one of the world's three primary grains, holds significance in this regard. Investigating the genome size of wheat and analyzing the genetic factors contributing to its variation could offer valuable insights for enhancing wheat agronomic traits. This project has developed a conservative site ratio calculation approach to determine the size of the wheat genome. Additionally, it employs flow cytometry and k-mer distribution analysis to validate this method. Furthermore, the researchers use re-sequencing data to investigate the impact of environmental selection pressure and transposon dynamics on the variation in the size of the wheat genome. The findings from this study demonstrate a strong relationship between the size of the wheat genome and several environmental factors. These results serve as a valuable reference for understanding the development of variation in the size of the hetero-hexaploid wheat genome. Moreover, they contribute to advancing fundamental research on the genetic mechanisms underlying wheat characteristics. Additionally, the study paves the way for exploring new research directions in wheat breeding, which holds promise for future advancements in this field.
Collapse
Affiliation(s)
- Ming Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuebing Qiu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Ruvindy R, Barua A, Bolch CJS, Sarowar C, Savela H, Murray SA. Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms. ISME COMMUNICATIONS 2023; 3:70. [PMID: 37422553 PMCID: PMC10329664 DOI: 10.1038/s43705-023-00274-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
The application of meta-barcoding, qPCR, and metagenomics to aquatic eukaryotic microbial communities requires knowledge of genomic copy number variability (CNV). CNV may be particularly relevant to functional genes, impacting dosage and expression, yet little is known of the scale and role of CNV in microbial eukaryotes. Here, we quantify CNV of rRNA and a gene involved in Paralytic Shellfish Toxin (PST) synthesis (sxtA4), in 51 strains of 4 Alexandrium (Dinophyceae) species. Genomes varied up to threefold within species and ~7-fold amongst species, with the largest (A. pacificum, 130 ± 1.3 pg cell-1 /~127 Gbp) in the largest size category of any eukaryote. Genomic copy numbers (GCN) of rRNA varied by 6 orders of magnitude amongst Alexandrium (102- 108 copies cell-1) and were significantly related to genome size. Within the population CNV of rRNA was 2 orders of magnitude (105 - 107 cell-1) in 15 isolates from one population, demonstrating that quantitative data based on rRNA genes needs considerable caution in interpretation, even if validated against locally isolated strains. Despite up to 30 years in laboratory culture, rRNA CNV and genome size variability were not correlated with time in culture. Cell volume was only weakly associated with rRNA GCN (20-22% variance explained across dinoflagellates, 4% in Gonyaulacales). GCN of sxtA4 varied from 0-102 copies cell-1, was significantly related to PSTs (ng cell-1), displaying a gene dosage effect modulating PST production. Our data indicate that in dinoflagellates, a major marine eukaryotic group, low-copy functional genes are more reliable and informative targets for quantification of ecological processes than unstable rRNA genes.
Collapse
Affiliation(s)
- Rendy Ruvindy
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Abanti Barua
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Christopher J S Bolch
- Institute for Marine & Antarctic Studies, University of Tasmania, Launceston, 7248, TAS, Australia
| | - Chowdhury Sarowar
- Sydney Institute of Marine Science, Chowder Bay Rd, Mosman, NSW, Australia
| | - Henna Savela
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
18
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1243-1266. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
19
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
20
|
Zhang J. What Has Genomics Taught An Evolutionary Biologist? GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1-12. [PMID: 36720382 PMCID: PMC10373158 DOI: 10.1016/j.gpb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Genomics, an interdisciplinary field of biology on the structure, function, and evolution of genomes, has revolutionized many subdisciplines of life sciences, including my field of evolutionary biology, by supplying huge data, bringing high-throughput technologies, and offering a new approach to biology. In this review, I describe what I have learned from genomics and highlight the fundamental knowledge and mechanistic insights gained. I focus on three broad topics that are central to evolutionary biology and beyond-variation, interaction, and selection-and use primarily my own research and study subjects as examples. In the next decade or two, I expect that the most important contributions of genomics to evolutionary biology will be to provide genome sequences of nearly all known species on Earth, facilitate high-throughput phenotyping of natural variants and systematically constructed mutants for mapping genotype-phenotype-fitness landscapes, and assist the determination of causality in evolutionary processes using experimental evolution.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Henniges MC, Johnston E, Pellicer J, Hidalgo O, Bennett MD, Leitch IJ. The Plant DNA C-Values Database: A One-Stop Shop for Plant Genome Size Data. Methods Mol Biol 2023; 2703:111-122. [PMID: 37646941 DOI: 10.1007/978-1-0716-3389-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Genome size is a plant character with far-reaching implications, ranging from impacts on the financial and computing feasibility of sequencing and assembling genomes all the way to influencing the very ecology and evolution of species. The increasing recognition of the role of genome size in plant science has led to a rising demand for comprehensive and easily accessible sources of genome size data. The Plant DNA C-values database has established itself as a trusted and widely used central hub for users needing to access available plant genome size data, complemented with related cytogenetic (ploidy level) and karyological (chromosome number) information where available. Since its inception in 2001, the database has undergone six major updates to incorporate newly available genome size information, leading to the most recent release (Release 7.1), which comprises data for 12,273 species across all the major land plant and some algal lineages. Here we describe how to use the database efficiently, making use of its different query and filtering settings.
Collapse
Affiliation(s)
- Marie C Henniges
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, UK
- Institut Botànic de Barcelona, IBB (CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, UK
- Institut Botànic de Barcelona, IBB (CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | | | | |
Collapse
|
22
|
Elliott TL, Zedek F, Barrett RL, Bruhl JJ, Escudero M, Hroudová Z, Joly S, Larridon I, Luceño M, Márquez-Corro JI, Martín-Bravo S, Muasya AM, Šmarda P, Thomas WW, Wilson KL, Bureš P. Chromosome size matters: genome evolution in the cyperid clade. ANNALS OF BOTANY 2022; 130:999-1014. [PMID: 36342743 PMCID: PMC9851305 DOI: 10.1093/aob/mcac136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/03/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
Collapse
Affiliation(s)
- Tammy L Elliott
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Australian Botanic Garden, Locked Bag 6002, Mount Annan, New South Wales 2567, Australia
| | - Jeremy J Bruhl
- Botany and N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes 6, 41012 Seville, Spain
| | - Zdenka Hroudová
- Institute of Botany of the Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
- National Museum, Department of Botany, Cirkusová 1740, 193 00 Prague 9, Czech Republic
| | - Simon Joly
- Montreal Botanical Garden, 4101, Sherbrooke East, Montreal, QC H1X 2B2, Canada
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101, Sherbrooke East, Montreal, QC H1X 2B2, Canada
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Modesto Luceño
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - José Ignacio Márquez-Corro
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - Santiago Martín-Bravo
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africaand
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | | | - Karen L Wilson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Australian Botanic Garden, Locked Bag 6002, Mount Annan, New South Wales 2567, Australia
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
23
|
Tang SK, Lee PH, Liou WT, Lin CH, Huang YM, Kuo LY. Fern Spores-"Ready-to-Use" Standards for Plant Genome Size Estimation Using a Flow Cytometric Approach. PLANTS (BASEL, SWITZERLAND) 2022; 12:140. [PMID: 36616269 PMCID: PMC9824788 DOI: 10.3390/plants12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Spores and pollen of plants were used as flow cytometric materials to efficiently infer genome sizes. Given this advantage, they hold great potential for various flow cytometric applications, particularly as plant genome size standards. To develop such novel standards, we investigated conditions of pretreatment (bead vortex), buffer, and reliable genome sizes of three fern spore collections-Cibotium taiwanense "Kuo4395", Sphaeropteris lepifera "Tang0001", and Alsophila metteniana "Lee s.n.". Additionally, up to 30 year-old spore collections were obtained from herbarium specimens and from samples stored at 4 °C; their spore nuclei were extracted, and the quality and quantity of these nucleus extractions through storage ages were examined. Nuclear extractions with a longer bead vortex duration or lower spore/bead ratio generally resulted in a higher recovered quantity but a lower quality or purity. For each spore standard, the protocol optimization was determined by their performance in bead vortex conditions, and a 1C genome size was further inferred by linear regression (C. taiwanense "Kuo4395" = 5.058 pg; S. lepifera "Tang0001" = 7.117 pg; and A. metteniana "Lee s.n." = 19.379 pg). Spore nucleus quality and quantity are significantly negatively correlated with storage ages. Nuclear extractions of 10-year-old refrigerated spores remained qualified as a genome size standard; however, none of the herbarium spore collections fit such criteria. Our study is the first to develop and apply dried and refrigerated spores for genome size standards. These standards are ready to use, easy to manipulate, and feature long-term storage in comparison with traditionally used standards of fresh leaves.
Collapse
Affiliation(s)
- Sheng-Kai Tang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Pei-Hsuan Lee
- Taiwan Forestry Research Institute, 53 Nan-Hai Road, Taipei City 100, Taiwan
| | - Wei-Ting Liou
- Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou County 557, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chen-Hsiang Lin
- Taoyuan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan City 327, Taiwan
| | - Yao-Moan Huang
- Taiwan Forestry Research Institute, 53 Nan-Hai Road, Taipei City 100, Taiwan
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300, Taiwan
| |
Collapse
|
24
|
Budimir I, Giampieri E, Saccenti E, Suarez-Diez M, Tarozzi M, Dall'Olio D, Merlotti A, Curti N, Remondini D, Castellani G, Sala C. Intraspecies characterization of bacteria via evolutionary modeling of protein domains. Sci Rep 2022; 12:16595. [PMID: 36198716 PMCID: PMC9534902 DOI: 10.1038/s41598-022-21036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring of infections and epidemics, as well as for the study of human health and its relationship with commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, representative OTU sequences are compared with reference (human-made) databases to derive their phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define the phylogenetic distance between bacteria based on protein domains, which are the evolving units of proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological approach to model their Relative Species Abundance distribution. Based on the model parameters, we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based method fails, providing a possibly complementary approach , which is particularly promising for the analysis of bacterial populations measured by shotgun sequencing.
Collapse
Affiliation(s)
- Iva Budimir
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Enrico Giampieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Martina Tarozzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Daniele Dall'Olio
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Alessandra Merlotti
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Nico Curti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy.
| | - Claudia Sala
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
25
|
Schley RJ, Pellicer J, Ge X, Barrett C, Bellot S, Guignard MS, Novák P, Suda J, Fraser D, Baker WJ, Dodsworth S, Macas J, Leitch AR, Leitch IJ. The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity. THE NEW PHYTOLOGIST 2022; 236:433-446. [PMID: 35717562 PMCID: PMC9796251 DOI: 10.1111/nph.18323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.
Collapse
Affiliation(s)
- Rowan J. Schley
- University of ExeterLaver Building, North Park RoadExeterDevonEX4 4QEUK
- Royal Botanic GardensKewSurreyTW9 3ABUK
| | - Jaume Pellicer
- Royal Botanic GardensKewSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | - Xue‐Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhou510650China
| | - Craig Barrett
- Department of BiologyWest Virginia UniversityMorgantownWV26506USA
| | | | | | - Petr Novák
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | | | | - Steven Dodsworth
- School of Biological SciencesUniversity of PortsmouthPortsmouthHampshirePO1 2DYUK
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | |
Collapse
|
26
|
Zhong Y, Liu Y, Wu W, Chen J, Sun C, Liu H, Shu J, Ebihara A, Yan Y, Zhou R, Schneider H. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides. Genome Biol Evol 2022; 14:evac127. [PMID: 35946426 PMCID: PMC9387920 DOI: 10.1093/gbe/evac127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Whole genome duplication has been recognized as a major process in speciation of land plants, especially in ferns. Whereas genome downsizing contributes greatly to the post-genome shock responses of polyploid flowering plants, diploidization of polyploid ferns diverges by maintaining most of the duplicated DNA and is thus expected to be dominated by genic processes. As a consequence, fern genomes provide excellent opportunities to study ecological speciation enforced by expansion of protein families via polyploidy. To test the key predictions of this hypothesis, we reported the de novo genome sequence of Adiantum nelumboides, a tetraploid homosporous fern. The obtained draft genome had a size of 6.27 Gb assembled into 11,767 scaffolds with the contig N50 of 1.37 Mb. Repetitive DNA sequences contributed with about 81.7%, a remarkably high proportion of the genome. With 69,568 the number of predicted protein-coding genes exceeded those reported in most other land plant genomes. Intragenomic synteny analyses recovered 443 blocks with the average block size of 1.29 Mb and the average gene content of 16 genes. The results are consistent with the hypothesis of high ancestral chromosome number, lack of substantial genome downsizing, and dominance of genic diploidization. As expected in the calciphilous plants, a notable number of detected genes were involved in calcium uptake and transport. In summary, the genome sequence of a tetraploid homosporous fern not only provides access to a genomic resource of a derived fern, but also supports the hypothesis of maintenance of high chromosome numbers and duplicated DNA in young polyploid ferns.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenyu Sun
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongmei Liu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Jiangping Shu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, and the Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, and the Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| |
Collapse
|
27
|
Dmitriev AA, Pushkova EN, Melnikova NV. Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding. Mol Biol 2022. [DOI: 10.1134/s0026893322040045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Moraes AP, Engel TBJ, Forni-Martins ER, de Barros F, Felix LP, Cabral JS. Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids. ANNALS OF BOTANY 2022; 130:11-25. [PMID: 35143612 PMCID: PMC9295925 DOI: 10.1093/aob/mcac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The entangled relationship of chromosome number and genome size with species distribution has been the subject of study for almost a century, but remains an open question due to previous ecological and phylogenetic knowledge constraints. To better address this subject, we used the clade Maxillariinae, a widely distributed and karyotypically known orchid group, as a model system to infer such relationships in a robust methodological framework. METHODS Based on the literature and new data, we gathered the chromosome number and genome size for 93 and 64 species, respectively. We built a phylogenetic hypothesis and assessed the best macroevolutionary model for both genomic traits. Additionally, we collected together ecological data (preferences for bioclimatic variables, elevation and habit) used as explanatory variables in multivariate phylogenetic models explaining genomic traits. Finally, the impact of polyploidy was estimated by running the analyses with and without polyploids in the sample. KEY RESULTS The association between genomic and ecological data varied depending on whether polyploids were considered or not. Without polyploids, chromosome number failed to present consistent associations with ecological variables. With polyploids, there was a tendency to waive epiphytism and colonize new habitats outside humid forests. The genome size showed association with ecological variables: without polyploids, genome increase was associated with flexible habits, with higher elevation and with drier summers; with polyploids, genome size increase was associated with colonizing drier environments. CONCLUSIONS The chromosome number and genome size variations, essential but neglected traits in the ecological niche, are shaped in the Maxillariinae by both neutral and adaptive evolution. Both genomic traits are partially correlated to bioclimatic variables and elevation, even when controlling for phylogenetic constraints. While polyploidy was associated with shifts in the environmental niche, the genome size emerges as a central trait in orchid evolution by the association between small genome size and epiphytism, a key innovation to Neotropical orchid diversification.
Collapse
Affiliation(s)
| | - Thaissa Brogliato Junqueira Engel
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Eliana R Forni-Martins
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Fábio de Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquidário do Estado, São Paulo, 04045-972, São Paulo, Brazil
| | - Leonardo P Felix
- Universidade Federal da Paraíba – UFPB, Campus II, Departamento de Ciências Biológicas, Areia, 58397-000, Paraíba, Brazil
| | - Juliano Sarmento Cabral
- University of Würzburg, Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), Klara-Oppenheimer-Weg 32, D-97074, Würzburg, Germany
| |
Collapse
|
29
|
Pellicer J. Uncovering the influence of genomic traits in shaping land plant diversity. A commentary on 'Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids'. ANNALS OF BOTANY 2022; 130:i-iii. [PMID: 35699527 PMCID: PMC9295919 DOI: 10.1093/aob/mcac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
30
|
Moreno-Aguilar MF, Inda LA, Sánchez-Rodríguez A, Arnelas I, Catalán P. Evolutionary Dynamics of the Repeatome Explains Contrasting Differences in Genome Sizes and Hybrid and Polyploid Origins of Grass Loliinae Lineages. FRONTIERS IN PLANT SCIENCE 2022; 13:901733. [PMID: 35845705 PMCID: PMC9284676 DOI: 10.3389/fpls.2022.901733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The repeatome is composed of diverse families of repetitive DNA that keep signatures on the historical events that shaped the evolution of their hosting species. The cold seasonal Loliinae subtribe includes worldwide distributed taxa, some of which are the most important forage and lawn species (fescues and ray-grasses). The Loliinae are prone to hybridization and polyploidization. It has been observed a striking two-fold difference in genome size between the broad-leaved (BL) and fine-leaved (FL) Loliinae diploids and a general trend of genome reduction of some high polyploids. We have used genome skimming data to uncover the composition, abundance, and potential phylogenetic signal of repetitive elements across 47 representatives of the main Loliinae lineages. Independent and comparative analyses of repetitive sequences and of 5S rDNA loci were performed for all taxa under study and for four evolutionary Loliinae groups [Loliinae, Broad-leaved (BL), Fine-leaved (FL), and Schedonorus lineages]. Our data showed that the proportion of the genome covered by the repeatome in the Loliinae species was relatively high (average ∼ 51.8%), ranging from high percentages in some diploids (68.7%) to low percentages in some high-polyploids (30.7%), and that changes in their genome sizes were likely caused by gains or losses in their repeat elements. Ty3-gypsy Retand and Ty1-copia Angela retrotransposons were the most frequent repeat families in the Loliinae although the relatively more conservative Angela repeats presented the highest correlation of repeat content with genome size variation and the highest phylogenetic signal of the whole repeatome. By contrast, Athila retrotransposons presented evidence of recent proliferations almost exclusively in the Lolium clade. The repeatome evolutionary networks showed an overall topological congruence with the nuclear 35S rDNA phylogeny and a geographic-based structure for some lineages. The evolution of the Loliinae repeatome suggests a plausible scenario of recurrent allopolyploidizations followed by diploidizations that generated the large genome sizes of BL diploids as well as large genomic rearrangements in highly hybridogenous lineages that caused massive repeatome and genome contractions in the Schedonorus and Aulaxyper polyploids. Our study has contributed to disentangling the impact of the repeatome dynamics on the genome diversification and evolution of the Loliinae grasses.
Collapse
Affiliation(s)
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Centro de Investigación y Tecnología Agroalimentaria, Zaragoza, Spain
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Itziar Arnelas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
31
|
Qiao X, Zhang S, Paterson AH. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Comput Struct Biotechnol J 2022; 20:3248-3256. [PMID: 35782740 PMCID: PMC9237934 DOI: 10.1016/j.csbj.2022.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 01/09/2023] Open
Abstract
Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification, providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800 species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contributions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and global efforts may substantially recapitulate the plant tree of life based on broader sampling of phylogenetic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of WGDs in plant adaptation and radiation.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
32
|
Lata D, Coates BS, Walden KKO, Robertson HM, Miller NJ. Genome size evolution in the beetle genus Diabrotica. G3 (BETHESDA, MD.) 2022; 12:jkac052. [PMID: 35234880 PMCID: PMC8982398 DOI: 10.1093/g3journal/jkac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Diabrocite corn rootworms are one of the most economically significant pests of maize in the United States and Europe and an emerging model for insect-plant interactions. Genome sizes of several species in the genus Diabrotica were estimated using flow cytometry along with that of Acalymma vittatum as an outgroup. Genome sizes ranged between 1.56 and 1.64 gigabase pairs and between 2.26 and 2.59 Gb, respectively, for the Diabrotica subgroups fucata and virgifera; the Acalymma vittatum genome size was around 1.65 Gb. This result indicated that a substantial increase in genome size occurred in the ancestor of the virgifera group. Further analysis of the fucata group and the virgifera group genome sequencing reads indicated that the genome size difference between the Diabrotica subgroups could be attributed to a higher content of transposable elements, mostly miniature inverted-transposable elements and gypsy-like long terminal repeat retroelements.
Collapse
Affiliation(s)
- Dimpal Lata
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Nicholas J Miller
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
33
|
Cai Z, Xie Z, Huang L, Wang Z, Pan M, Yu X, Xu S, Luo J. Full-length transcriptome analysis of Adiantum flabellulatum gametophyte. PeerJ 2022; 10:e13079. [PMID: 35287343 PMCID: PMC8917799 DOI: 10.7717/peerj.13079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Ferns are important components of plant communities on earth, but their genomes are generally very large, with many redundant genes, making whole genome sequencing of ferns prohibitively expensive and time-consuming. This means there is a significant lack of fern reference genomes, making molecular biology research difficult. The gametophytes of ferns can survive independently, are responsible for sexual reproduction and the feeding of young sporophytes, and play an important role in the alternation of generations. For this study, we selected Adiantum flabellulatum as it has both ornamental and medicinal value and is also an indicator plant of acidic soil. The full-length transcriptome sequencing of its gametophytes was carried out using PacBio three-generation sequencing technology. A total of 354,228 transcripts were obtained, and 231,705 coding sequences (CDSs) were predicted, including 5,749 transcription factors (TFs), 2,214 transcription regulators (TRs) and 4,950 protein kinases (PKs). The transcripts annotated by non-redundant protein sequence database (NR), Kyoto encyclopedia of genes and genomes (KEGG), eukaryotic ortholog groups (KOG), Swissprot, protein family (Pfma), nucleotide sequence database (NT) and gene ontology (GO) were 251,501, 197,474, 193,630, 194,639, 195,956, 113,069 and 197,883, respectively. In addition, 138,995 simple sequence repeats (SSRs) and 111,793 long non-coding RNAs (lncRNAs) were obtained. We selected nine chlorophyll synthase genes for qRT-PCR, and the results showed that the full-length transcript sequences and the annotation information were reliable. This study can provide a reference gene set for subsequent gene expression quantification.
Collapse
Affiliation(s)
- Zeping Cai
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zhenyu Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Luyao Huang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zixuan Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Min Pan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xudong Yu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Shitao Xu
- College of Horticulture, Hainan University, Haikou, Hainan, China
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
34
|
Wang FG, Wang AH, Bai CK, Jin DM, Nie LY, Harris AJ, Che L, Wang JJ, Li SY, Xu L, Shen H, Gu YF, Shang H, Duan L, Zhang XC, Chen HF, Yan YH. Genome size evolution of the extant lycophytes and ferns. PLANT DIVERSITY 2022; 44:141-152. [PMID: 35505989 PMCID: PMC9043363 DOI: 10.1016/j.pld.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 05/11/2023]
Abstract
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.
Collapse
Affiliation(s)
- Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ai-Hua Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Cheng-Ke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Dong-Mei Jin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Li-Yun Nie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Le Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan-Juan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shi-Yu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu-Feng Gu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Life Science and Technology College, Harbin Normal University, Harbin, 150025, China
| | - Hui Shang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Corresponding author.
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Corresponding author. The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, Guangdong, China.
| |
Collapse
|
35
|
Liu Y, Hu Z, Deng Y, Shang L, Gobler CJ, Tang YZ. Dependence of genome size and copy number of rRNA gene on cell volume in dinoflagellates. HARMFUL ALGAE 2021; 109:102108. [PMID: 34815026 DOI: 10.1016/j.hal.2021.102108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Dinoflagellates are an ecologically important group of protists in aquatic environment and have evolved many unusual and enigmatic genomic features such as immense genome sizes, high repeated genes, and a large portion of hydroxymethyluracil in DNA. Although previous studies have observed positive correlations between the large subunit (LSU) rRNA gene copy number and genome size of a variety of eukaryotic organisms (e.g. higher plants and animals), or between cell volume and LSU rRNA gene copy number, and/or between genome size and cell size, which suggests a possible co-evolution among these three features in different lineages of life, it remains an open question regarding the relationships among these three parameters in dinoflagellates. For the first time, we estimated the copy numbers of the LSU rRNA gene, the genome sizes, and cell volumes within a broad range of dinoflagellates (covering 15 species of 11 genera) using single-cell qPCR-based assay (determining LSU rRNA gene copy number), FlowCAM (cell volume measurement), and ultraviolet spectrophotometry (genome size estimation). The measured copy number of LSU rRNA gene ranged from 398 ± 184 (Prorocentrum minimum) to 152,078 ± 33,555 copies•cell-1 (Alexandrium pacificum), while the genome size and the cell volume ranged from 5.6 ± 0.2 (Karlodinium veneficum) to 853 ± 19.9 pg•cell-1 (Pseliodinium pirum), and from 1,070 ± 225 (Kar. veneficum) to 168,474 ± 124,180 μm3 (Ps. pirum), respectively. Together with the three parameters measured in literature, there are significant positive linear correlations between LSU rRNA gene copy numbers and genome sizes, cell volumes and LSU rRNA gene copy numbers, and between genome sizes and cell volumes via comparisons of multi-model regression analyses, suggesting a dependence of genome size and rRNA gene copy number on the cell volumes of dinoflagellates. Validation of the measurement methods was conducted via comparisons between reported data in the literature and that predicted using the linear equations we obtained, and between genome size measured by flow cytometry (FCM) and ultraviolet spectrophotometry (Nanodrop). These results provide insightful understandings of dinoflagellate evolution in terms of the relationships among genomes, gene copy number, and cell volume, and of rRNA gene-based studies in intra-populational and intra-individual genetic diversity, taxonomy, and diversity assessment in the environment of dinoflagellates. The results also provide a dataset useful for reads calibration in environmental metabarcoding studies of dinoflagellates and selection of candidate species for whole genome sequencing.
Collapse
Affiliation(s)
- Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
36
|
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. TRENDS IN PLANT SCIENCE 2021; 26:1039-1049. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Angiosperms show a remarkable range in genome size (GS), yet most species have small genomes, despite the frequency of polyploidy and repeat amplification in the ancestries of most lineages. It has been suggested that larger genomes incur costs that have driven selection for GS reduction, although the nature of these costs and how they might impact selection remain unclear. We explore potential costs of increased GS encompassing impacts on minimum cell size with consequences for photosynthesis and water-use efficiency and effects of greater nitrogen and phosphorus demands of the nucleus leading to more severe trade-offs with photosynthesis. We suggest that nutrient-, water-, and/or CO2-stressed conditions might favour species with smaller genomes, with implications for species' ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Lubna Faizullah
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Joseph A Morton
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | - Ilia J Leitch
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.
| |
Collapse
|
37
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
38
|
Beric A, Mabry ME, Harkess AE, Brose J, Schranz ME, Conant GC, Edger PP, Meyers BC, Pires JC. Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). G3 (BETHESDA, MD.) 2021; 11:jkab140. [PMID: 33993297 PMCID: PMC8495927 DOI: 10.1093/g3journal/jkab140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/10/2021] [Indexed: 11/14/2022]
Abstract
Genome sizes of plants have long piqued the interest of researchers due to the vast differences among organisms. However, the mechanisms that drive size differences have yet to be fully understood. Two important contributing factors to genome size are expansions of repetitive elements, such as transposable elements (TEs), and whole-genome duplications (WGD). Although studies have found correlations between genome size and both TE abundance and polyploidy, these studies typically test for these patterns within a genus or species. The plant order Brassicales provides an excellent system to further test if genome size evolution patterns are consistent across larger time scales, as there are numerous WGDs. This order is also home to one of the smallest plant genomes, Arabidopsis thaliana-chosen as the model plant system for this reason-as well as to species with very large genomes. With new methods that allow for TE characterization from low-coverage genome shotgun data and 71 taxa across the Brassicales, we confirm the correlation between genome size and TE content, however, we are unable to reconstruct phylogenetic relationships and do not detect any shift in TE abundance associated with WGD.
Collapse
Affiliation(s)
- Aleksandra Beric
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Makenzie E Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alex E Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Julia Brose
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen 6700 AA, The Netherlands
| | - Gavin C Conant
- Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
39
|
Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kögler A, Morgenstern K, Brückner M, Tröber U, Wolf H, Krabel D, Schmidt T. Comparative Repeat Profiling of Two Closely Related Conifers ( Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Front Genet 2021; 12:683668. [PMID: 34322154 PMCID: PMC8312256 DOI: 10.3389/fgene.2021.683668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic genomes, cycles of repeat expansion and removal lead to large-scale genomic changes and propel organisms forward in evolution. However, in conifers, active repeat removal is thought to be limited, leading to expansions of their genomes, mostly exceeding 10 giga base pairs. As a result, conifer genomes are largely littered with fragmented and decayed repeats. Here, we aim to investigate how the repeat landscapes of two related conifers have diverged, given the conifers' accumulative genome evolution mode. For this, we applied low-coverage sequencing and read clustering to the genomes of European and Japanese larch, Larix decidua (Lamb.) Carrière and Larix kaempferi (Mill.), that arose from a common ancestor, but are now geographically isolated. We found that both Larix species harbored largely similar repeat landscapes, especially regarding the transposable element content. To pin down possible genomic changes, we focused on the repeat class with the fastest sequence turnover: satellite DNAs (satDNAs). Using comparative bioinformatics, Southern, and fluorescent in situ hybridization, we reveal the satDNAs' organizational patterns, their abundances, and chromosomal locations. Four out of the five identified satDNAs are widespread in the Larix genus, with two even present in the more distantly related Pseudotsuga and Abies genera. Unexpectedly, the EulaSat3 family was restricted to L. decidua and absent from L. kaempferi, indicating its evolutionarily young age. Taken together, our results exemplify how the accumulative genome evolution of conifers may limit the overall divergence of repeats after speciation, producing only few repeat-induced genomic novelties.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Luise Schulte
- Institute of Botany, Technische Universität Dresden, Dresden, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kristin Morgenstern
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | | | - Ute Tröber
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Heino Wolf
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Doris Krabel
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
41
|
Borůvková V, Howell WM, Matoulek D, Symonová R. Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution. Genes (Basel) 2021; 12:genes12020312. [PMID: 33671814 PMCID: PMC7926999 DOI: 10.3390/genes12020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023] Open
Abstract
Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
Collapse
Affiliation(s)
- Veronika Borůvková
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (V.B.); (D.M.)
| | - W. Mike Howell
- Department of Biological and Environmental Sciences, Samford University, Birmingham, AL 35226, USA;
| | - Dominik Matoulek
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (V.B.); (D.M.)
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
42
|
Gargiulo R, Kull T, Fay MF. Effective double-digest RAD sequencing and genotyping despite large genome size. Mol Ecol Resour 2021; 21:1037-1055. [PMID: 33351289 DOI: 10.1111/1755-0998.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022]
Abstract
Obtaining informative data is the ambition of any genomic project, but in nonmodel species with very large genomes, pursuing such a goal requires surmounting a series of analytical challenges. Double-digest RAD sequencing is routinely used in nonmodel organisms and offers some control over the volume of data obtained. However, the volume of data recovered is not always an indication of the reliability of data sets, and quality checks are necessary to ensure that true and artefactual information is set apart. In the present study, we aim to fill the gap existing between the known applicability of RAD sequencing methods in plants with large genomes and the use of the retrieved loci for population genetic inference. By analysing two populations of Cypripedium calceolus, a nonmodel orchid species with a large genome size (1C ~ 31.6 Gbp), we provide a complete workflow from library preparation to bioinformatic filtering and inference of genetic diversity and differentiation. We show how filtering strategies to dismiss potentially misleading data need to be explored and adapted to data set-specific features. Moreover, we suggest that the occurrence of organellar sequences in libraries should not be neglected when planning the experiment and analysing the results. Finally, we explain how, in the absence of prior information about the genome of the species, seeking high standards of quality during library preparation and sequencing can provide an insurance against unpredicted technical or biological constraints.
Collapse
Affiliation(s)
| | - Tiiu Kull
- Estonian University of Life Sciences, Tartu, Estonia
| | - Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
43
|
Moura MN, Cardoso DC, Cristiano MP. The tight genome size of ants: diversity and evolution under ancestral state reconstruction and base composition. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The mechanisms and processes driving change and variation in the genome size (GS) are not well known, and only a small set of ant species has been studied. Ants are an ecologically successful insect group present in most distinct ecosystems worldwide. Considering their wide distribution and ecological plasticity in different environmental contexts, we aimed to expand GS estimation within Formicidae to examine distribution patterns and variation in GS and base composition and to reconstruct the ancestral state of this character in an attempt to elucidate the generalized pattern of genomic expansions. Genome size estimates were generated for 99 ant species, including new GS estimates for 91 species of ants, and the mean GS of Formicidae was found to be 0.38 pg. The AT/GC ratio was 62.40/37.60. The phylogenetic reconstruction suggested an ancestral GS of 0.38 pg according to the Bayesian inference/Markov chain Monte Carlo method and 0.37 pg according to maximum likelihood and parsimony methods; significant differences in GS were observed between the subfamilies sampled. Our results suggest that the evolution of GS in Formicidae occurred through loss and accumulation of non-coding regions, mainly transposable elements, and occasionally by whole genome duplication. However, further studies are needed to verify whether these changes in DNA content are related to colonization processes, as suggested at the intraspecific level.
Collapse
Affiliation(s)
- Mariana Neves Moura
- Programa de Pós-graduação em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Danon Clemes Cardoso
- Programa de Pós-graduação em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Maykon Passos Cristiano
- Programa de Pós-graduação em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
44
|
Samad NA, Hidalgo O, Saliba E, Siljak-Yakovlev S, Strange K, Leitch IJ, Dagher-Kharrat MB. Genome Size Evolution and Dynamics in Iris, with Special Focus on the Section Oncocyclus. PLANTS 2020; 9:plants9121687. [PMID: 33271865 PMCID: PMC7760388 DOI: 10.3390/plants9121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
Insights into genome size dynamics and its evolutionary impact remain limited by the lack of data for many plant groups. One of these is the genus Iris, of which only 53 out of c. 260 species have available genome sizes. In this study, we estimated the C-values for 41 species and subspecies of Iris mainly from the Eastern Mediterranean region. We constructed a phylogenetic framework to shed light on the distribution of genome sizes across subgenera and sections of Iris. Finally, we tested evolutionary models to explore the mode and tempo of genome size evolution during the radiation of section Oncocyclus. Iris as a whole displayed a great variety of C-values; however, they were unequally distributed across the subgenera and sections, suggesting that lineage-specific patterns of genome size diversification have taken place within the genus. The evolutionary model that best fitted our data was the speciational model, as changes in genome size appeared to be mainly associated with speciation events. These results suggest that genome size dynamics may have contributed to the radiation of Oncocyclus irises. In addition, our phylogenetic analysis provided evidence that supports the segregation of the Lebanese population currently attributed to Iris persica as a distinct species.
Collapse
Affiliation(s)
- Nour Abdel Samad
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France;
| | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Spain
- Correspondence: (O.H.); (M.B.D.-K.)
| | - Elie Saliba
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France;
| | - Kit Strange
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
| | - Magda Bou Dagher-Kharrat
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
- Correspondence: (O.H.); (M.B.D.-K.)
| |
Collapse
|
45
|
Abstract
Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.
Collapse
|
46
|
Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K, Šilerová A, Šmerda J, Knápek O. Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. ANNALS OF BOTANY 2020; 126:323-330. [PMID: 32474609 PMCID: PMC7380457 DOI: 10.1093/aob/mcaa095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.
Collapse
Affiliation(s)
- Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
- For correspondence. E-mail
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Charles Stirton
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Murdoch, Perth, Australia
- Department of Geography and Environmental Studies, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Lucie Horová
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Kristýna Veselá
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Alexandra Šilerová
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Ondřej Knápek
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| |
Collapse
|
47
|
Mamun MA, Albergante L, J Blow J, Newman TJ. 3 tera-basepairs as a fundamental limit for robust DNA replication. Phys Biol 2020; 17:046002. [PMID: 32320972 DOI: 10.1088/1478-3975/ab8c2f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In order to maintain functional robustness and species integrity, organisms must ensure high fidelity of the genome duplication process. This is particularly true during early development, where cell division is often occurring both rapidly and coherently. By studying the extreme limits of suppressing DNA replication failure due to double fork stall errors, we uncover a fundamental constant that describes a trade-off between genome size and architectural complexity of the developing organism. This constant has the approximate value N U ≈ 3 × 1012 basepairs, and depends only on two highly conserved molecular properties of DNA biology. We show that our theory is successful in interpreting a diverse range of data across the Eukaryota.
Collapse
Affiliation(s)
- M Al Mamun
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom. CIB-CSIC, Madrid 28040, Spain
| | | | | | | |
Collapse
|
48
|
Li A, Li A, Deng Z, Guo J, Wu H. Cross-Species Annotation of Expressed Genes and Detection of Different Functional Gene Modules Between 10 Cold- and 10 Hot-Propertied Chinese Herbal Medicines. Front Genet 2020; 11:532. [PMID: 32625232 PMCID: PMC7314971 DOI: 10.3389/fgene.2020.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
According to the traditional Chinese medicine (TCM) system, Chinese herbal medicines (HMs) can be divided into four categories: hot, warm, cold, and cool. A cool nature usually is categorized as a cold nature, and a warm nature is classified as a hot nature. However, the detectable characteristics of the gene expression profile associated with the cold and hot properties have not been studied. To address this question, a strategy for the cross-species annotation of conserved genes was established in the present study by using transcriptome data of 20 HMs with cold and hot properties. Functional enrichment analysis was performed on group-specific expressed genes inferred from the functional genome of the reference species (i.e., Arabidopsis). Results showed that metabolic pathways relevant to chrysoeriol, luteolin, paniculatin, and wogonin were enriched for cold-specific genes, and pathways of inositol, heptadecane, lauric acid, octanoic acid, hexadecanoic acid, and pentadecanoic acid were enriched for hot-specific genes. Six functional modules were identified in the HMs with the cold property: nucleotide biosynthetic process, peptidy-L-cysteine S-palmitoylation, lipid modification, base-excision repair, dipeptide transport, and response to endoplasmic reticulum stress. For the hot HMs, another six functional modules were identified: embryonic meristem development, embryonic pattern specification, axis specification, regulation of RNA polymerase II transcriptional preinitiation complex assembly, mitochondrial RNA modification, and cell redox homeostasis. The research provided a new insight into HMs’ cold and hot properties from the perspective of the gene expression profile of plants.
Collapse
Affiliation(s)
- Arong Li
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Aqian Li
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhijun Deng
- Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jiewen Guo
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Boutanaev AM, Nemchinov LG. Genome Size Dynamics within Multiple Genera of Diploid Seed Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Choi IY, Kwon EC, Kim NS. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genomics 2020; 42:699-714. [DOI: 10.1007/s13258-020-00941-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
|