1
|
Determination of opiates in urine samples using a composite of covalent organic framework and polypyrrole as a sorbent for microextraction in a packed syringe combined with HPLC/UV. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
2
|
Mohamed AH, Yahaya N, Mohamad S, Kamaruzaman S, Osman H, Nishiyama N, Hirota Y. Synthesis of oil palm empty fruit bunch-based magnetic-carboxymethyl cellulose nanofiber composite for magnetic solid-phase extraction of organophosphorus pesticides in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
de Freitas DA, Barbosa JA, Labuto G, Nocelli RCF, Carrilho ENVM. Removal of the pesticide thiamethoxam from sugarcane juice by magnetic nanomodified activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79855-79865. [PMID: 34997927 PMCID: PMC8742164 DOI: 10.1007/s11356-021-18484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The removal of the neonicotinoid and systemic pesticide thiamethoxam (TMX) from water and sugarcane juice by magnetic nanomodified activated carbon (AC-NP) is proposed. This adsorbent was synthesized and characterized by FTIR, XRD, and SEM, and TMX was quantified by high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD). The AC-NP was efficiently synthesized using a co-precipitation method and the impregnation of magnetite (NP) in the activated carbon (AC) was assessed by the crystalline planes found in the AC-NP structure shown in the XRD diffractograms. The AC-NP FTIR analysis also indicated predominant bands of Fe-O stretching of the magnetite at 610-570 cm-1. Functional groups in AC and AC-NP were identified by absorption bands at 3550 and 1603 cm-1, characteristic of O-H and C = C, respectively. The TMX adsorption kinetics in sugarcane juice was the pseudo-second-order type with r2 = 0.9999, indicating a chemical adsorption process. The experimental sorption capacity (SCexp) for both TMX (standard) and TMX-I (insecticide) by AC-NP were 13.44 and 42.44 mg/g, respectively. Seven non-linear isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Toth, Hill, Sips, and Redlich-Peterson) were fitted to the experimental adsorption data of TMX and TMX-I by AC-NP. Considering the standard error (SE), Freundlich, Langmuir, and Sips were the most appropriate models to describe the TMX adsorption, and Hill's best adjusted to TMX-I experimental data. The chromatographic method was highly satisfactory due to its high selectivity and recovery (91-103%). The efficiency of AC-NP in the sorption of TMX was confirmed by the excellent values of SCexp and sorption kinetics.
Collapse
Affiliation(s)
- Driélle Aparecida de Freitas
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, Araras, SP, 13604-900, Brazil
| | - Júlia Adorno Barbosa
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, Araras, SP, 13604-900, Brazil
| | - Geórgia Labuto
- Laboratory of Integrated Sciences, Federal University of São Paulo, Diadema, SP, 09972-270, Brazil
- Departamento de Química, Universidade Federal de São Paulo, Diadema, SP, 09913-030, Brazil
| | | | - Elma Neide Vasconcelos Martins Carrilho
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, Araras, SP, 13604-900, Brazil.
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13604-900, Brazil.
| |
Collapse
|
4
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Comparison of Adsorbents Containing Carbon Nanotubes for Express Pre-Concentration of Volatile Organic Compounds from the Air Flow. SEPARATIONS 2021. [DOI: 10.3390/separations8040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New composite adsorbents including silica supports (silica, aerosilogel, and diatomite) and carbon materials (multiwall carbon nanotubes and pyrolytic carbon) have been prepared and characterized. The analytical capabilities of the produced sorbents have been evaluated by their efficiency in the express pre-concentration of volatile organic compounds (butanol and phenols) from the air stream. The prepared surface-layered adsorbents containing multiwall carbon nanotubes placed onto the surface of aerosilogel by use of the carbon vapor deposition method with preloading cobalt nanostructures as a catalyst were found significantly more efficient than traditionally used graphitic carbon-based adsorbents Carbopacks B, C, and X. Additionally, a new adsorbent composed of diatomite Porochrome-3 support coated with a pyrocarbon layer was prepared. This low surface area composited adsorbent allowed both quantitative pre-concentration of phenol and isomeric cresols from the air and their thermal desorption. The developed adsorbents provided fast pre-concentration of selected phenols with a concentration factor of 2 × 103 in 5 min and were used for gas chromatographic determination of analytes in the air at low concentration levels starting from several μg/m3 with a flame ionization detector.
Collapse
|
6
|
Sayed MA, Aly HF, Mahmoud HH, Abdelwahab SM, Helal AI, Wilson LD. Design of hybrid goethite nanocomposites as potential sorbents for lanthanum from aqueous media. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1853168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Moubarak A. Sayed
- Central Laboratory for Elemental and Isotopic Analysis, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Inshas, 13759, Egypt
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada
| | - H. F. Aly
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Inshas, 13759, Egypt
| | - H. H. Mahmoud
- Central Laboratory for Elemental and Isotopic Analysis, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
- Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Giza, Egypt
| | - S. M. Abdelwahab
- Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - A. I. Helal
- Central Laboratory for Elemental and Isotopic Analysis, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Ardean C, Ciopec M, Davidescu CM, Negrea P, Voda R. Kinetics and Thermodynamics Studies for Cadmium (II) Adsorption onto Functionalized Chitosan with Hexa-Decyl-Trimethyl-Ammonium Chloride. MATERIALS 2020; 13:ma13235552. [PMID: 33291450 PMCID: PMC7730077 DOI: 10.3390/ma13235552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022]
Abstract
A new adsorbent material was obtained by functionalization of chitosan with hexa-decyl-trimethyl-ammonium chloride and tested as an adsorbent for Cd(II) ions. Functionalization is due to the desire to improve the adsorbent properties of the biopolymer used for removal of metallic ions. Obtained material was characterized by FTIR (Fourier Transform InfraRed spectroscopy), SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray Spectroscopy). To prove the Cd(II) adsorption mechanism, we performed adsorption tests determining influence of biopolymer ratio, pH, contact time, temperature and Cd(II) initial concentration. Obtained experimental data were modeled using two kinetics models: pseudo-first-order and pseudo-second-order models. Cd(II) adsorption kinetics was better described by pseudo-second-order model. Further, experimental data were fitted using three different adsorption isotherms: Langmuir, Freundlich and Sips. The studied adsorption process is well described by the Sips adsorption isotherm, when the maximum adsorption capacity value is near the experimental one. Likewise, we evaluated the values of thermodynamic parameters which indicate that the studied process is an endothermic and spontaneous one, being a physical adsorption. Prepared adsorbent materials have a maximum adsorption capacity of 204.3 mg Cd2+ per gram at pH > 4.0 and 298 K. In addition, this material was reused for Cd2+ recovery for 20 times.
Collapse
|
8
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Bahrani S, Ghaedi M, Asfaram A, Mansoorkhani MJK, Javadian H. Rapid ultrasound-assisted microextraction of atorvastatin in the sample of blood plasma by nickel metal organic modified with alumina nanoparticles. J Sep Sci 2020; 43:4469-4479. [PMID: 33048447 DOI: 10.1002/jssc.202000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
In the present work, nickel-1,4-benzenedioxyacetic acid was synthesized as a rod-like metal organic material and then modified with alumina nanoparticles to synthesize nickel metal organic modified-Al2 O3 nanoparticles. The material was found as an efficient sorbent for the enrichment of atorvastatin in human blood plasma. After the extraction of the sample of plasma by ultrasound-assisted dispersive solid phase extraction, high performance liquid chromatography-ultraviolet was used to determine the quantitatively pre-concentrated interest analyte. The conditions for optimum extraction were achieved by the optimization of the volume of eluent, dosage of the sorbent, and time of sonication. Solution pH of 7.0, 250 μL of ethanol, 45 mg of the sorbent, and 10 min of sonication time were the conditions for extracting the atorvastatin maximum recovery of higher than 97.0%. By using desirability function for the optimization of the process, the present method showed a response that was linear ranging from 0.2 to 800 ng/mL with regression coefficient of 0.999 in the plasma of human blood with a satisfactory detection limit of 0.05 ng/mL, while the precision of interday for the current method was found to be <5%. It can be concluded that dispersive solid phase extraction method is effective for the extraction of atorvastatin from human plasma samples (97.4-102%) due to its easy operation, simplicity, repeatability, and reliability.
Collapse
Affiliation(s)
- Sonia Bahrani
- Department of Chemistry, Yasouj University, Yasuj, Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, Barcelona, Spain
| |
Collapse
|
10
|
Ahmad H, Zhao L, Liu C, Cai C, Ma F. Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-OES determination. Food Chem 2020; 338:128028. [PMID: 33091983 DOI: 10.1016/j.foodchem.2020.128028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Direct determination of arsenic species in real samples is challenging due to their trace concentration and spectral interferences by coexisting ions. Herein, we proposed an ultrasound-assisted dispersive solid phase microextraction (DSPME) procedure for the analyses of the trace inorganic arsenic. The hydrothermally synthesized cadmium sulfide nanoparticles (CdS NPs) completely adsorbed both arsenic species within 20 s at the initial arsenic concentration of 100 µg L-1. The detection limit (3 S/m) of the proposed method was found to be 0.5 ± 0.2 and 0.8 ± 0.2 ng L-1 for As(III) and As(V), respectively. The accuracy of the method against the systematic and constant errors was confirmed by the analysis of the Standard Reference Material (SRM) (>95% recovery with <5% RSD). The Student's t-test values were found to be less than the critical Student's t value at a 95% confidence level. The method was successfully employed for the determination of arsenic in food samples.
Collapse
Affiliation(s)
- Hilal Ahmad
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| | - Lihua Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China.
| | - Chaojie Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| | - Fuqing Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| |
Collapse
|
11
|
Bilal M, Rasheed T, Mehmood S, Tang H, Ferreira LFR, Bharagava RN, Iqbal HMN. Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials - A review. CHEMOSPHERE 2020; 253:126770. [PMID: 32464768 DOI: 10.1016/j.chemosphere.2020.126770] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023]
Abstract
An unprecedented rise in population growth and rapid worldwide industrial development are associated with the increasing discharge of a range of toxic and baleful compounds. These toxic pollutants including dyes, endocrine-disrupters, heavy metals, personal care products, and pharmaceuticals are destructing nature's balance and intensifying environmental toxicity at a disquieting rate. Therefore, finding better, novel and more environmentally sound approaches for wastewater remediation are of great importance. Nanoscale materials have opened up some new horizons in various fields of science and technology. Among a range of treatment technologies, nanostructured materials have recently received incredible interest as an emerging platform for wastewater remediation owing to their exceptional surface-area-to-volume ratio, unique electrical and chemical properties, quantum size effects, high scalability, and tunable surface functionalities. An array of nanomaterials including noble metal-based nanostructures, transition metal oxide nanomaterials, carbon-based nanomaterials, carbon nanotubes, and graphene/graphene oxide nanomaterials to their novel nanocomposites and nanoconjugates have been attempted as the promising catalysts to overcome environmental dilemmas. In this review, we summarized recent advances in nanostructured materials that are particularly engineered for the remediation of environmental contaminants. The toxicity of various classes of relevant tailored nanomaterials towards human health and the ecosystem along with perspectives is also presented. In our opinion, an overview of the up-to-date advancements on this emerging topic may provide new ideas and thoughts for engineering low-cost and highly-efficient nanostructured materials for the abatement of recalcitrant pollutants for a sustainable environment.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research, Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| |
Collapse
|
12
|
Barbosa JA, Labuto G, Carrilho ENVM. Magnetic nanomodified activated carbon: characterization and use for organic acids sorption in aqueous medium. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1791832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Júlia Adorno Barbosa
- Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, Brazil
| | - Geórgia Labuto
- Laboratory of Integrated Sciences, Universidade Federal de São Paulo, Diadema, Brazil
- Departamento de Química, Universidade Federal de São Paulo, Diadema, Brazil
| | - Elma Neide Vasconcelos Martins Carrilho
- Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, Brazil
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, Brazil
| |
Collapse
|
13
|
Eskandarpour M, Jamshidi P, Moghaddam MR, Ghasmei JB, Shemirani F. Developing a highly selective method for preconcentration and determination of cobalt in water and nut samples using 1-(2-pyridylazo)-2-naphthol and UV-visible spectroscopy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2272-2279. [PMID: 31930504 DOI: 10.1002/jsfa.10257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Heavy metal contamination in water and agricultural products is a major concern that causes risks for human health. This article describes a highly selective approach to preconcentrate cobalt(II) (Co(II)) ions based on the standard UV-visible measurement of Co(II)-1-(2-pyridylazo)-2-naphthol complex at λ = 628 nm in water and nut samples. In this method, magnetic silica (mSiO2 ) was utilized as a practical sorbent and 1-(2-pyridylazo)-2-naphthol was employed as a complexing agent in the elution step. The adsorbent was characterized via X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the main variables (pH, adsorption time, sorbent amount, pH of eluent, ligand volume, and desorption time) were investigated and established. RESULTS The maximum recovery was achieved at pH 7 ± 0.3, adsorption time of 60 min, sorbent amount of 40 mg, eluent pH 8 ± 0.2, ligand volume of 2 mL (16.95 × 10-4 mol L-1 ) and desorption time of 30 min. The linearity of dynamic range (10-500 μg L-1 ), limit of detection (0.32 μg L-1 ), relative standard deviation (3.04%), and preconcentration factor (25) show the reliability of the method. The sorbent was reusable 12 times. Selectivity and the effect of interference ions were successfully examined. The adsorption process of Co(II) ions on mSiO2 was investigated based on Langmuir and Freundlich isotherms. The Freundlich model was fitted with the system and the maximum capacity adsorption of mSiO2 for Co(II) adsorption is 2.35 mg g-1 . Then, the kinetics study revealed that the adsorption process of Co(II) ions on the mSiO2 follows the pseudo-first-order model. The thermodynamics parameters ΔG, ΔS, and ΔH were calculated. CONCLUSION The method was fruitfully applied to preconcentrate Co(II) ions in water and nut samples. This method offers high selectivity and precision for determining Co(II) ions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Parastoo Jamshidi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Jahan B Ghasmei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Pyrzynska K. Nanomaterials in speciation analysis of metals and metalloids. Talanta 2020; 212:120784. [PMID: 32113547 DOI: 10.1016/j.talanta.2020.120784] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have draw extensive attention from the scientists in recent years mainly due to their unique and attractive thermal, mechanical and electronic properties, as well as high surface to volume ratio and the possibility for surface functionalization. Whereas mono functional nanomaterials providing a single function, the preparation of core/shell nanoparticles allows different properties to be combined in one material. Their properties have been extensively exploited in different extraction techniques to improve the efficiency of separation and preconcentration, analytical selectivity and method reliability. The aim of this paper is to provide an updated revision of the most important features and application of nanomaterials (metallic, silica, polymeric and carbon-based) for solid phase extraction and microextraction techniques in speciation analysis of some metals and metalloids (As, Cr, Sb, Se). Emphasis will be placed on the presentation of the most representative works published in the last five years (2015-2019).
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-93, Warsaw, Poland.
| |
Collapse
|
15
|
Review of Ionic Liquids in Microextraction Analysis of Pesticide Residues in Fruit and Vegetable Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03818-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Rawtani D, Tharmavaram M, Pandey G, Hussain CM. Functionalized nanomaterial for forensic sample analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Hamid Shirkhanloo, Kheirolnesa Merchant, Mostafa Dehghani Mobarake. Ultrasound-assisted Solid-liquid Trap Phase Extraction based on Functionalized Multi Wall Carbon Nanotubes for Preconcentration and Separation of Nickel in Petrochemical Waste Water. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Sayed MA, Helal AI, Abdelwahab SM, Mahmoud HH, Aly HF. Sorption and possible preconcentration of europium and gadolinium ions from aqueous solutions by Mn3O4 nanoparticles. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00906-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
|
20
|
Radiochemical separation of reactor produced Sc-47 from natural calcium target using Poly(acrylamide-acrylic acid)/multi-walled carbon nanotubes composite. Appl Radiat Isot 2019; 150:87-94. [DOI: 10.1016/j.apradiso.2019.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
|
21
|
Jakubus A, Gromelski M, Jagiello K, Puzyn T, Stepnowski P, Paszkiewicz M. Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Llaver M, Wuilloud RG. Separation and preconcentration of inorganic Se species in tap and natural waters using unfunctionalized nanosilica as sorption material in dispersive micro-solid phase extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Enteshari Najafabadi M, Kazemi E, Bagheri H. Gradient extractive phase prepared by controlled rate infusion method: An applicable approach in solid phase microextraction for non-targeted analysis. J Chromatogr A 2018; 1574:130-135. [PMID: 30195859 DOI: 10.1016/j.chroma.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 01/08/2023]
Abstract
The aim of this study is to introduce an extractive phase based on gradient concept by continuous changing in chemical functional groups for non-targeted analysis. For this purpose, three different two-component coatings containing (3-aminopropyl)trimethoxysilane (APTES) as polar and either phenyltriethoxysilane (PTES), octyl-trimethoxysilane (OTMS) or methyltrimethoxysilane (MTMS) as nonpolar precursors were formed on the modified stainless steel wires using controlled rate infusion (CRI) method. The presence of polar and/or non-polar functional groups on the surface of substrate was evaluated by Fourier-transform infrared spectroscopy (FTIR) together with contact angles determined alongside the gradient surface. The morphology and thickness of the prepared fibers were also investigated by scanning electron microscopy (SEM). Furthermore, uniform single-component fibers from polar (APTES) and nonpolar (PTES) coatings were fabricated in order to be compared with the gradient sorbent. The gradient phase was implemented as a fiber coating in headspace- or immersed-solid phase microextraction of various compounds including chlorobenzenes, polycyclic aromatic hydrocarbons, chlorophenols and volatile organic compounds (Log Kow range: -0.77 to 4.64). Under the optimized condition, the limits of detection and quantification were obtained in the range of 0.01-0.5 μg L-1 and 0.05-1.5 μg L-1, respectively. The intra-day and inter-day relative standard deviations of 2-10% and 11-17% were achieved, respectively. The method was successfully applied to the extraction of VOCs from real water sample and relative recoveries were between 89 and 105%. The capability and efficiency of the gradient coating appears to be quite appropriate for non-targeted analysis.
Collapse
Affiliation(s)
- Marzieh Enteshari Najafabadi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Elahe Kazemi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
24
|
Hashemi B, Zohrabi P, Shamsipur M. Recent developments and applications of different sorbents for SPE and SPME from biological samples. Talanta 2018; 187:337-347. [DOI: 10.1016/j.talanta.2018.05.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
|
25
|
Jõul P, Vaher M, Kuhtinskaja M. Evaluation of carbon aerogel-based solid-phase extraction sorbent for the analysis of sulfur mustard degradation products in environmental water samples. CHEMOSPHERE 2018; 198:460-468. [PMID: 29425946 DOI: 10.1016/j.chemosphere.2018.01.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/28/2018] [Indexed: 05/15/2023]
Abstract
In this study, SPE method using a carbon aerogel(CA)-based sorbent was developed and evaluated for the simultaneous extraction of sulfur mustard (HD) degradation products from environmental water samples. Applied CAs proved to be very promising materials for use as SPE sorbents, due to their high porosity, very low density and a large specific surface area. 10 degradation products of HD, both aliphatic and cyclic (thiodiglycol (TDG), TDG sulfoxide, TDG sulfone, 3,5-dithia-1,7-heptanediol, 3,6-dithia-1,8-octanediol, 1,4-thioxane, 1,3-dithiolane, 1,4-dithiane, 1,2,5-trithiepane, and 1,4,5-oxadithiepane) were extracted on a CA-based SPE cartridge. The concentrations of target analytes in the eluate were determined by HPLC-DAD and CE-DAD. Several parameters affecting the extraction efficiency, including the kind and volume of the eluting solvent, sample loading flow rate, volume and ionic strength as well as the reusability of the cartridge, were investigated and optimized to achieve the best performance for the analytes. A series of quantitative parameters such as linear range, coefficient of determination, LOD, LOQ and precision were examined under the optimized conditions. High sensitivity (LODs 0.17-0.50 μM) and high precision (intraday RSD = 2.0-7.7% and interday RSD = 2.7-9.9%) for all the analytes were achieved. The performance of the CA-based sorbent was compared with that of commonly used SPE sorbents. Applied for the analysis of spiked pore water samples collected from the Bornholm Basin, one of the largest chemical warfare dumping sites in the Baltic Sea, the proposed method allowed high SPE recoveries of all the analytes ranging from 83.5 to 99.7% to be obtained.
Collapse
Affiliation(s)
- Piia Jõul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
26
|
Ghani M, Palomino Cabello C, Saraji M, Manuel Estela J, Cerdà V, Turnes Palomino G, Maya F. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks. J Sep Sci 2018; 41:2012-2019. [DOI: 10.1002/jssc.201701420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Milad Ghani
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | | | - Mohammad Saraji
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | - Jose Manuel Estela
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | - Víctor Cerdà
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | - Gemma Turnes Palomino
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | - Fernando Maya
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| |
Collapse
|
27
|
Baranik A, Gagor A, Queralt I, Marguí E, Sitko R, Zawisza B. Determination and speciation of ultratrace arsenic and chromium species using aluminium oxide supported on graphene oxide. Talanta 2018; 185:264-274. [PMID: 29759199 DOI: 10.1016/j.talanta.2018.03.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Alumina supported on graphene oxide (Al2O3/GO) nanocomposite as new nanosorbent in dispersive micro-solid phase extraction (DMSPE) for As(V) and Cr(III) preconcentration is described. The crucial issue of the study is synthesis of novel nanocomposite suitable for sorption of selected species of arsenic and chromium. Al2O3/GO demonstrates selectivity toward arsenates in the presence of arsenites at pH 5 and chromium(III) ions in the presence of chromate anions at pH 6. The Al2O3/GO nanocomposite was characterized by scanning electron microscopy (SEM) transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and the Raman spectroscopy. The maximum adsorption capacity calculated based on the Langmuir adsorption model were 43.9 mg g-1 and 53.9 mg g-1 for As(V) and Cr(III), respectively. The nanocomposite was used as solid sorbent in preconcentration of As(V) and Cr(III)_ions from water samples and their determination using energy dispersive X-ray fluorescence spectrometry (EDXRF). The As(V) and Cr(III) ions can be quantitatively preconcentrated from 25 to 100 mL aqueous samples within 5 min using DMSPE procedure and 1 mg of Al2O3/GO. The nanocomposite was also used for preparation of Al2O3/GO membrane. Then, As(V) and Cr(III)_ions can be retained under flow condition by passing analyzed solution through Al2O3/GO membrane. Under the optimized conditions, As(V) and Cr(III) ions can be determined with very good recovery (92-108%), precision (RSD 2.7-4.0%) and excellent limit of detection (0.02 ng mL-1 As and 0.11 ng mL-1 Cr). The accuracy of the method was studied by analyzing certified reference materials (NIST 1640a) and spiked real water samples.
Collapse
Affiliation(s)
- Anna Baranik
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Anna Gagor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
| | - Ignasi Queralt
- Institute of Environmental Assessment and Water Research, Dep. of Geosciences, IDAEA-CSIC, Jordi Girona St., 18-26, 08034 Barcelona, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Faculty of Sciences, C/M.Aurèlia Campmany, 69, Girona, Spain
| | - Rafal Sitko
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Beata Zawisza
- University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
28
|
Pęgier M, Kilian K, Pyrzyńska K. Enrichment of scandium by carbon nanotubes in the presence of calcium matrix. Microchem J 2018. [DOI: 10.1016/j.microc.2017.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
García-Valverde MT, Rosende M, Lucena R, Cárdenas S, Miró M. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode. Anal Chem 2018; 90:4783-4791. [DOI: 10.1021/acs.analchem.8b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Teresa García-Valverde
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - María Rosende
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| | - Rafael Lucena
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
30
|
Peng J, Tian H, Du Q, Hui X, He H. A regenerable sorbent composed of a zeolite imidazolate framework (ZIF-8), Fe 3O 4 and graphene oxide for enrichment of atorvastatin and simvastatin prior to their determination by HPLC. Mikrochim Acta 2018; 185:141. [PMID: 29594811 DOI: 10.1007/s00604-018-2697-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/20/2018] [Indexed: 11/25/2022]
Abstract
Graphene oxide (GO), nanosized Fe3O4 and zeolite imidazolate framework-8 (ZIF-8) were hybridized as a multifunctional sorbent for use in microextraction. The sorbent was characterized by SEM, TEM, XRD and FTIR. The composite is porous, has a high specific surface (> 600 m2·g-1) and is paramagnetic. The GO sheets are shown to act as carriers for the Fe3O4 nanoparticles and ZIF-8. The composite is a viable material for the preconcentration of atorvastatin and simvastatin from urine prior to their determination by HPLC with PDA detection. The limits of detection are 116 and 387 pg·mL-1, respectively. Recoveries from spiked urine samples range between 84.7 and 95.7%, with relative standard deviation of ≤4.5%. Enrichment factors range from 169 to 191. The method was successfully applied to the determination of atorvastatin in urine. Moreover, this sorbent is regenerable and recyclable for at least seven times without obvious decrease in performance. Graphical abstract A composite sorbent composed of a zeolite imidazolate framework, Fe3O4 and graphene oxide was applied to the extraction of statins in urine prior their determination by HPLC.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Huairu Tian
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiuzheng Du
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Xuanhong Hui
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Hua He
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China.
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Jiangsu Province, 211198, China.
| |
Collapse
|
31
|
Pyrzyńska K, Kilian K, Pęgier M. Separation and purification of scandium: From industry to medicine. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1430589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Mateusz Pęgier
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Paszkiewicz M, Sikorska C, Leszczyńska D, Stepnowski P. Helical Multi-walled Carbon Nanotubes as an Efficient Material for the Dispersive Solid-Phase Extraction of Low and High Molecular Weight Polycyclic Aromatic Hydrocarbons from Water Samples: Theoretical Study. WATER, AIR, AND SOIL POLLUTION 2018; 229:253. [PMID: 30237636 PMCID: PMC6133110 DOI: 10.1007/s11270-018-3884-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 05/17/2023]
Abstract
The differences in effectiveness of multi-walled carbon nanotubes (MWCNTs) as the dispersive solid-phase extraction (dSPE) sorbent for the selective extraction of polycyclic aromatic hydrocarbons (PAHs) were explained on the basis of theoretical study. It was observed that for low molecular weight PAHs, the recoveries using non-helical and helical MWCNTs were similar. In contrary, for PAHs containing five or more aromatic rings, the extraction efficiency was higher using HMWCNTs than for non-helical ones. Principle component analysis (PCA) as well as providing structural parameters and interaction energies for adsorption processes (PAH + CNT → PAH-CNT) have been used for this purpose. All the PAH + CNT → PAH-CNT adsorption processes considered were found to be thermodynamically favorable. However, the adsorption energies (Eads) for PAHs and the helical carbon nanotube surface estimated for the B(a)P-HCNT and I(1,2,3-cd)P-HCNT are substantially less negative than those observed for PAH molecules interacting with the non-helical CNT. Namely, the Eads calculated in simulated aqueous environment for the B(a)P-MWCNT(6,2) and I(1,2,3-cd)P-MWCNT(6,2) were respectively - 43.32 and - 59.98 kcal/mol, while values of only - 7.75 kcal/mol (B(a)P-HCNT) and - 9.13 kcal/mol (I(1,2,3-cd)P-HCNT) were found for the corresponding PAH-HCNT systems. Therefore, we conclude that the replacement of MWCNTs with HCNTs leads to PAH-HCNT systems in which the interaction energies are much smaller than those estimated for the corresponding PAH-MWCNT systems. HMWCNTs are therefore recommended as the dSPE sorbent phase for the extraction of both low and high molecular weight PAHs from water samples.
Collapse
Affiliation(s)
- Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, Jackson State University, 1400 John R. Lynch Street, Jackson, MS 39217 USA
| | - Celina Sikorska
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Danuta Leszczyńska
- Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, Jackson State University, 1400 John R. Lynch Street, Jackson, MS 39217 USA
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
33
|
Saraji M, Jafari MT, Amooshahi MM. Sol-gel/nanoclay composite as a sorbent for microextraction in packed syringe combined with corona discharge ionization ion mobility spectrometry for the determination of diazinon in water samples. J Sep Sci 2017; 41:493-500. [DOI: 10.1002/jssc.201700967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Mohammad Saraji
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | | | | |
Collapse
|
34
|
Hemmati M, Rajabi M, Asghari A. Ultrasound-promoted dispersive micro solid-phase extraction of trace anti-hypertensive drugs from biological matrices using a sonochemically synthesized conductive polymer nanocomposite. ULTRASONICS SONOCHEMISTRY 2017; 39:12-24. [PMID: 28732927 DOI: 10.1016/j.ultsonch.2017.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
In this work, a rapid and efficient procedure named ultrasound meliorated dispersive micro solid-phase extraction followed by high performance liquid chromatography-ultra violet detection (US-D-μSPE-HPLC-UV) was developed for the pre-concentration of the main trace anti-hypertensive drugs in complex matrices. The basis of this procedure was a polypyrrole-sodium dodecylbenzenesulfonate/zinc oxide (PPy-DBSNa/ZnO) nanocomposite. It was readily synthesized by the impressive way of in situ sonochemical oxidative polymerization in the presence of some additives such as FeCl3 and DBSNa, ultimately leading to the effective coating of PPy on the ZnO nanoparticle cores. Characterization of the proposed nanosorbent was performed by different techniques such as FESEM, XRD,EDX, and TGA, confirming the high quality and proper physico-chemical properties of the proposed sorbent. In order to better investigate the input variables, the central composite design (CCD) combined with the desirability function (DF) was utilized. The enriched optimum conditions consisted of the initial pH value of 11.8, 15mg of the PPy-DBSNa/ZnO nanocomposite, a sonication time of 4.6min, and 100μL of methanol, resulting in maximum responses at a relatively low extraction time with a logical DF. Under the optimum conditions, good linearity (5-5000, 2.5-3500, and 2.5-3000ngmL-1 for metoprolol, propranolol, and carvedilol, respectively, with the correlation of determinations (R2s) higher than 0.99), low limits of detection (LODs) (0.8-1.5ngmL-1), proper repeatabilities (relative standard deviation values (RSDs) below 6.3%, n=3), reasonable enrichment factors (EFs) (60-72), and good extraction recoveries (ERs) (higher than %75) were obtainable. These appropriate validations corroborated a good effectiveness of ultrasonic waves in the achievement of a supreme solid phase as well as a facile and efficient microextraction of the low therapeutic concentrations in human plasma and urine samples.
Collapse
Affiliation(s)
- Maryam Hemmati
- Department of Chemistry, Semnan University, Semnan 2333383-193, Iran
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan 2333383-193, Iran.
| | - Alireza Asghari
- Department of Chemistry, Semnan University, Semnan 2333383-193, Iran
| |
Collapse
|
35
|
Hemmati M, Rajabi M, Asghari A. A twin purification/enrichment procedure based on two versatile solid/liquid extracting agents for efficient uptake of ultra-trace levels of lorazepam and clonazepam from complex bio-matrices. J Chromatogr A 2017; 1524:1-12. [DOI: 10.1016/j.chroma.2017.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
36
|
MCM-41 as novel solid phase sorbent for the pre-concentration of pesticides in environmental waters and determination by microflow liquid chromatography-quadrupole linear ion trap mass spectrometry. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Kilian K, Pyrzyńska K, Pęgier M. Comparative Study of Sc(III) Sorption onto Carbon-based Materials. SOLVENT EXTRACTION AND ION EXCHANGE 2017. [DOI: 10.1080/07366299.2017.1354580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Mateusz Pęgier
- Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Beeram SR, Rodriguez E, Doddavenkatanna S, Li Z, Pekarek A, Peev D, Goerl K, Trovato G, Hofmann T, Hage DS. Nanomaterials as stationary phases and supports in liquid chromatography. Electrophoresis 2017; 38:2498-2512. [DOI: 10.1002/elps.201700168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Zhao Li
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Allegra Pekarek
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Darin Peev
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - Kathryn Goerl
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Gianfranco Trovato
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - Tino Hofmann
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - David S. Hage
- Department of Chemistry University of Nebraska Lincoln NE USA
| |
Collapse
|
39
|
Tavakoli M, Hajimahmoodi M, Shemirani F, Dezfuli AS, Khanavi M. Application of Fe3O4/RGO Nanocomposite as a Sorbent of Pesticides. Chromatographia 2017. [DOI: 10.1007/s10337-017-3361-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Kędziora K, Wasiak W. Extraction media used in needle trap devices—Progress in development and application. J Chromatogr A 2017; 1505:1-17. [DOI: 10.1016/j.chroma.2017.05.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
41
|
Tian Y, Feng J, Bu Y, Wang X, Luo C, Sun M. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2017; 409:4071-4078. [DOI: 10.1007/s00216-017-0353-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
42
|
Khezeli T, Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Determination of Fluazinam in Vegetables and Fruits Using a Modified QuEChERS Method and Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Krawczyk M, Stanisz E. Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the determination of mercury species. Talanta 2016; 161:384-391. [DOI: 10.1016/j.talanta.2016.08.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 11/29/2022]
|
45
|
Chen S, Li J, Lu D, Zhang Y. Dual extraction based on solid phase extraction and solidified floating organic drop microextraction for speciation of arsenic and its distribution in tea leaves and tea infusion by electrothermal vaporization ICP-MS. Food Chem 2016; 211:741-7. [DOI: 10.1016/j.foodchem.2016.05.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/22/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
46
|
Martinis EM, Wuilloud RG. Enhanced spectrophotometric detection of Hg in water samples by surface plasmon resonance of Au nanoparticles after preconcentration with vortex-assisted liquid-liquid microextraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 167:111-115. [PMID: 27262659 DOI: 10.1016/j.saa.2016.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/05/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Estefanía M Martinis
- Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Rodolfo G Wuilloud
- Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
47
|
Application of solid phase extraction procedures for rare earth elements determination in environmental samples. Talanta 2016; 154:15-22. [DOI: 10.1016/j.talanta.2016.03.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
|
48
|
Yavuz E, Tokalıoğlu Ş, Şahan H, Patat Ş. Nanosized spongelike Mn 3 O 4 as an adsorbent for preconcentration by vortex assisted solid phase extraction of copper and lead in various food and herb samples. Food Chem 2016; 194:463-9. [DOI: 10.1016/j.foodchem.2015.08.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 01/24/2023]
|
49
|
|
50
|
Rocío-Bautista P, Pino V, Ayala JH, Pasán J, Ruiz-Pérez C, Afonso AM. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. J Chromatogr A 2016; 1436:42-50. [DOI: 10.1016/j.chroma.2016.01.067] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/20/2022]
|