1
|
Ajab H, Khan MH, Naveed P, Abdullah MA. Evolution and recent development of cellulose-modified, nucleic acid-based and green nanosensors for trace heavy metal ion analyses in complex media: A review. Int J Biol Macromol 2025; 307:141745. [PMID: 40057091 DOI: 10.1016/j.ijbiomac.2025.141745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
With increased manufacturing activities and energy sector development, monitoring of heavy metal ion (HMI) pollution is becoming increasingly pressing. The discharge of metals from industrial effluents into the waterways could cause major economic and environmental disruption. In situ and on-site detection methods of trace HMIs can be effective countermeasures before the toxicity spreads out to larger areas, affecting the ecosystem. Conventional methods are often lacking in portability and costly. In contrast, electrochemical sensing, especially with nanoplatforms, is promising for trace detection of HMIs in complex media because of the ease of fabrication and adaptability of incorporating green technology. Appropriate electrode selection with suitable modifiers is crucial in complex medium analyses to overcome electrode fouling. In this review, the evolution from metal-based and carbon-based electrodes to advancements in electrode modification involving agro/biocomposite nanomaterials (NMs) such as cellulose, chitosan, and hydroxyapatite is discussed. The fabrication of nucleic acid-based aptasensors for analyzing HMIs and the adoption of smart systems based on microfluidics with high selectivity, operational stability, and sensitivity are highlighted. The challenges and future prospects for trace HMI determination based on electrochemical sensors in real complex media, including blood and industrial effluent or wastewater, are critically examined.
Collapse
Affiliation(s)
- Huma Ajab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Muhammad Hashim Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Pakeeza Naveed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mohd Azmuddin Abdullah
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
2
|
Solcova O, Dlaskova M, Kastanek F. Innovative Sorbents for the Removal of Micropollutants from Water. Molecules 2025; 30:1444. [PMID: 40286024 PMCID: PMC11990518 DOI: 10.3390/molecules30071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
This review summarizes the current knowledge in the field of preparing new and/or innovative materials that can be advantageously used for the sorption of emerging pollutants from water. This paper highlights new innovative materials such as transition metal-modified biochar, zeolites, clays, carbon fibers, graphene, metal organic frameworks, and aerogels. These materials have great potential for the removal of heavy metals from water, particularly due to their large surface area, nanoscale size, and availability of various functionalities; moreover, they can easily be chemically modified and recycled. This paper not only highlights the advantages and ever-improving physicochemical properties of these new types of materials but also critically points out their shortcomings and suggests possible future directions.
Collapse
Affiliation(s)
- Olga Solcova
- Institute of Chemical Process Fundamentals ASCR, v.v.i., Rozvojová 135/1, 16500 Prague, Czech Republic; (M.D.); (F.K.)
| | | | | |
Collapse
|
3
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
4
|
Gutiérrez-Fernández L, Díez-Pascual AM, San Andrés MP. Dispersive Solid Phase Extraction of Melatonin with Graphene/Clay Mixtures and Fluorescence Analysis in Surfactant Aqueous Solutions. Molecules 2024; 29:2699. [PMID: 38893572 PMCID: PMC11173625 DOI: 10.3390/molecules29112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
In this work, the dispersive solid phase extraction (dSPE) of melatonin using graphene (G) mixtures with sepiolite (SEP) and bentonite (BEN) clays as sorbents combined with fluorescence detection has been investigated. The retention was found to be quantitative for both G/SEP and G/BEN 4/96 and 10/90 w/w mixtures. G/clay 4/96 w/w mixtures were selected to study the desorption process since the retention was weaker, thus leading to easier desorption. MeOH and aqueous solutions of the nonionic surfactant Brij L23 were tested as desorbents. For both clays and an initial sample volume of 25 mL, a percentage of melatonin recovery close to 100% was obtained using 10 or 25 mL of MeOH as desorbent. Further, using a G/SEP mixture, 25 mL as the initial sample volume and 5 mL of MeOH or 60 mM Brij L23 solution as the desorbent, recoveries of 98.3% and 90% were attained, respectively. The whole method was applied to herbal tea samples containing melatonin, and the percentage of agreement with the labeled value was 86.5%. It was also applied to herbal samples without melatonin by spiking them with two concentrations of this compound, leading to recoveries of 100 and 102%.
Collapse
Affiliation(s)
- Lucía Gutiérrez-Fernández
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain; (L.G.-F.); (A.M.D.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Teng G, Bai H, Zhang C, Yang J, Wang X, Zhu Y, Tian F. Functionalized magnetic nanomaterials as recyclable adsorbents for efficient flavonoid enrichment in Scutellaria Radix. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124156. [PMID: 38749101 DOI: 10.1016/j.jchromb.2024.124156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
A magnetic composite (Fe3O4@SiO2@PNIPAM-co-NHMA) with high adsorption capacity and recoverability was developed for the enrichment and determination of flavonoids in Scutellaria Radix (SR). A magnetic solid-phase extraction (MSPE) technique using Fe3O4@SiO2@PNIPAM-co-NHMA absorbent in combination with high-performance liquid chromatography (HPLC) was developed for selectively enrichment and determination of the biologically active flavonoids in the aqueous extract of SR, including baicalein, baicalin, wogonoside and wogonin. Under the optimized experimental conditions, the magnetic adsorbent could adsorb up to 77.0 ± 0.98 % - 98.15 ± 0.15 % of four representative flavonoids from SR, with elution rates varying from 55.10 ± 0.25 % to 91.94 ± 1.85 %. The limits of detection (LOD) and limits of quantitation (LOQ) were 0.01-0.35 μg/mL and 0.03-0.98 μg/mL, respectively. In addition, it remained effective after six replicates, demonstrating its potential as a recoverable adsorbent for enriching flavonoids in traditional Chinese medicine.
Collapse
Affiliation(s)
- Guohua Teng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hezhao Bai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chen Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoye Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yu Zhu
- Department of Clinical Laboratory, Nankai University Affiliated Third Central Hospital, Tianjin 300170, China; Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China.
| | - Fei Tian
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
6
|
Dutta S, Sinelshchikova A, Andreo J, Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. NANOSCALE HORIZONS 2024; 9:885-899. [PMID: 38591932 DOI: 10.1039/d4nh00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water pollution and the global freshwater crisis are the most alarming concerns of the 21st century, as they threaten the sustainability and ecological balance of the environment. The growth of global population, climate change, and expansion of industrial processes are the main causes of these issues. Therefore, effective remediation of polluted water by means of detoxification and purification is of paramount importance. To this end, nanoscience and nanotechnology have emerged as viable options that hold tremendous potential toward the advancement of wastewater treatment methods to enhance treatment efficiency along with augmenting water supply via utilization of unconventional water sources. Materials at the nano level have shown great promise toward water treatment applications owing to their unique physicochemical properties. In this focus article, we highlight the role of new fundamental properties at the nano scale and material properties that are drastically increased due to the nano dimension (e.g. volume-surface ratio) and highlight their impact and potential toward water treatment. We identify and discuss how nano-properties could improve the three main domains of water remediation: the identification of pollutants, their adsorption and catalytic degradation. After discussing all the beneficial aspects we further discuss the key challenges associated with nanomaterials for water treatment. Looking at the current state-of-the-art, the potential as well as the challenges of nanomaterials, we believe that in the future we will see a significant impact of these materials on many water remediation strategies.
Collapse
Affiliation(s)
- Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
8
|
Tanveer ZI, Ahmad K, Dong Z, Chen Y, Liu X, Wu Y, Xu T. Evaluation of reduced graphene oxide-based nanomaterial as dispersive solid phase extraction sorbent for isolation and purification of aflatoxins from poultry feed, combined with UHPLC-MS/MS analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1035-1048. [PMID: 37459595 DOI: 10.1080/19440049.2023.2232896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023]
Abstract
Poultry feed comprises cereals and their by-products and is vulnerable to aflatoxins contamination. This study utilised reduced graphene oxide-titanium dioxide (rGO-TiO2) nanomaterial as a dispersive solid phase extraction (d-SPE) adsorbent to extract, enrich and purify aflatoxins (aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2). The synthesis of rGO-TiO2 nanomaterials through hydrothermal process and characterisation by transmission electron microscopy, scanning electron microscopy, Brunauer-Emmett-Teller (BET) and X-ray diffraction reveals that the nanomaterials have a single-layer structure embedded with TiO2 nanoparticles. The matrix-spiked technique was employed for the extraction process, optimisation of d-SPE, and analytical method validation. The most appropriate extraction solvent was acetonitrile/water/formic acid (79/20/1, v/v/v), with 30 min of extraction time assisted by ultra-sonication. The optimised d-SPE parameters were: 50 mg of rGO-TiO2 as sorbent amount, 2% methanol as the sample loading solvent, 30 min as adsorption time, and absolute ethanol as the washing reagent. The d-SPE method exhibited good desorption efficiency with 3 mL of acetonitrile/formic acid (99/1, v/v) and 20 min desorption time. After validation, the UHPLC-MS/MS analytical method has an acceptable range of specificity, linearity (R2 ≥ 0.999), sensitivity (LOQ 0.04-0.1 µg kg-1), recoveries (74-105% at three matrix-spiked levels) and precision (RSD 1.5-9.6%). Poultry feed samples (n = 12) were pretreated by this method to extract, enrich and analyse aflatoxins, which were detected in all poultry feed samples. The contamination levels were within the permissible limits.
Collapse
Affiliation(s)
- Zafar Iqbal Tanveer
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Khurshid Ahmad
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Ziliang Dong
- Chongqing Taiji Industry (Group) Co., Ltd., Chongqing, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tenfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Kommalapati HS, Pilli P, Samanthula G. Green sample preparation in bioanalysis: where are we now? Bioanalysis 2023; 15:363-366. [PMID: 37141420 DOI: 10.4155/bio-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Affiliation(s)
- Hema Sree Kommalapati
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Hyderabad, Balanagar, Telangana, 500037, India
| | - Pushpa Pilli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Hyderabad, Balanagar, Telangana, 500037, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Hyderabad, Balanagar, Telangana, 500037, India
| |
Collapse
|
10
|
Preparation of Fe3O4-Reduced Graphene-Activated Carbon from Wastepaper in the Dispersive Solid-Phase Extraction and UHPLC-PDA Determination of Antibiotics in Human Plasma. SEPARATIONS 2023. [DOI: 10.3390/separations10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
In this work, a sorbent was prepared from wastepaper samples enriched with iron oxide particles and graphene oxide and used in the solid phase extraction of antibiotics. The precursor underwent a carbothermal reduction to promote the formation of paramagnetic phases useful for the recovery of the sorbent during the analysis, and to disperse and fix graphene and the iron oxide in a durable way throughout the cellulose structure. Characterizations were carried out to evaluate the composition (Raman, XRD and EDX) and the morphological structure (SEM) of the material. A UHPLC-PDA method was developed for the simultaneous determination of antibiotics from different drug families (carbapenems, fluoroquinolones, β-lactams) using a 120 SB-C 18 poroshell column (50 × 2.1 mm I.D., 2.7 um particle size) and a mobile phase consisting of 10 mM acetate buffer at pH 5 (Line A) and acetonitrile (Line B) both containing 0.1% of triethylamine. A gradient elution was used for the separation of the analytes, while for the quantitative analysis each analyte was determined at its maximum wavelength. Several experiments were carried out to evaluate the influence of different parameters involving the dispersive magnetic solid phase extraction of these analytes. Samples were extracted using 25 mg of sorbent at pH 5 and desorbed in 5 min using methanol. We report herein on some of the outstanding advantages of using carbon-based sorbent, such as lower toxicity, scalability, improved absorption capacity, target selectivity and stability in acidic medium. Moreover, from the results obtained it is evident that, despite the use of some recycled materials, the performances obtained were comparable or even superior to the methods reported in the literature.
Collapse
|
11
|
Kori AH, Jagirani MS, Soylak M. Graphene-Based Nanomaterials: A Sustainable Material for Solid-Phase Microextraction (SPME) for Environmental Applications. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2173221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abdul Hameed Kori
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| |
Collapse
|
12
|
Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Green bioanalysis: an innovative and eco-friendly approach for analyzing drugs in biological matrices. Bioanalysis 2022; 14:881-909. [PMID: 35946313 DOI: 10.4155/bio-2022-0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Green bioanalytical techniques aim to reduce or eliminate the hazardous waste produced by bioanalytical technologies. A well-organized and practical approach towards bioanalytical method development has an enormous contribution to the green analysis. The selection of the appropriate sample extraction process, organic mobile phase components and separation technique makes the bioanalytical method green. UHPLC-MS is the best option, whereas supercritical fluid chromatography is one of the most effective green bioanalytical procedures. Nevertheless, there remains excellent scope for further research on green bioanalytical methods. This review details the various sample preparation techniques that follow green analytical chemistry principles. Furthermore, it presents green solvents as a replacement for conventional organic solvents and highlights the strategies to convert modern analytical techniques to green methods.
Collapse
|
14
|
A Study of Methylene Blue Dye Interaction and Adsorption by Monolayer Graphene Oxide. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7385541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The graphene oxide (GO) interaction with methylene blue (MB) cationic dye was studied in an aqueous solution at different pH during MB adsorption. The mutual interaction of MB with GO surface was studied and evaluated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The π-π and electrostatic interaction of MB with GO surface are the main types of interactions, and the XRD data show the monomeric arrangement of MB cation with GO. The GO surface functional groups and point of zero charge (PZC) were determined by acid-base titration. Suitability of zeta-potential measurement and acid-base titration method was briefly discussed. The quality of prepared GO was evaluated by Raman spectroscopy, XRD, and atomic force microscope (AFM). The experimental adsorption equilibrium data were analyzed using Langmuir, Langmuir-Freundlich, Freundlich, and Temkin isotherms. The GO maximum adsorption capacity increases with higher pH, that is ascribed to the facile interaction of negatively charged GO with positively charged MB structure.
Collapse
|
15
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
16
|
Magnetic solid-phase extraction method with modified magnetic ferroferric oxide nanoparticles in a deep eutectic solvent and high-performance liquid chromatography used for the analysis of pharmacologically active ingredients of Epimedium folium. J Chromatogr A 2022; 1679:463395. [DOI: 10.1016/j.chroma.2022.463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
|
17
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Nanomaterials with Excellent Adsorption Characteristics for Sample Pretreatment: A Review. NANOMATERIALS 2022; 12:nano12111845. [PMID: 35683700 PMCID: PMC9182308 DOI: 10.3390/nano12111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment in analytical chemistry is critical, and the selection of materials for sample pretreatment is a key factor for high enrichment ability, good practicality, and satisfactory recoveries. In this review, the recent progress of the sample pretreatment methods based on various nanomaterials (i.e., carbon nanomaterials, porous nanomaterials, and magnetic nanomaterials) with excellent adsorption efficiency, selectivity, and reproducibility, as well as their applications, are presented. Due to the unique nanoscale physical–chemical properties, magnetic nanomaterials have been used for the extraction of target analytes by easy-to-handle magnetic separation under a magnetic field, which can avoid cumbersome centrifugation and filtration steps. This review also highlights the preparation process and reaction mechanism of nanomaterials used in the sample pretreatment methods, which have been applied for the extraction organophosphorus pesticides, fluoroquinolone antibiotics, phenoxy carboxylic acids, tetracycline antibiotics, hazardous metal ions, and rosmarinic acid. In addition, the remaining challenges and future directions for nanomaterials used as sorbents in the sample pretreatment are discussed.
Collapse
|
19
|
Kocot K, Pytlakowska K, Talik E, Krafft C, Sitko R. Sensitive determination of uranium using β-cyclodextrin modified graphene oxide and X-ray fluorescence techniques: EDXRF and TXRF. Talanta 2022; 246:123501. [PMID: 35525057 DOI: 10.1016/j.talanta.2022.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
β-cyclodextrin/graphene oxide (GO-β-CD) was applied for dispersive micro-solid phase extraction (DMSPE) of uranyl ions (UO22+) from water samples and their determination by energy-dispersive (EDXRF) and total-reflection X-ray fluorescence spectrometry (TXRF). The structure of GO-β-CD was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results of batch adsorption experiment indicate that the maximum recoveries for UO22+ ions are observed at pH 4.5. The Langmuir isotherm model fits the adsorption data, which stands for the chemisorption mechanism. The obtained adsorption capacity of 87.7 mg g-1 indicates a great potential of the synthesized adsorbent in the UO22+ ions preconcentration. The GO-β-CD exhibits high resistance to high ionic strength (up to 2 mol L-1), indicating that high salinity samples can be treated with the evaluated preconcentration procedure. The obtained limit of detection values were 0.40 μg L-1 for the EDXRF and only 0.014 μg L-1 for TXRF analysis. The accuracy of the method was verified by analyzing certified reference material (spring water NIST-SRM 1640a) and spiked water samples (mineral, lake, river, and artificial sea water).
Collapse
Affiliation(s)
- Karina Kocot
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland.
| | | | - Ewa Talik
- Institute of Physics, University of Silesia, 75 Pułku Piechoty, 41-500, Chorzów, Poland
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Member of Research Alliance "Health Technologies", Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Rafał Sitko
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| |
Collapse
|
20
|
Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Anal Chim Acta 2022; 1201:339632. [PMID: 35300789 DOI: 10.1016/j.aca.2022.339632] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Due to their highly tunable nature and outstanding physicochemical properties, ionic liquids (ILs) have been widely reported for use in the synthesis of multitudinous magnetic nanoparticles (MNPs). IL-based magnetic nanoparticles (IL-MNPs) have great potential in magnetic dispersive solid-phase extraction (MDSPE). At present, IL-MNPs have been successfully applied in the pretreatment of MDSPE samples from medicines, pesticides, veterinary drugs, heavy metals, dyes, additives, and proteins in agricultural products, foods and beverages, environmental water, and biological samples. In this review, the preparation of IL-MNPs and their application in MDSPE are comprehensively summarized. The structural characteristics of the introduced ILs used to prepare the IL-MNPs and the synthetic routes employed to obtain the IL-MNPs are described, including physical coating and chemical bonding methods. The IL-MNPs are then classified and described according to different modified materials, including silica-based materials, carbon-based materials, metal-organic frameworks, molecularly imprinted polymers and other interesting large/small molecules. Finally, the research prospects and development directions of IL-MNPs in the context of MDSPE are further identified.
Collapse
|
21
|
Sharma P, Nanda K, Yadav M, Shukla A, Srivastava SK, Kumar S, Singh SP. Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. CHEMOSPHERE 2022; 292:133380. [PMID: 34953871 DOI: 10.1016/j.chemosphere.2021.133380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Removal of toxic elements from wastewater effluent has got a lot of attention because of their severe negative effects on human and environmental health. In the past few years, rapid urbanization and industrial activities in developing countries have exacerbated the destruction of the environment. Most of the wastewater effluents are discharged untreated or inadequately treated, which has become a major concern due to its impact on sustainability and the environment. This is imperative to implement, innovative and resourceful wastewater treatment technologies requiring low investment. Among the various treatment technologies, cutting-edge processes in nano-material sciences have recently piqued the interest of scientists. Nanohybrid absorbents have the potential in improving wastewater treatment and increase water supply by utilizing unconventional water resources. Carbon nanotubes, titanium oxide, manganese oxide, activated carbon (AC), magnesium oxide, graphene, ferric oxides, and zinc oxide are examples of nano-adsorbents that are used to eliminate pollutants. This also demonstrated the effective removal of contaminants along with the harmful effects of chemicals, colorants, and metals found in wastewater. The present manuscript examines potential advances in nanotechnology in wastewater treatment for the prevention of water and soil pollution. This systematic review aims to highlight the importance of nanohybrid absorbents treatment technology for wastewater treatment and to explain how nanohybrid absorbents have the potential to revolutionize industrial pollution. There are also other published review articles on this topic but the present review covers an in-depth information on nano-adsorbents and their targeted contaminants.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Mamta Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Ashutosh Shukla
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Sudhir Kumar Srivastava
- Chemical Research Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
22
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Bhat SA, Sher F, Hameed M, Bashir O, Kumar R, Vo DVN, Ahmad P, Lima EC. Sustainable nanotechnology based wastewater treatment strategies: achievements, challenges and future perspectives. CHEMOSPHERE 2022; 288:132606. [PMID: 34678350 DOI: 10.1016/j.chemosphere.2021.132606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology is being an emerging science for wastewater treatment requires more research emphasis and depth knowledge. For wastewater treatment, different forms of nanomaterials are used based on the type of contaminants and treatment efficiency desired. With the development in the field of nanomaterials, novel and emerging nanomaterials are coming into existence. The nanomaterials used for wastewater treatment can be carbon, single-walled carbon nanotubes, multiple walled carbon nanotubes, covalent organic frameworks, metal and metal oxide- based nanoparticles. Graphene based nanoparticles, their oxides (GO) and reduced graphene oxide (rGO) find tremendous applicability to be used in wastewater treatment purposes. Due to the introduction of graphene oxide nanoparticles in the adsorbent materials, their adsorption capacities have get enhanced and such materials have also improved the mechanical stability of the adsorbent. Ferric oxide shows greater adsorption capacities for organic pollutants. Furthermore, magnetic nano-powder confers a low adsorption capacity for phenols. Pyrrolidone reduced graphene oxide (PVP-RGO) nanoparticles have been used as adsorbents for the elimination of inorganic target contaminant copper, with great adsorption (1698 mg/g). The present study comprehensively reviews nanotechnology as a wastewater treatment strategy besides enlightening its safety issues and efficiency. The novelty of this article is that it highlights the overview of recent applications of various types of nanomaterials and research works releated to it. Such an approach will be helpful to get insights into technological advances, applications and future challenges of nanotechnology implementation for wastewater treatment.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Mariam Hameed
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan; International Society of Engineering Science and Technology, United Kingdom
| | - Omar Bashir
- Department of Food Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir,Shalimar Srinagar,India
| | - Rohitashw Kumar
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, ZIP, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Zhang C, Xing H, Yang L, Fei P, Liu H. Development trend and prospect of solid phase extraction technology. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Zhang S, Wang R, Wu Y, Chen Z, Tong P, He Y, Lin Z, Cai Z. One-Pot Synthesis of Magnetic Covalent Organic Frameworks for Highly Efficient Enrichment of Phthalate Esters from Fine Particulate Matter. J Chromatogr A 2022; 1667:462906. [DOI: 10.1016/j.chroma.2022.462906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
|
26
|
|
27
|
Wang H, Yang Y, Ren Y, Chen D, Wei J, Wang L, Xie A, Luo S. Electrochemical synthesis of Pt nanoparticles on ZrO2/MWCNTs hybrid with high electrocatalytic performance for methanol oxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Mametov R, Sagandykova G, Monedeiro F, Buszewski B. Development of controlled film of polypyrrole for solid-phase microextraction fiber by electropolymerization. Talanta 2021; 232:122394. [PMID: 34074390 DOI: 10.1016/j.talanta.2021.122394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The aim of the study was to develop an approach for synthesis of polypyrrole coating material and further fabrication of solid-phase microextraction fiber by direct electropolymerization on a stainless-steel wire. Surface morphology, porosity and thermal stability were evaluated by different physico-chemical methods. Synthesized polypyrrole fiber was successfully applied for extraction of VOCs such as benzene, toluene, ethylbenzene, p-xylene, phenol and dodecane. Utilization of polypyrrole fiber for extraction of VOCs was assessed by HS-SPME coupled to gas chromatography with flame ionization detection (GC-FID). Solid-phase microextraction parameters for their simultaneous analysis were optimized using Box-Behnken design and accounted for 49.7 min for extraction time, 30 °C for extraction temperature and 17.2 min for equilibration time. In addition, the coating showed good reproducibility (RSD < 12.22%), while the values of limit of detection were in the range of 0.59-283.33 ng/mL.
Collapse
Affiliation(s)
- Radik Mametov
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Gagarina 7, 87-100, Toruń, Poland; Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Gulyaim Sagandykova
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Fernanda Monedeiro
- Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Gagarina 7, 87-100, Toruń, Poland; Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|
29
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
30
|
Wang Y, Ding G, Lin K, Liu Y, Deng X, Li Q. Facile one-pot synthesis of ultrathin carbon layer encapsulated magnetite nanoparticle and graphene oxide nanocomposite for efficient removal of metal ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Abdelsalam H, Ali M, Teleb NH, Ibrahim MM, Ibrahim MA, Zhang Q. Two-dimensional Si2BN nanoflakes for efficient removal of heavy metals. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
|
33
|
Yang Y, Lin Y, Deng Y, Hou X, Yang L, Zheng C. In-site and solvent-free exfoliation of porous graphene oxide from pencil lead fiber for solid-phase microextraction of cadmium ion before GF-AAS determination. Mikrochim Acta 2021; 188:172. [PMID: 33893562 DOI: 10.1007/s00604-021-04823-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Graphene oxide (GO)-functionalized pencil lead fiber was prepared for the first time by in situ oxidation and exfoliation of graphite contained in pencil lead fiber to porous graphene oxide structure via a one-step solvent-free dielectric barrier discharge (DBD) microplasma treatment. This new fiber was demonstrated as a highly efficient and low-cost solid-phase microextraction (SPME) fiber for the determination of toxic metal ions. The fiber extraction performance was evaluated by using cadmium as a model analyte in a direct immersing SPME mode. Unlike most commercially available and other lab-built fibers, the preparation of the graphene oxidized pencil lead fiber is environmentally friendly, low cost, and non-toxic without using any organic solvents. The fiber is robust due to its coating-free configuration. Furthermore, high extraction efficiency and high sensitivity for cadmium can be obtained due to the abundant oxygen-containing functional groups on the surface of the novel fiber. After extraction, the cadmium adsorbed on the fiber was desorbed to 150-μL solution. Graphite furnace atomic absorption spectrometry (GF-AAS) with low sample consumption was used to determine cadmium. The calibration curve for cadmium ions was linear in a range 0.04-0.26 μg L-1 with a detection limit of 0.005 μg L-1. A relative standard deviation (RSD, n = 5) of 2.1% was obtained at 0.1 μg L-1 of cadmium. The sensitivity enhancement factor (EF) value of the proposed SPME method was 25. The SPME fiber was successfully applied to determine cadmium in tap water, river water, and pond water with spike recoveries ranging from 94 to 105%. Pipe network water samples were also analyzed to evaluate the cadmium release to drinking water due to the corrosion of tubes.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yao Lin
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China.,Analytical & Testing Center, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lu Yang
- National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
34
|
Erarpat S, Bodur S, Bakırdere S. Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides. Crit Rev Anal Chem 2021; 52:1370-1385. [PMID: 33576246 DOI: 10.1080/10408347.2021.1876552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sample preparation methods have become indispensable steps in analytical measurements not only to lower the detection limit but also to eliminate the matrix effect although more sophisticated instruments are being commonly used in routine analyses. Solid phase extraction (SPE) is one of the main extraction/preconcentration methods used to extract and purify target analytes along with simple and rapid procedures but some limitations have led to seek for an easy, sensitive and fast extraction methods with analyte-selective sorbents. Nanoparticles with different modifications have been used as spotlight to enhance extraction efficiency of target pesticides from complicated matrices. Carbon-based, metal and metal oxides, silica and polymer-based nanoparticles have been explored as promising sorbents for pesticide extraction. In this review, different types of nanoparticles used in the preconcentration of pesticides in various samples are outlined and examined. Latest studies in the literature are discussed in terms of their instrumental detection, sample matrix and limit of detection values. Novel strategies and future directions of nanoparticles used in the extraction and preconcentration of pesticides are also discussed.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
35
|
Ma XC, Ma ZQ, Zhao MX, Wang YH, Peng Y, Guo X, Wang FH, Meng Z, Zheng HB. Facile synthesis of magnetic molybdenum disulfide@graphene nanocomposite with amphiphilic properties and its application in solid-phase extraction for a wide polarity of insecticides in wolfberry samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:672-684. [PMID: 33475104 DOI: 10.1039/d0ay01939a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel magnetic molybdenum disulfide@graphene (Fe3O4/MoS2@G) nanocomposite with amphiphilic properties was prepared via a co-mixing solvothermal method. To demonstrate the feasibility of Fe3O4/MoS2@G as a sorbent during sample preparation, it was employed for the magnetic solid phase extraction (MSPE) of ten pyrethroids, three triazoles and two acaricide pyridaben and picoxystrobin in an emulsified aqueous solution. Dichloromethane was used as the extractant to form an emulsified aqueous solution. Subsequently, the Fe3O4/MoS2@G sorbent with amphiphilic properties was used to retrieve 15 wide polarity insecticides from dichloromethane via MSPE. The proposed method has the advantage of being applicable to different polar pesticides, strengthening the capacity of enrichment and purification of target analytes. The π-π interaction between the hydrophilic and hydrophobic moieties of Fe3O4/MoS2@G and the aromatic rings of target analytes were responsible for the efficient sorption. Thus, a reliable, convenient, and efficient method for the analysis of 15 insecticides with wide polarity in wolfberry samples was established by coupling Fe3O4/MoS2@G nanocomposite MSPE with gas chromatography-mass spectrometry (GC-MS) analysis. The obtained linearity of this method was in the range from 1 to 5000 ng mL-1 for 15 analytes, with determination coefficients (R2) ≥0.9907. The limit of detection (LOD) for 15 insecticides was in the range from 0.1 to 5.0 ng g-1. The recoveries of 15 insecticides from spiked wolfberry samples were in the range from 71.41% to 110.53%, and RSD was less than 14.8%.
Collapse
Affiliation(s)
- Xiao-Chun Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thiosemicarbazide-grafted graphene oxide as superior adsorbent for highly efficient and selective removal of mercury ions from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. CHEMOSPHERE 2021; 263:128005. [PMID: 33297038 PMCID: PMC7880008 DOI: 10.1016/j.chemosphere.2020.128005] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
The supply of safe drinking and clean water is becoming increasingly challenging proposition throughout the world. The deployment of environmentally sustainable nanomaterials with unique advantages namely high efficiency and selectivity, earth-abundance, recyclability, low-cost of production processes, and stability, has been a priority although several important challenges and constraints still remained unresolved. Carbon nanomaterials namely activated carbon, multi-walled- and single-walled carbon nanotubes, have been developed and applied as adsorbents for wastewater treatment and purification; graphene and graphene oxide-based nanomaterials as well as carbon and graphene quantum dots-derived nanomaterials have shown significant promise for water and wastewater treatment and purification, especially, for industrial- and pharmaceutical-laden wastes. This review encompasses advanced carbonaceous nanomaterials and methodologies that are deployed for the elimination of contaminants and ionic metals in aqueous media, and as novel nanosorbents for wastewater, drinking and ground water treatment. Additionally, recent trends and challenges pertaining to the sustainable carbon and graphene quantum dots-derived nanomaterials and their appliances for treating and purifying wastewater are highlighted.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
38
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
39
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
41
|
Śmiełowska M, Zabiegała B. Current trends in analytical strategies for determination of polybrominated diphenyl ethers (PBDEs) in samples with different matrix compositions – Part 1.: Screening of new developments in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Yang S, Song Y, Ma Q, Cheng H, Wang Y, Liu J. Quantification of ultra-trace organolead species in environmental water by inductively coupled plasma mass spectrometry with online solid-phase extraction and high performance liquid chromatographic separation. Anal Chim Acta 2020; 1133:30-38. [DOI: 10.1016/j.aca.2020.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
|
43
|
Mirzaee MT, Seidi S, Alizadeh R. Pipette-tip SPE based on Graphene/ZnCr LDH for Pb(II) analysis in hair samples followed by GFAAS. Anal Biochem 2020; 612:113949. [PMID: 32941913 DOI: 10.1016/j.ab.2020.113949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
In this work, a nanocomposite of ZnCr layered double hydroxide (ZnCr LDH) and graphene oxide (GO) was successfully assembled. An efficient pipette-tip solid-phase extraction (PT-SPE) based on GO/ZnCr LDH followed by GFAAS analysis was used for to preconcentrate Pb(II) in hair samples. Hair samples were treated using acid digestion to make the solid samples suitable for performing the PT-SPE procedure and decrease the interactions between Pb(II) ions and the sample matrix. The sorbent was characterized by FT-IR, SEM, TEM, EDX, elemental mapping, and XRD. Effective extraction parameters were thoroughly investigated. Under the best conditions, the calibration plot was linear within the range of 0.5-15 ng mL-1 (R2 = 0.991). Preconcentration factor (PF) of 10 and absolute recovery (%) of 100% were obtained. LOD and LOQ were found to be 0.1 μg g-1 and 0.5 μg g-1, respectively. The intra-day and inter-day precisions (n = 3) at the concentrations of 2.0 and 10 ng mL-1 were less than 6.8% and 12.5%, respectively. Finally, the method efficiency was investigated for the analysis of Pb(II) in hair samples, and good relative recoveries (RR%) were obtained within the range of 92%-104%.
Collapse
Affiliation(s)
- Mahsa Torabi Mirzaee
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran.
| | - Reza Alizadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
44
|
Mikhraliieva A, Zaitsev V, Tkachenko O, Nazarkovsky M, Xing Y, Benvenutti EV. Graphene oxide quantum dots immobilized on mesoporous silica: preparation, characterization and electroanalytical application. RSC Adv 2020; 10:31305-31315. [PMID: 35520679 PMCID: PMC9056381 DOI: 10.1039/d0ra04605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Because of its high surface area and combination of various functional groups, graphene oxide (GO) is currently one of the most actively studied materials for electroanalytical applications. It is not practical to utilize self-supported GO on its own and thus it is commonly integrated with different supporting carriers. Having a large lateral size, GO can only wrap the particles of the support and thus can significantly reduce the surface area of porous materials. To achieve synergy from the high surface area and polyfunctional nature of GO, and the rigid structure of a porous support, the lateral size of GO must essentially be decreased. Recently reported graphene oxide quantum dots (GOQDs) can fulfil this task. Here we report the successful preparation of an SiO2-GOQDs hybrid, where GOQDs have been incorporated into the mesoporous network of silica. The SiO2-GOQDs emit a strong luminescence with a band maximum at 404 nm. The Raman spectrum of SiO2-GOQDs shows two distinct peaks at 1585 cm−1 (G-peak) and 1372 cm−1 (D-peak), indicating the presence of a graphene ordered basal plane with aromatic sp2-domains and a disordered oxygen-containing structure. Covalent immobilization of GOQDs onto aminosilica via such randomly structured oxygen fragments was proven with the help of Fourier transform infrared spectroscopy, solid-state cross-polarization magic angle spinning 13C nuclear magnetic resonance, and X-ray photoelectron spectroscopy. SiO2-GOQDs were used as a modifier of a carbon paste electrode for differential pulse voltammetry determination of two antibiotics (sulfamethoxazole and trimethoprim) and two endocrine disruptors (diethylstilbestrol (DES) and estriol (EST)). The modified electrodes demonstrated a significant signal enhancement for EST (370%) and DES (760%), which was explained by a π–π stacking interaction between GOQDs and the aromatic system of the analytes. Graphene oxide quantum dots incorporated into a mesoporous silica network have been used as a modifier of a carbon paste electrode for the determination of antibiotics and hormones.![]()
Collapse
Affiliation(s)
- Albina Mikhraliieva
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Marquês de São Vicente, 225 22451-900 Rio de Janeiro Brazil
| | - Vladimir Zaitsev
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Marquês de São Vicente, 225 22451-900 Rio de Janeiro Brazil .,National University of Kyiv-Mohyla Academy 2 Skovorody vul. Kyiv 04070 Ukraine
| | - Oleg Tkachenko
- Materials Chemistry Department, V. N. Karazin Kharkiv National University 4 Svoboda Square Kharkiv 61022 Ukraine.,Institute of Chemistry, UFRGS PO Box 15003, CEP Porto Alegre RS 91501-970 Brazil
| | - Michael Nazarkovsky
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Marquês de São Vicente, 225 22451-900 Rio de Janeiro Brazil
| | - Yutao Xing
- Laboratório de Microscopia Eletrônica de Alta Resolução, Centro de Caracterização Avançada para Indústria de Petróleo (LaMAR/CAIPE), Universidade Federal Fluminense 24210-346 Niterói RJ Brazil
| | - Edilson V Benvenutti
- Materials Chemistry Department, V. N. Karazin Kharkiv National University 4 Svoboda Square Kharkiv 61022 Ukraine
| |
Collapse
|
45
|
Self-Assembled Three-Dimensional Microporous rGO/PNT/Fe3O4 Hydrogel Sorbent for Magnetic Preconcentration of Multi-Residue Insecticides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this work was to develop a highly selective, sensitive, and reliable method for multi-residual analysis. A three-dimensional microporous reduced graphene oxide/polypyrrole nanotube/magnetite hydrogel (3D-rGOPFH) composite was synthesized and utilized as a magnetic solid-phase extraction (MSPE) sorbent to preconcentrate thirteen insecticides, including five organophosphorus (isocarbophos, quinalphos, phorate, chlorpyrifos, and phosalone), two carbamates (pirimor and carbaryl), two triazoles (myclobutanil and diniconazole), two pyrethroids (lambda-cyhalothrin and bifenthrin), and two organochlorines (2, 4′-DDT and mirex), from vegetables, followed by gas chromatography-tandem mass spectrometry. This method exhibited several major advantages, including simultaneous enrichment of different types of insecticides, no matrix effect, high sensitivity, and ease of operation. This is ascribed to the beneficial effects of 3D-rGOPFH, including the large specific surface (237 m2 g−1), multiple adsorption interactions (hydrogen bonding, electrostatic, π–π stacking and hydrophobic interaction force), appropriate pore size distribution (1–10 nm), and the good paramagnetic property. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–100 ng g−1 with determination coefficients of 0.9975–0.9998; limit of detections of 0.006–0.03 ng g−1; and the intra-day and inter-day relative standard deviations were 2.8–7.1% and 3.5–8.8%, respectively. Recoveries were within the range of 79.2 to 109.4% for tomato, cucumber, and pakchoi samples at the fortification levels of 5, 25, and 50 ng g−1. This effective and robust method can be applied for determining multi-classes of insecticide residues in vegetables.
Collapse
|
46
|
Maciel EVS, Mejía-Carmona K, Jordan-Sinisterra M, da Silva LF, Vargas Medina DA, Lanças FM. The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Front Chem 2020; 8:664. [PMID: 32850673 PMCID: PMC7431689 DOI: 10.3389/fchem.2020.00664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 2004 by Novoselov et al., graphene has attracted increasing attention in the scientific community due to its excellent physical and chemical properties, such as thermal/mechanical resistance, electronic stability, high Young's modulus, and fast mobility of charged atoms. In addition, other remarkable characteristics support its use in analytical chemistry, especially as sorbent. For these reasons, graphene-based materials (GBMs) have been used as a promising material in sample preparation. Graphene and graphene oxide, owing to their excellent physical and chemical properties as a large surface area, good mechanical strength, thermal stability, and delocalized π-electrons, are ideal sorbents, especially for molecules containing aromatic rings. They have been used in several sample preparation techniques such as solid-phase extraction (SPE), stir bar sorptive extraction (SBSE), magnetic solid-phase extraction (MSPE), as well as in miniaturized modes as solid-phase microextraction (SPME) in their different configurations. However, the reduced size and weight of graphene sheets can limit their use since they commonly aggregate to each other, causing clogging in high-pressure extractive devices. One way to overcome it and other drawbacks consists of covalently attaching the graphene sheets to support materials (e.g., silica, polymers, and magnetically modified supports). Also, graphene-based materials can be further chemically modified to favor some interactions with specific analytes, resulting in more efficient hybrid sorbents with higher selectivity for specific chemical classes. As a result of this wide variety of graphene-based sorbents, several studies have shown the current potential of applying GBMs in different fields such as food, biological, pharmaceutical, and environmental applications. Within such a context, this review will focus on the last five years of achievements in graphene-based materials for sample preparation techniques highlighting their synthesis, chemical structure, and potential application for the extraction of target analytes in different complex matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Mauro Lanças
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry (IQSC), University of São Paulo, São Carlos, Brazil
| |
Collapse
|
47
|
Systematic Evaluation of Different Coating Chemistries Used in Thin-Film Microextraction. Molecules 2020; 25:molecules25153448. [PMID: 32751187 PMCID: PMC7435592 DOI: 10.3390/molecules25153448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 11/16/2022] Open
Abstract
A systematic evaluation of eight different coatings made of solid phase extraction (SPE) and carbon-based sorbents immobilized with polyacrylonitrile in the thin-film microextraction (TFME) format using LC-MS/MS was described. The investigated coatings included graphene, graphene oxide, multi-walled carbon nanotubes (MWCNTs), carboxylated MWCNTs, as carbon-based coatings, and polystyrene-divinylbenzene (PS-DVB), octadecyl-silica particles (C18), hydrophilic-hydrophobic balance particles (HLB) and phenyl-boronic acid modified particles (PBA), as SPE-based coatings. A total of 24 compounds of diverse moieties and of a wide range of polarities (log P from -2.99 to 6.98) were selected as probes. The investigated coatings were characterized based on their extraction performance toward the selected probes at different pH values and at optimized desorption conditions. In the case of SPE-based coatings, PS-DVB and HLB exhibited a balanced extraction for compounds within a wide range of polarities, and C18 showed superior extraction recoveries for non-polar analytes. Carbon-based coatings showed high affinity for non-polar compounds given that their main driving force for extraction is hydrophobic interactions. Interestingly, among the studied carbon-based coatings, graphene oxide showed the best extraction capabilities toward polar compounds owing to its oxygen-containing groups. Overall, this work provided important insights about the extraction mechanisms and properties of the investigated coatings, facilitating the coating selection when developing new TFME applications.
Collapse
|
48
|
Abstract
Ionic liquids (ILs) are a group of non-conventional salts with melting points below 100 °C. Apart from their negligible vapor pressure at room temperature, high thermal stability, and impressive solvation properties, ILs are characterized by their tunability. Given such nearly infinite combinations of cations and anions, and the easy modification of their structures, ILs with specific properties can be synthesized. These characteristics have attracted attention regarding their use as extraction phases in analytical sample preparation methods, particularly in liquid-phase extraction methods. Given the liquid nature of most common ILs, their incorporation in analytical sample preparation methods using solid sorbents requires the preparation of solid derivatives, such as polymeric ILs, or the combination of ILs with other materials to prepare solid IL-based composites. In this sense, many solid composites based on ILs have been prepared with improved features, including magnetic particles, carbonaceous materials, polymers, silica materials, and metal-organic frameworks, as additional materials forming the composites. This review aims to give an overview on the preparation and applications of IL-based composites in analytical sample preparation in the period 2017–2020, paying attention to the role of the IL material in those composites to understand the effect of the individual components in the sorbent.
Collapse
|
49
|
Roychowdhury T, Patel DI, Shah D, Diwan A, Kaykhaii M, Herrington JS, Bell DS, Linford MR. Sputtered silicon solid phase microextraction fibers with a polydimethylsiloxane stationary phase with negligible carry-over and phase bleed. J Chromatogr A 2020; 1623:461065. [DOI: 10.1016/j.chroma.2020.461065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
50
|
Trusek A, Kijak E, Granicka L. Graphene oxide as a potential drug carrier - Chemical carrier activation, drug attachment and its enzymatic controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111240. [PMID: 32806281 DOI: 10.1016/j.msec.2020.111240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Graphene oxide (GO), due to its properties, such as nanometric dimensions, large specific surface area, and biocompatibility, can be used as a carrier in controlled drug release systems. The method of its chemical activation before drug molecules binding was elaborated. Doxorubicin (DOX), an anticancer drug, was attached to the surface of GO via the Gly-Gly-Leu linker. Approximately 3.07 · 1020 molecules of the tripeptide were attached to 1 g of GO and subsequently almost the same number of DOX molecules. GO was suspended inside a sol surrounded by a thin porous membrane. The bound DOX was effectively released using thermolysin, an enzyme cleaving peptide bonds between Gly and Leu inside the linker structure. The membrane, as the shell was responsible for keeping enzyme molecules in their native form and GO flakes inside the carrier, simultaneously allowed the released drug molecules to diffuse outside. The rate of drug release was described as a function of the enzyme concentration and mass of DOX expressed on carrier volume; thus, the daily dose and length of the therapy can be controlled. Studies involving the cell line of mice fibrosarcoma WEHI 164 have shown that the prepared carrier itself is not toxic and only the introduction of DOX-releasing enzyme into it causes cell death.
Collapse
Affiliation(s)
- Anna Trusek
- Wroclaw University of Science and Technology, Group of Micro, Nano and Bioprocess Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Edward Kijak
- Wroclaw Medical University, Department of Dental Prosthetics, Krakowska 26, 50-425 Wroclaw, Poland.
| | - Ludomira Granicka
- The Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences Ks, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|