1
|
Mookantsa SOS, Dube S, Nindi MM. Multiclass Determination of 87 Mixed Veterinary Drugs, Pesticides and Mycotoxin Residues in Beef Muscle Samples by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction and Liquid Chromatography Tandem Mass Spectrometry. Foods 2025; 14:720. [PMID: 40077423 PMCID: PMC11898575 DOI: 10.3390/foods14050720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
A miniaturised, eco-friendly and efficient multiclass method for the simultaneous determination of 87 veterinary drugs, pesticides and mycotoxin residues in beef muscle samples by ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed and validated according to Commission Implementing Regulation (EU) 2021/808 and ISO/IEC 17025: 2017. Under IL-DLLME optimum conditions, matrix calibration yielded a coefficient of determination (R2) ranging from 0.99942 to 0.99997. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.93 to 23.78 µg kg-1 and from 1.98 to 38.27 µg kg-1, respectively. Recoveries ranged from 80.0 to 109.8% and the decision limit (CCα) values ranged from 13.0 to 523.0 µg kg-1. Repeatability and reproducibility values were achieved in the ranges of 1.55-12.91% and 1.44-13.35%, respectively. The validated method was applied to 50 real beef samples and 12% of the tested samples contained traces of some residues, but they were all below their respective LOQs and CCα; hence, the beef was fit for human consumption. The greenness of the method was assessed using five green analytical chemistry (GAC) metrics, namely, the Analytical Eco-Scale (AES), NEMI, GAPI, AGREE and ComplexGAPI, and found to be green according to the AES metric and Analytical GREEnness Metric Approach and Software (AGREE). The method provided better results at a greatly reduced cost and analysis time in comparison with standard method.
Collapse
Affiliation(s)
- Sandy O. S. Mookantsa
- Department of Chemistry, College of Science, Engineering and Technology, The Science Campus, University of South Africa, Florida Park, Roodepoort, South Africa; (S.O.S.M.); (S.D.)
- Residue Section, Botswana National Veterinary Laboratory, Gaborone, Botswana
| | - Simiso Dube
- Department of Chemistry, College of Science, Engineering and Technology, The Science Campus, University of South Africa, Florida Park, Roodepoort, South Africa; (S.O.S.M.); (S.D.)
| | - Mathew M. Nindi
- Institute for Nanotechnology and Water Sustainability (iNanoWS), The Science Campus, College of Science, Engineering and Technology (CSET), University of South Africa, Florida Park, Roodepoort, South Africa
| |
Collapse
|
2
|
Bedair A, Hamed M, Mansour FR. Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. Electrophoresis 2024. [PMID: 39345230 DOI: 10.1002/elps.202400114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Piergiovanni M, Gosetti F, Rocío-Bautista P, Termopoli V. Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches. MASS SPECTROMETRY REVIEWS 2024; 43:660-682. [PMID: 35980114 DOI: 10.1002/mas.21802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.
Collapse
Affiliation(s)
- Maurizio Piergiovanni
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Priscilla Rocío-Bautista
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Veronica Termopoli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
4
|
Olorunnisola D, Olorunnisola CG, Otitoju OB, Okoli CP, Rawel HM, Taubert A, Easun TL, Unuabonah EI. Cellulose-based adsorbents for solid phase extraction and recovery of pharmaceutical residues from water. Carbohydr Polym 2023; 318:121097. [PMID: 37479430 DOI: 10.1016/j.carbpol.2023.121097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Cellulose has attracted interest from researchers both in academic and industrial sectors due to its unique structural and physicochemical properties. The ease of surface modification of cellulose by the integration of nanomaterials, magnetic components, metal organic frameworks and polymers has made them a promising adsorbent for solid phase extraction of emerging contaminants, including pharmaceutical residues. This review summarizes, compares, and contrasts different types of cellulose-based adsorbents along with their applications in adsorption, extraction and pre-concentration of pharmaceutical residues in water for subsequent analysis. In addition, a comparison in efficiency of cellulose-based adsorbents and other types of adsorbents that have been used for the extraction of pharmaceuticals in water is presented. From our observation, cellulose-based materials have principally been investigated for the adsorption of pharmaceuticals in water. However, this review aims to shift the focus of researchers to the application of these adsorbents in the effective pre-concentration of pharmaceutical pollutants from water at trace concentrations, for quantification. At the end of the review, the challenges and future perspectives regarding cellulose-based adsorbents are discussed, thus providing an in-depth overview of the current state of the art in cellulose hybrid adsorbents for extraction of pharmaceuticals from water. This is expected to inspire the development of solid phase exraction materials that are efficient, relatively cheap, and prepared in a sustainable way.
Collapse
Affiliation(s)
- Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Chukwunonso P Okoli
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Harshadrai M Rawel
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Timothy L Easun
- School of Chemistry, Haworth Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| |
Collapse
|
5
|
Zhang D, Yang XA, Jin CZ, Zhang WB. Ultrasonic assisted magnetic solid phase extraction of ultra-trace mercury with ionic liquid functionalized materials. Anal Chim Acta 2023; 1245:340865. [PMID: 36737138 DOI: 10.1016/j.aca.2023.340865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Due to the agglomeration between particles, the inherent adsorption characteristics of magnetic powder materials are usually difficult to fully display. Taking ionic liquid functional materials as an example, the enrichment behavior of these adsorbents for trace mercury (Hg2+) in ultrasonic (US) assisted dispersion mode was systematically studied. The dissociation of protonic ionic liquids (IL) occur in the process of dispersion and the strong electrostatic attraction can improve the diffusion and adhesion of mercury on the adsorbent surface. Spectral measurement data showed that with the help of US, the more uniform dispersion of magnetic materials accelerated the adsorption of trace Hg2+. Ultrasonic intrinsic parameters such as frequency, power and radiation duration significantly affect the dispersion and apparent adsorption properties of magnetic functional materials. In the range of experimental parameters, the dye/paper image experimental results documents that there is a positive correlation between cavitation effect and ultrasonic frequency/power. The enrichment degree of fixed adsorbate (0.1 μg L-1) under high frequency (59 kHz) or high-power input (100%) is 1-2 times higher than that under low frequency (40 kHz) or low power (60%) input. This is a valuable conclusion for the subsequent study of US dispersion of magnetic and even non-magnetic powder materials. In addition, the in-situ desorption and accurate measurement of adsorbed mercury were realized by combining slurry vapor generation atomic fluorescence spectroscopy (SVG-AFS). The constructed US assisted magnetic solid phase extraction (US-MSPE) method has the characteristics of low detection limit (0.36 ng L-1), high recovery (>90%), sustainable utilization (>3) and reasonable measurement deviation (<5%), which can meet the requirements of ultra-trace Hg2+ (0.01-1.0 μg L-1).
Collapse
Affiliation(s)
- Di Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Xin-An Yang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Cheng-Zhao Jin
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Wang-Bing Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
6
|
De Silva S, Ocaña-Rios I, Cagliero C, Gostel MR, Johnson G, Anderson JL. Isolation of DNA from plant tissues using a miniaturized matrix solid-phase dispersion approach featuring ionic liquid and magnetic ionic liquid solvents. Anal Chim Acta 2023; 1245:340858. [PMID: 36737141 DOI: 10.1016/j.aca.2023.340858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The isolation of high-quality plant genomic DNA is a major prerequisite in many plant biomolecular analyses involving nucleic acid amplification. Conventional plant cell lysis and DNA extraction methods involve lengthy sample preparation procedures that often require large amounts of sample and chemicals, high temperatures and multiple liquid transfer steps which can introduce challenges for high throughput applications. In this study, a simple, rapid, miniaturized ionic liquid (IL)-based extraction method was developed for the isolation of genomic DNA from milligram fragments of Arabidopsis thaliana plant tissue. This method is based on a modification of vortex-assisted matrix solid-phase dispersion (VA-MSPD) in which the trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide ([P6,6,6,14+][NTf2-]) IL or trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P6,6,6,14+][Ni(hfacac)3-]) magnetic IL (MIL) was directly applied to treated plant tissue (∼1.5 mg) and dispersed in an agate mortar to facilitate plant cell lysis and DNA extraction, followed by recovery of the mixture with a qPCR compatible co-solvent. This study represents the first approach to use ILs and MILs in a MSPD procedure to facilitate plant cell lysis and DNA extraction. The DNA-enriched IL- and MIL-cosolvent mixtures were directly integrated into the qPCR buffer without inhibiting the reaction while also circumventing the need for additional purification steps prior to DNA amplification. Under optimum conditions, the IL and MIL yielded 2.87 ± 0.28 and 1.97 ± 0.59 ng of DNA/mg of plant tissue, respectively. Furthermore, the mild extraction conditions used in the method enabled plant DNA in IL- and MIL-cosolvent mixtures to be preserved from degradation at room temperature.
Collapse
Affiliation(s)
- Shashini De Silva
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Iran Ocaña-Rios
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, I-10125, Turin, Italy
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, Texas, 76107-3400, USA
| | | | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Zhou L, Wu T, Yu C, Liu S, Pan C. Ionic Liquid-Dispersive Micro-Extraction and Detection by High Performance Liquid Chromatography-Mass Spectrometry for Antifouling Biocides in Water. Molecules 2023; 28:molecules28031263. [PMID: 36770930 PMCID: PMC9920688 DOI: 10.3390/molecules28031263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
A simple analytical method was developed and evaluated for the determination of two antifouling biocides using an ionic liquid-dispersive liquid-liquid micro-extraction (IL-DLLME) and a high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis. Irgarol 1051 and Sea-Nine 211 were extracted from deionized water, lake water, and seawater using IL 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIm][PF6]) and ethyl acetate as the extraction solvent and the dispersion solvent. Several factors were considered, including the type and volume of extraction and dispersive solvent, IL amount, sample pH, salt effect, and cooling temperature. The developed method resulted in a recovery range of 78.7-90.3%, with a relative standard deviation (RSD, n = 3) less than 7.5%. The analytes were enriched greater than 40-fold, and the limits of detection (LOD) for two antifouling biocides were 0.01-0.1 μg L-1. The method was effectively applied for the analysis of real samples of freshwater as well as samples of seawater.
Collapse
Affiliation(s)
- Li Zhou
- College of Science, China Agricultural University, Beijing 100193, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Tong Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chuanshan Yu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Shaowen Liu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Canping Pan
- College of Science, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62731978; Fax: +86-10-62733620
| |
Collapse
|
8
|
Abdelaziz MA, Saleh AM, Mansour FR, Danielson ND. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid–Liquid Microextraction of Ivermectin from Environmental Water. J Chromatogr Sci 2022:6931730. [DOI: 10.1093/chromsci/bmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/23/2022]
Abstract
Abstract
The recently introduced gadolinium-based magnetic ionic liquid (Gd-MIL) has been exploited as an extractant in dispersive liquid–liquid microextraction (DLLME) for preconcentration of ivermectin (IVR) from water samples followed by analysis using reversed-phase HPLC with UV detection at 245 nm. The utilized Gd-MIL extractant is hydrophobic with markedly high magnetic susceptibility. These features result in an efficient extraction of the lipophilic analyte and facilitate the phase separation under the influence of a strong magnetic field, thus promoting the method sensitivity and increasing the potential for automation. To maximize the IVR enrichment by DLLME, the procedure was optimized for extractant mass, dispersive solvent type/volume, salt addition and diluent pH. At optimized conditions, an enrichment factor approaching 70 was obtained with 4.0-mL sample sizes. The method was validated in terms of accuracy, precision, specificity and limit of quantitation. The method was successfully applied to the determination of IVR in river water samples with a mean relative recovery of 97.3% at a spiked concentration of 400 ng/mL. Compared with other reported methods, this approach used a simpler procedure with improved precision, lower amounts of safer solvents and a short analysis time.
Collapse
Affiliation(s)
- Mohamed A Abdelaziz
- Department of Chemistry and Biochemistry, Miami University , Oxford, OH 45056 , USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University , Kafrelsheikh 33511 , Egypt
| | - Ahmed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University , Jadidah 34518 , Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University , 31111 Tanta , Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University , 31111 Tanta , Egypt
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University , Oxford, OH 45056 , USA
| |
Collapse
|
9
|
Application of experimental design for dispersive liquid–liquid microextraction optimization for metallic impurities determination in arnica infusion employing green solvents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Smart K, Golden TD, Acree WE. Investigations of potential ionic liquid phases for chromatographic processes using spectroscopic and thermal techniques. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Pankajkumar-Patel N, Peris-García E, Ruiz-Angel M, García-Alvarez-Coque M. Interactions of basic compounds with ionic liquids used as oils in microemulsion liquid chromatography. J Chromatogr A 2022; 1674:463142. [DOI: 10.1016/j.chroma.2022.463142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
|
12
|
Emaus MN, Cagliero C, Gostel MR, Johnson G, Anderson JL. Simple and efficient isolation of plant genomic DNA using magnetic ionic liquids. PLANT METHODS 2022; 18:37. [PMID: 35321738 PMCID: PMC8943943 DOI: 10.1186/s13007-022-00860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant DNA isolation and purification is a time-consuming and laborious process relative to epithelial and viral DNA sample preparation due to the cell wall. The lysis of plant cells to free intracellular DNA normally requires high temperatures, chemical surfactants, and mechanical separation of plant tissue prior to a DNA purification step. Traditional DNA purification methods also do not aid themselves towards fieldwork due to the numerous chemical and bulky equipment requirements. RESULTS In this study, intact plant tissue was coated by hydrophobic magnetic ionic liquids (MILs) and ionic liquids (ILs) and allowed to incubate under static conditions or dispersed in a suspension buffer to facilitate cell disruption and DNA extraction. The DNA-enriched MIL or IL was successfully integrated into the qPCR buffer without inhibiting the reaction. The two aforementioned advantages of ILs and MILs allow plant DNA sample preparation to occur in one minute or less without the aid of elevated temperatures or chemical surfactants that typically inhibit enzymatic amplification methods. MIL or IL-coated plant tissue could be successfully integrated into a qPCR assay without the need for custom enzymes or manual DNA isolation/purification steps that are required for conventional methods. CONCLUSIONS The limited amount of equipment, chemicals, and time required to disrupt plant cells while simultaneously extracting DNA using MILs makes the described procedure ideal for fieldwork and lab work in low resource environments.
Collapse
Affiliation(s)
- Miranda N. Emaus
- Department of Chemistry, Iowa State University, Ames, IA 50011 USA
| | - Cecilia Cagliero
- Dipartimento Di Scienza E Tecnologia del Farmaco, Università Degli Studi Di Torino, 10125 Turin, Italy
| | | | | | - Jared L. Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011 USA
| |
Collapse
|
13
|
Magnetic Nanomaterials and Nanostructures in Sample Preparation Prior to Liquid Chromatography. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic nanomaterials and nanostructures compose an innovative subject in sample preparation. Most of them are designed according to the properties of the target analytes on each occasion. The unique characteristics of nanomaterials enhance the proficiency at extracting and enriching due to their selective adsorption ability as well as easy separation and surface modification. Their remarkable properties, such as superparamagnetism, biocompatibility and selectivity have established magnetic materials as very reliable options in sample preparation approaches. In order to comprehend the range of utilization at magnetic materials and nanostructures, this review aims to present the most notable examples in sample preparation prior to liquid chromatography (LC) to the community of analytical chemists. Primarily, the review describes the principles of the techniques in which the magnetic materials are utilized and leaned on. Additionally, there is a diligent report about the novel magnetic techniques and finally a comparison to demonstrate the total point of view.
Collapse
|
14
|
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022; 21:964-998. [PMID: 35181987 DOI: 10.1111/1541-4337.12924] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, β-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, β-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| | - YuanFa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| |
Collapse
|
15
|
Experimental Study of the Thermal Decomposition Properties of Binary Imidazole Ionic Liquid Mixtures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041357. [PMID: 35209146 PMCID: PMC8875617 DOI: 10.3390/molecules27041357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022]
Abstract
Ionic liquids (ILs) have a wide range of applications, owing to their negligible vapor pressure, high electrical conductivity, and low melting point. However, the thermal hazards of ILs and their mixtures are also non-negligible. In this study, the thermal hazards of various binary imidazolium ionic liquids (BIIL) mixtures were investigated. The effects of parent salt components and molar ratios on the thermal decomposition temperature (Td) and flashpoint temperature (Tf) are investigated. It is found that both Td and Tf increase as the proportion of highly thermally stable components in BIIL mixtures increases. Furthermore, the decomposition process of BIIL mixtures can be divided into two stages. For most molar ratios, the Tf of the BIIL mixtures is in the first stage of thermal decomposition. When the proportion of highly thermally stable components is relatively high, Tf is in the second stage of thermal decomposition. The flammability is attributed to the produced combustible gases during the thermal decomposition process. This work would be reasonably expected to provide some guidance for the safety design and application of IL mixtures for engineering.
Collapse
|
16
|
Ju Z, Qian H, Pan N, Huang Y, Xu Q, Yan C, Zhou W. An enhanced dispersive liquid–liquid microextraction method based on solidification of floating organic drops for the determination of pyrethroid pesticides in tea infusions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel enhanced dispersive liquid–liquid microextraction method based on solidified floating organic solvents containing [P4,4,4,12][PF6] and a hydrophobic solvent mixture for the determination of four pyrethroid insecticides in tea infusions.
Collapse
Affiliation(s)
- Ziwei Ju
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| | - Heng Qian
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| | - Nianyou Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| | - Yuting Huang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| | - Qinqin Xu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| | - Chen Yan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian, Beijing 100193, China
| |
Collapse
|
17
|
Dinis TBV, e Silva FA, Sousa F, Freire MG. Advances Brought by Hydrophilic Ionic Liquids in Fields Involving Pharmaceuticals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6231. [PMID: 34771756 PMCID: PMC8585031 DOI: 10.3390/ma14216231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
The negligible volatility and high tunable nature of ionic liquids (ILs) have been the main drivers of their investigation in a wide diversity of fields, among which is their application in areas involving pharmaceuticals. Although most literature dealing with ILs is still majorly devoted to hydrophobic ILs, evidence on the potential of hydrophilic ILs have been increasingly provided in the past decade, viz., ILs with improved therapeutic efficiency and bioavailability, ILs with the ability to increase drugs' aqueous solubility, ILs with enhanced extraction performance for pharmaceuticals when employed in biphasic systems and other techniques, and ILs displaying low eco/cyto/toxicity and beneficial biological activities. Given their relevance, it is here overviewed the applications of hydrophilic ILs in fields involving pharmaceuticals, particularly focusing on achievements and advances witnessed during the last decade. The application of hydrophilic ILs within fields involving pharmaceuticals is here critically discussed according to four categories: (i) to improve pharmaceuticals solubility, envisioning improved bioavailability; (ii) as IL-based drug delivery systems; (iii) as pretreatment techniques to improve analytical methods performance dealing with pharmaceuticals, and (iv) in the recovery and purification of pharmaceuticals using IL-based systems. Key factors in the selection of appropriate ILs are identified. Insights and perspectives to bring renewed and effective solutions involving ILs able to compete with current commercial technologies are finally provided.
Collapse
Affiliation(s)
- Teresa B. V. Dinis
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| | - Francisca A. e Silva
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| |
Collapse
|
18
|
Herce-Sesa B, López-López JA, Moreno C. Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Martins FCOL, Batista AD, Melchert WR. Current overview and perspectives in environmentally friendly microextractions of carbamates and dithiocarbamates. Compr Rev Food Sci Food Saf 2021; 20:6116-6145. [PMID: 34564942 DOI: 10.1111/1541-4337.12821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Carbamates and dithiocarbamates are two classes of pesticides widely employed in the agriculture practice to control and avoid pests and weeds, hence, the monitoring of the residue of those pesticides in different foodstuff samples is important. Thus, this review presents the classification, chemical structure, use, and toxicology of them. Moreover, it was shown the evolution of liquid- and solid-phase microextractions employed in the extraction of carbamates and dithiocarbamates in water and foodstuff samples. The classification, operation mode, and application of the microextractions of liquid-phase and solid-phase used in their extraction were discussed and related to the analytical parameters and guidelines of green analytical chemistry.
Collapse
Affiliation(s)
| | - Alex D Batista
- Institute of Chemistry, University of Uberlândia, Uberlândia, Brazil
| | - Wanessa R Melchert
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
20
|
Grau J, Azorín C, Benedé JL, Chisvert A, Salvador A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J Sep Sci 2021; 45:210-222. [PMID: 34490730 DOI: 10.1002/jssc.202100609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023]
Abstract
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.
Collapse
Affiliation(s)
- José Grau
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Cristian Azorín
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Juan L Benedé
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Amparo Salvador
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| |
Collapse
|
21
|
Yang Y, Yin S, Wu L, Li Y, Sun C. Determination of Six Tetracyclines in Eggs and Chicken by Dispersive Liquid-Liquid Microextraction Combined with High-Performance Liquid Chromatography. J AOAC Int 2021; 104:1549-1558. [PMID: 34190989 DOI: 10.1093/jaoacint/qsab082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND The wide livestock usage of tetracyclines may result in drug residues in foods. Therefore, it is necessary to develop reliable methods for the determination of tetracyclines in foods. OBJECTIVE A dispersive liquid-liquid microextraction (DLLME) combined with high-performance liquid chromatography (HPLC) method was developed for the analysis of six tetracyclines in eggs and chicken. METHODS After deproteinization, tetracyclines in acidic solutions were concentrated by vortex-assisted DLLME. Followed by the addition of NaCl (35% for eggs and 20% for chicken), a mixture of ionic liquid [Bmim]PF6 and ethyl acetate (300 μL-50 μL for eggs and 200 μL-60 μL for chicken) was used as the extractant. After centrifugation, the extract was collected for HPLC analysis. RESULTS The developed method showed good linear relationship (10.0-500 μg/kg), low method detection limits (0.219-1.42 μg/kg) and quantification limits (0.731-4.72 μg/kg), satisfactory relative recoveries (87.1-104%) with intra-day and inter-day RSDs in the ranges of 0.853-8.62% and 1.65-11.8%, respectively. The established method was successfully applied for the determination of six tetracyclines in eggs and chicken of different parts. The contents of tetracyclines in all samples were lower than their maximum residue limits. CONCLUSIONS A DLLME-HPLC method has been developed for the analysis of six tetracyclines in animal derived foods using ionic liquid and ethyl acetate as the extractant. HIGHLIGHTS The developed method is simple, sensitive, cost-effective and has strong anti-interference ability. This method has been successfully applied to the analysis of six tetracyclines in eggs and chicken.
Collapse
Affiliation(s)
- Yi Yang
- Southwest Medical University, School of Public Health, Luzhou, 646000, China
- Sichuan University, West China School of Public Health and West China Fourth Hospital, Chengdu, 610041, China
| | - Shuo Yin
- Sichuan University, West China School of Public Health and West China Fourth Hospital, Chengdu, 610041, China
| | - Ling Wu
- Sichuan University, West China School of Public Health and West China Fourth Hospital, Chengdu, 610041, China
| | - Yongxin Li
- Sichuan University, West China School of Public Health and West China Fourth Hospital, Chengdu, 610041, China
| | - Chengjun Sun
- Sichuan University, West China School of Public Health and West China Fourth Hospital, Chengdu, 610041, China
| |
Collapse
|
22
|
Abbaszadeh S, Yousefinejad S, Jafari S, Soleimani E. In-syringe ionic liquid-dispersive liquid-liquid microextraction coupled with HPLC for the determination of trans,trans-muconic acid in human urine sample. J Sep Sci 2021; 44:3126-3136. [PMID: 34114310 DOI: 10.1002/jssc.202100044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
trans,trans-Muconic acid has been widely used as a biomarker in biological monitoring of benzene-exposed workers during routine occupational health services. In the present study, a novel microextraction technique, in-syringe ionic liquid-dispersive liquid-liquid microextraction, was implemented for preconcentration of trans,trans-muconic acid followed by analytical determination by high-performance liquid chromatography with ultraviolet detection. Moreover, the important variables affecting the performance of applied microextraction technique including needle diameter, volume of the spiked sample, volume of the ionic liquid, salt addition, rotation speed of centrifugation, centrifuge time, and ultrasonic time were optimized by experimental design. A good linear relationship was observed at the range of 0.032-10 μg/mL between the peak area and the concentration levels (R2 = 0.9997). The limit of detection and extraction recovery for trans,trans-muconic acid were 0.011 μg/mL and >96.2%, respectively. This method provided easy and rapid analysis of low amounts of trans,trans-muconic acid in human urine with simple equipment.
Collapse
Affiliation(s)
- Sepideh Abbaszadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jafari
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeel Soleimani
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Frizzo CP, Vieira JCB, Krüger N, Paz AV, Zanatta N, Villetti MA. Heating Profile of Long Alkyl Chain Ionic Liquid Doped Solvents Under Ultrasound Irradiation. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Musarurwa H, Tavengwa NT. Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta 2021; 223:121507. [DOI: 10.1016/j.talanta.2020.121507] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
|
25
|
Cellulose supported promising magnetic sorbents for magnetic solid-phase extraction: A review. Carbohydr Polym 2021; 253:117245. [DOI: 10.1016/j.carbpol.2020.117245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
|
26
|
Will C, Huelsmann RD, Mafra G, Merib J, Anderson JL, Carasek E. High-throughput approach for the in situ generation of magnetic ionic liquids in parallel-dispersive droplet extraction of organic micropollutants in aqueous environmental samples. Talanta 2021; 223:121759. [PMID: 33298275 DOI: 10.1016/j.talanta.2020.121759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023]
Abstract
In this work, a novel and high-throughput parallel-dispersive droplet extraction (Pa-DDE) based on in situ formation of the hydrophobic MILs ([Co(C4IM)4+2]2[NTf2-], [Ni(C4IM)4+2]2[NTf2-] and [Ni(BeIM)4+2]2[NTf2-]) is demonstrated, for the first time, for the determination of benzophenone, metolachlor, triclocarban, pendimethalin, 4-methylbenzylidene camphor, and 2-ethylhexyl-4-methoxycinnamate from aqueous environmental samples. This experimental setup is comprised of a 96-well plate system containing a set of magnetic pins which were used to collect the MIL droplet after in situ formation. This consolidated system enabled simultaneous extraction of up to 96 samples and MIL production in one step. Using this apparatus, sample preparation times of 0.78 min per sample was achieved. The experimental conditions were carefully optimized using uni and multivariate approaches. The optimal conditions were comprised of sample volume of 1.25 mL, 4 mg of [Co(C4IM)4+2]2[Cl-] and 40 μL of LiNTf2 for the in situ formation, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were successfully determined with LODs ranging from 7.5 to 25 μg L-1 and coefficients of determination higher than 0.989. Intraday and interday precision ranged from 6.4 to 20.6% (n = 3) and 11.6-22.9% (n = 9), respectively, with analyte relative recovery ranging between 53.9 and 129.1%.
Collapse
Affiliation(s)
- Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ricardo Dagnoni Huelsmann
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gabriela Mafra
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil.
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
27
|
Kashin A, Degtyareva ES, Ananikov VP. Visualization of the Mechanical Wave Effect on Liquid Microphases and Its Application for the Tuning of Dissipative Soft Microreactors. JACS AU 2021; 1:87-97. [PMID: 34467272 PMCID: PMC8395697 DOI: 10.1021/jacsau.0c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 05/08/2023]
Abstract
The development of approaches for creation of adaptive and stimuli-responsive chemical systems is particularly important for chemistry, materials science, and biotechnology. The understanding of response mechanisms for various external forces is highly demanded for the rational design of task-specific systems. Here, we report direct liquid-phase scanning electron microscopy (SEM) observations of the high frequency sound-wave-driven restructuring of liquid media on the microlevel, leading to switching of its chemical behavior. We show that under the action of ultrasound, the microstructured ionic liquid/water mixture undergoes rearrangement resulting in formation of separated phases with specific compositions and reactivities. The observed effect was successfully utilized for creation of dissipative soft microreactors formed in ionic liquid/water media during the sonication-driven water transfer. The performance of the microreactors was demonstrated using the example of controlled synthesis of small and uniform gold and palladium nanoparticles. The microsonication stage, designed and used in the present study, opened unique opportunities for direct sonochemical studies with the use of electron microscopy.
Collapse
|
28
|
Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Anal Chim Acta 2021; 1143:225-249. [DOI: 10.1016/j.aca.2020.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
|
29
|
Alireza Pourhossein, Kamal Alizadeh. Determination of Methocarbamol in Human Urine Using Dispersive Liquid–Liquid Microextraction Based on Solidification of Organic Drop and Response Surface Methodology for Optimization. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s106193482101010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
de Jesus JR, Arruda MAZ. Unravelling neurological disorders through metallomics-based approaches. Metallomics 2020; 12:1878-1896. [PMID: 33237082 DOI: 10.1039/d0mt00234h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the biological process involving metals and biomolecules in the brain is essential for establishing the origin of neurological disorders, such as neurodegenerative and psychiatric diseases. From this perspective, this critical review presents recent advances in this topic, showing possible mechanisms involving the disruption of metal homeostasis and the pathogenesis of neurological disorders. We also discuss the main challenges observed in metallomics studies associated with neurological disorders, including those related to sample preparation and analyte quantification.
Collapse
|
31
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
32
|
Magnetic nanoparticle-assisted in situ ionic liquid dispersive liquid-liquid microextraction of pyrethroid pesticides in urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Determination of cadmium in used engine oil, gasoline and diesel by electrothermal atomic absorption spectrometry using magnetic ionic liquid-based dispersive liquid-liquid microextraction. Talanta 2020; 220:121395. [DOI: 10.1016/j.talanta.2020.121395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
|
34
|
A simple one-step transferred sample preparation for effective purification and extraction of auramine O in bean product by combining air-assisted ionic liquid-based dispersive liquid-liquid microextraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Quijada-Maldonado E, Olea F, Sepúlveda R, Castillo J, Cabezas R, Merlet G, Romero J. Possibilities and challenges for ionic liquids in hydrometallurgy. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117289] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Abdelaziz MA, Mansour FR, Danielson ND. A gadolinium-based magnetic ionic liquid for dispersive liquid-liquid microextraction. Anal Bioanal Chem 2020; 413:205-214. [PMID: 33095289 PMCID: PMC7581952 DOI: 10.1007/s00216-020-02992-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
A hydrophobic gadolinium-based magnetic ionic liquid (MIL) was investigated for the first time as an extraction solvent in dispersive liquid–liquid microextraction (DLLME). The tested MIL was composed of trihexyl(tetradecyl)phosphonium cations and paramagnetic gadolinium chloride anions. The prepared MIL showed low water miscibility, reasonable viscosity, markedly high magnetic susceptibility, adequate chemical stability, low UV background, and compatibility with reversed-phase HPLC solvents. These features resulted in a more efficient extraction than the corresponding iron or manganese analogues. Accordingly, the overall method sensitivity and reproducibility were improved, and the analysis time was reduced. The applicability of the proposed MIL was examined through the microextraction of four sartan antihypertensive drugs from aqueous samples followed by reversed-phase HPLC with UV detection at 240 nm. The DLLME procedures were optimized for disperser solvent type, MIL mass, disperser solvent volume, as well as acid, base, and salt addition. The limits of quantitation (LOQs) obtained with the analysis of 1.2-mL samples after DLLME and HPLC were 80, 30, 40, and 160 ng/mL for azilsartan medoxomil, irbesartan, telmisartan, and valsartan, respectively. Correlation coefficients were greater than 0.9988 and RSD values were in the range of 2.48–4.07%. Under the optimized microextraction conditions and using a 5-mL sample volume, enrichment factors were raised from about 40 for all sartans using a 1.2-mL sample to 175, 176, 169, and 103 for azilsartan medoxomil, irbesartan, valsartan, and telmisartan, respectively. The relative extraction recoveries for the studied sartans in river water varied from 82.5 to 101.48% at a spiked concentration of 0.5 μg/mL for telmisartan and irbesartan and 1 μg/mL for azilsartan medoxomil and valsartan. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mohamed A Abdelaziz
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
37
|
Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Microextraction Combined with High Performance Liquid Chromatography-Diode Array Detection for Determining UV Filters in Cosmetics and the Human Stratum Corneum. Molecules 2020; 25:molecules25204642. [PMID: 33053784 PMCID: PMC7587185 DOI: 10.3390/molecules25204642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
This study explores the amounts of common chemical ultraviolet (UV) filters (i.e., avobenzone, bemotrizinol, ethylhexyl triazone, octocrylene, and octyl methoxycinnamate) in cosmetics and the human stratum corneum. An ultrasound–vortex-assisted dispersive liquid–liquid microextraction (US–VA–DLLME) method with a high-performance liquid chromatography–diode array detector was used to analyze UV filters. A bio-derived solvent (i.e., anisole) was used as the extractant in the US–VA–DLLME procedure, along with methanol as the dispersant, a vortexing time of 4 min, and ultrasonication for 3 min. The mass-transfer rate of the extraction process was enhanced due to vortex-ultrasound combination. Various C18 end-capped columns were used to investigate the separation characteristics of the UV filters, with XBridge BEH or CORTECS selected as the separation column. Calibration curves were constructed in the 0.05–5 μg/mL (all filters except octocrylene) and 0.1–10 μg/mL (octocrylene) ranges, and excellent analytical linearities with coefficients of determination (r2) above 0.998. The developed method was successfully used to analyze sunscreen. Moreover, experiments were designed to simulate the sunscreen-usage habits of consumers, and the cup method was used to extract UV filters from the human stratum corneum. The results suggest that a makeup remover should be employed to remove water-in-oil sunscreens from skin.
Collapse
|
38
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Dispersive Liquid–Liquid Microextraction of Organic Compounds: An Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820100056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Hosseini Z, Madrakian T, Ahmadi M, Afkhami A. Ultrasound-assisted dispersive liquid antisolvent precipitation for extraction of polar organic compounds in water. Anal Chim Acta 2020; 1135:91-98. [DOI: 10.1016/j.aca.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 11/25/2022]
|
40
|
Simultaneous cell lysis and DNA extraction from whole blood using magnetic ionic liquids. Anal Bioanal Chem 2020; 412:8039-8049. [PMID: 32918171 DOI: 10.1007/s00216-020-02941-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Conventional DNA sample preparation methods involve tedious sample handling steps that require numerous inhibitors of the polymerase chain reaction (PCR) and instrumentation to implement. These disadvantages limit the applicability of conventional cell lysis and DNA extraction methods in high-throughput applications, particularly in forensics and clinical laboratories. To overcome these drawbacks, a series of nine hydrophobic magnetic ionic liquids (MILs) previously shown to preconcentrate DNA were explored as cell lysis reagents. The MILs were found to lyse white blood cells from whole blood, 2-fold diluted blood, and dry blood samples while simultaneously extracting human genomic DNA. The identity of metal ion incorporated within the MIL appears to cause hemolysis while the cationic component further reduces the cell's integrity. Over 500 pg of human genomic DNA was isolated from 50 μL of whole blood using the trioctylbenzylammonium tris(hexafluoroacetylaceto)nickelate(II) ([N8,8,8,Bz+][Ni(hfacac)3-]) MIL, and 800 pg DNA was isolated from a dry blood samples using the trihexyl(tetradecyl)phosphonium tris(phenyltrifluoroacetylaceto)nickelate(II) ([P6,6,6,14+][Ni(Phfacac)3-]) MIL following a 1-min vortex step. A rapid, one-step cell lysis and DNA extraction from blood is ideal for settings that seek high-throughput analysis while minimizing the potential for contamination.Graphical abstract.
Collapse
|
41
|
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Crit Rev Anal Chem 2020; 52:327-342. [DOI: 10.1080/10408347.2020.1798211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Reza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Bessonova EA, Deev VA, Kartsova LA. Dispersive Liquid–Liquid Microextraction of Pesticides Using Ionic Liquids As Extractants. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Majidi SM, Hadjmohammadi MR. Hydrophobic borneol-based natural deep eutectic solvents as a green extraction media for air-assisted liquid-liquid micro-extraction of warfarin in biological samples. J Chromatogr A 2020; 1621:461030. [PMID: 32192705 DOI: 10.1016/j.chroma.2020.461030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
In the present study, a new generation of water-immiscible natural deep eutectic solvents (DESs) was synthesized using borneol as a hydrogen-bonding acceptor and decanoic acid, oleic acid, and thymol as a hydrogen-bonding donor in different molar ratios. These green hydrophobic solvents which are chemically stable in aqueous solutions were used as extraction solvents for isolation and pre-concentration of warfarin in biological samples. In this method, fine droplets of DESs were dispersed into the sample solution by using the air-assisted liquid-liquid micro-extraction method to accelerate the cloudy emulsion system formation and increase the mass transfer of the analyte to the DES-rich phase. The borneol based deep eutectic solvent is a worthy generation of the extraction solvents in the ALLME method due to low-cost and less toxicity. A Plackett-Burman design was utilized for screening the experimental parameters. The effective parameters were then optimized by Box-Behnken design (BBD). Optimized extraction conditions were pH of sample solution of 3.9, number of aspiration/dispersion cycles of 15, the volume of DES of 60 μL, and rate and time of centrifuge of 6000 rpm and 10 min, respectively. Under the optimized conditions, the developed NADES-ALLME method exhibited a wide linear range of 5-500 µg L - 1 for plasma and urine samples with satisfactory recoveries above 88.80%. Limit of detections (LODs) and Limit of quantifications (LOQs) of warfarin were in the ranges of 0.5-2.7 and 1.65-8.91, respectively. The enrichment factors were obtained in the range of 148-164 and precisions were lower than 5.87%. Finally, the proposed method was successfully employed for the analysis of warfarin in human urine and plasma samples.
Collapse
Affiliation(s)
- Seyedeh Maedeh Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayiiboulevard, 47416-95447 Babolsar, Iran
| | - Mohammad Reza Hadjmohammadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayiiboulevard, 47416-95447 Babolsar, Iran.
| |
Collapse
|
44
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|
45
|
Adhami K, Asadollahzadeh H, Ghazizadeh M. Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL-based dispersive liquid–liquid microextraction technique, and flame atomic absorption spectrophotometry. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103457] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Sahebi H, Konoz E, Ezabadi A, Niazi A, Ahmadi SH. Simultaneous determination of five penicillins in milk using a new ionic liquid-modified magnetic nanoparticle based dispersive micro-solid phase extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104605] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Use of a pH-sensitive polymer in a microextraction and preconcentration method directly combined with high-performance liquid chromatography. J Chromatogr A 2020; 1619:460910. [DOI: 10.1016/j.chroma.2020.460910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
|
48
|
Deep eutectic solvent-based liquid-liquid microextraction for the HPLC-DAD analysis of bisphenol A in edible oils. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Zhang R, Tan Z, Zhao J, Wen Y, Fan S, Liu C. Determination of pyrethroid residues in herbal tea using temperature-controlled ionic liquid dispersive liquid-liquid microextraction by high performance liquid chromatography. Sci Rep 2020; 10:4709. [PMID: 32170197 PMCID: PMC7070011 DOI: 10.1038/s41598-020-61755-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
A simple and effective method for determining five pyrethroid residues in herbal tea by ultrasound-enhanced temperature-controlled (UETC) ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD) was developed. The use of ultrasonication and heating improved the ability of the ionic liquid to extract the analytes. Various parameters that affect the extraction efficiency were investigated and optimized using single factor experiments and response surface design. The optimum conditions of the experiment were 121 µL of [HMIM][PF6] (extraction solvent), 794 µL of acetonitrile (dispersive solvent), a heating temperature of 40°C, a sonication time of 3.6 min and a pH of 2.9. Under optimized conditions, the linearity was in the range of 0.05–5 mg L−1 with correlation coefficients above 0.9993. The limits of detection and quantification were 1.25–1.35 µg L−1 and 5 µg L−1, respectively. The mean recoveries of the five pyrethroids ranged from 74.02% to 109.01%, with RSDs below 9.04%. The proposed method was reliable for the analysis of pyrethroids in Chinese herbal tea.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Junlong Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yan Wen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Shuai Fan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
50
|
Trujillo‐Rodríguez MJ, Pino V, Miró M. High‐throughput microscale extraction using ionic liquids and derivatives: A review. J Sep Sci 2020; 43:1890-1907. [DOI: 10.1002/jssc.202000045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - Verónica Pino
- Departamento de Química (Unidad Departamental de Química Analítica)Universidad de La Laguna (ULL) Tenerife Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna (ULL) Tenerife Spain
| | - Manuel Miró
- FI‐TRACE group, Department of ChemistryUniversity of the Balearic Islands Palma Spain
| |
Collapse
|