1
|
Sikri N, Behera B, Kumar A, Kumar V, Pandey OP, Mehta J, Kumar S. Recent advancements on 2D nanomaterials as emerging paradigm for the adsorptive removal of microcontaminants. Adv Colloid Interface Sci 2025; 340:103441. [PMID: 40023124 DOI: 10.1016/j.cis.2025.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Water reservoirs are facing increasing prevalence of microcontaminants originating from agricultural runoff, industrial effluents, and domestic wastewater. The persistence of microcontaminants leads to disruptions in aquatic ecosystems and poses potential long-term health risks to humans, even at minimal concentrations. However, traditional wastewater treatment methods are inefficient to eliminate the microcontaminants because of their intricate chemical structures and low concentration. In this regard, nano-adsorption employing nanomaterials as adsorbents presents a viable alternative, offering enhanced efficiency and specificity towards the removal of microcontaminants. Amongst all, two-dimensional (2D) nanomaterials, including graphene oxide (GO), layered double hydroxides (LDHs), MXenes, and boron nitrides (BNs), exhibit distinctive characteristics such as a high surface area, remarkable chemical stability, and tendency of diverse surface functionalization, rendering them particularly effective in adsorbing pollutants from water. Therefore, the present review provides an exhaustive literature and comparative analysis of the aforementioned 2D nanomaterials-based adsorbents concerning their efficacy in adsorbing microcontaminants of pharmaceuticals and personal care products origin such as antibiotics, steroids, bisphenols, phthalates, parabens, and benzophenones. The different aspects of 2D adsorbents including adsorption capacity, mechanisms involved, kinetic and isotherm models followed for removal of a variety of microcontaminants have been congregated. Also, the information on recyclability, reusability, and stability of the adsorbents has been summarized to highlight their viability. Further, the limitations and future aspects related to the use of 2D nanomaterials-based adsorbents towards pollutant removal have been discussed. Overall, 2D nanomaterials holds great promise as efficient adsorbents for environmental remediation and can also be explored for industrial adsorption applications.
Collapse
Affiliation(s)
- Nidhi Sikri
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Bunushree Behera
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Akshay Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - O P Pandey
- Department of Physics and Material Science, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Jyotsana Mehta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India.
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
2
|
Mao J, Peng J, Zhu Y, Jiang X, Cao Y, Zhao T, Dong S, Dong F, He K, Wang N. Rapid UHPLC-MS/MS Detection of Prohibited Drugs in Cosmetics Using Pass-Through SPE. ACS OMEGA 2025; 10:15716-15724. [PMID: 40290927 PMCID: PMC12019749 DOI: 10.1021/acsomega.5c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Prolonged exposure to drugs prohibited in cosmetics may cause irritation and allergic reactions in humans. In this study, a method using ultrahigh performance liquid chromatography-tandem mass spectrometry was established for the simultaneous determination of 64 prohibited drugs spanning 11 categories, including 39 antibiotics, 8 antiallergics, 7 anesthetics, and 10 hormones. Typical cosmetic samples containing toner, cream, and oil matrices were extracted using a 70% acetonitrile solvent system with 1% formic acid and purified using a pass-through cleanup solid-phase extraction approach with a PRiME hydrophobic-lipophilic balanced column. Analytes covering a wide range of polarities showed excellent recoveries between 70 and 120%, with relative standard deviations of <11%. Excellent sensitivities ranging from 0.1 to 1 μg/kg were achieved with the limits of quantification. This method provides a rapid and comprehensive targeted strategy for the analysis of multiclass prohibited drugs in various cosmetic matrices. Finally, analysis of 20 cosmetic products using the optimized method identified prohibited substances in 6 samples at concentrations spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Jie Mao
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Jing Peng
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Yingjie Zhu
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Xin Jiang
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Yanqing Cao
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Tianyue Zhao
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Suhe Dong
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Fangting Dong
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Kun He
- National Center of Biomedical
Analysis, Beijing 100850, China
| | - Na Wang
- National Center of Biomedical
Analysis, Beijing 100850, China
| |
Collapse
|
3
|
Maia C, Sousa H, Vale F, Sousa CA, Simões M. The influence of photoperiod and organic carbon levels in parabens removal from wastewater by Chlorella vulgaris. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124391. [PMID: 39908604 DOI: 10.1016/j.jenvman.2025.124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Parabens are emerging contaminants due to their abundant use as preservatives and inefficient treatment in wastewater (WW) treatment plants. To overcome the limitations of WW treatment plants in removing parabens, microalgae-based bioremediation has aroused great interest as an effective and sustainable process. Nevertheless, several factors affect the WW bioremediation capacity, which must be studied to achieve an effective biological treatment. The main objective of the present work was to evaluate the effects of photoperiod and WW composition, specifically organic carbon concentration (sourced as glucose), on the ability of the microalga Chlorella vulgaris to remove methylparaben (MetP). For that, two photoperiods (12/12 h light/dark and 24 h light) were studied and the composition of synthetic WW (SWW) was manipulated to have a glucose concentration of 0, 3, 30, or 300 mg/L. It was observed that the photoperiod significantly affects the bioremediation process. For a 12/12 h photoperiod, MetP was not removed. Removal was effective for a 24 h photoperiod, with percentages of MetP removal over 88% for glucose concentrations lower than 30 mg/L, decreasing for higher glucose levels. MetP photodegradation was negligible. For the 24 h photoperiod, it was possible to verify that higher glucose concentrations decreased microalga growth, with a decrease in the specific growth rate and the production of photosynthetic pigments. Furthermore, with the increase of the glucose concentration, the MetP constant rate of degradation decreased and its half-life time increased, taking longer to degrade the contaminant (through diauxic growth). Also, C. vulgaris exhibited strong growth ability and removed over 80% of nitrogen and phosphorous, unaffected by the presence of MetP and proportional to glucose levels, underscoring its potential for treating WW contaminated with high concentrations of parabens.
Collapse
Affiliation(s)
- Carolina Maia
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisca Vale
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ISEP/P.PORTO, School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CIETI, School of Engineering, Polytechnic of Porto, Porto, Portugal.
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
4
|
Kończyk J, Myga-Nowak M, Michalski R, Janoszka K. Electromigration Techniques in the Analysis of Selected Cosmetic Ingredients: A Review. Molecules 2025; 30:161. [PMID: 39795217 PMCID: PMC11721023 DOI: 10.3390/molecules30010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The cosmetics industry is one of the fastest-growing sectors worldwide. The dynamic evolution of this industry results in an increasingly diverse range of products containing various active ingredients. Ensuring the quality of these products is crucial for consumer safety, necessitating the use of advanced analytical methods and adherence to legal regulations. Electrophoretic techniques, particularly capillary electrophoresis and micellar electrokinetic chromatography, facilitate the rapid and precise separation and identification of cosmetic ingredients. A well-chosen technique and optimized analytical conditions ensure high sensitivity, repeatability, and resolution, achieving detection limits that meet legal requirements. Although electromigration techniques are less common in routine laboratory analyses compared to liquid chromatography, they show potential for broader application in analyzing various substances found in cosmetics. This study reviews the possibilities of applying different electrophoretic techniques to analyze selected cosmetic ingredients serving various functions, including preservatives, dyes, exfoliating agents, UV filters, and also contaminants, while considering sample preparation methods, equipment used, and analysis conditions. The compiled data indicate that capillary electrophoresis, when compared to high-performance liquid chromatography and ion chromatography, shows comparable or superior sensitivity and repeatability, with detection limits adequate to meet regulatory standards.
Collapse
Affiliation(s)
- Joanna Kończyk
- Institute of Chemistry, Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Magdalena Myga-Nowak
- Wladyslaw Bieganski Collegium Medicum, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Rajmund Michalski
- Institute of Environmental Engineering, Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland; (R.M.); (K.J.)
| | - Katarzyna Janoszka
- Institute of Environmental Engineering, Polish Academy of Sciences, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland; (R.M.); (K.J.)
| |
Collapse
|
5
|
Ramutshatsha-Makhwedzha D, Munonde TS. Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices. Molecules 2024; 29:5533. [PMID: 39683693 DOI: 10.3390/molecules29235533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed. As a result of sample preparation methods, analytical techniques now detect parabens at trace levels ranging from µg/L to ng/L. These compounds have been detected in water, air, soil, and human tissues. While the full impact of parabens on human health and ecosystems is still being debated in the scientific community, it is widely recognized that parabens can act as endocrine disruptors. Furthermore, some studies have suggested that parabens may have carcinogenic effects. The presence of parabens in the environment is primarily due to wastewater discharges, which result in widespread contamination and their concentrations increased during the COVID-19 pandemic waves. Neglecting the presence of parabens in water exposes humans to these compounds through contaminated food and drinking water. Although there are reviews that focus on the occurrence, fate, and behavior of parabens in the environment, they frequently overlook critical aspects such as removal methods, policy development, and regulatory frameworks. Addressing this gap, the effective treatment of parabens in water relies on combined approaches that address both cost and operational challenges. Membrane filtration methods, such as nanofiltration (NF) and reverse osmosis (RO), demonstrate high efficacy but are hindered by maintenance and energy costs due to extensive fouling. Innovations in anti-fouling and energy efficiency, coupled with pre-treatment methods like adsorption, help mitigate these costs and enhance scalability. Furthermore, combining adsorption with advanced oxidation processes (AOPs) or biological treatments significantly improves economic and energy efficiency. Integrating systems like O₃/UV with activated carbon, along with byproduct recovery strategies, further advances circular economy goals by minimizing waste and resource use. This review provides a thorough overview of paraben monitoring in wastewater, current treatment techniques, and the regulatory policies that govern their presence. Furthermore, it provides perspectives that are critical for future scientific investigations and shaping policies aimed at mitigating the risks of parabens in drinking water.
Collapse
Affiliation(s)
- Denga Ramutshatsha-Makhwedzha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tshimangadzo S Munonde
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
6
|
Ramos TDS, Gonçalves KB, Marciano LPDA, Rosa MA, Martins I. A sustainable and innovative method to determine parabens in body creams for exposure and risk assessment. Regul Toxicol Pharmacol 2024; 151:105667. [PMID: 38925470 DOI: 10.1016/j.yrtph.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) are among the most widely used preservatives in cosmetics, drugs, and foods. These compounds have been associated with toxic effects due to the overuse of products with parabens in their formulation. The toxicity of parabens may be correlated to endocrine disruption, owing to their ability to mimic the actions of estradiol. In this paper, a simple, sustainable, robust, and innovative dispersive liquid-liquid microextraction (DLLME) technique was developed and employed to extract these xenobiotics from body cream samples, aiming to calculate the margin of safety (MoS) to assess the risk of exposure. The validated method presented suitable linearity (r > 0.99), lower limits of detection (ranging from 0.01 to 0.04 % w/w), and satisfactory precision and accuracy (ranging from 4.33 to 10.47, and from -14.25 to 13.85, respectively). Seven of the ten analysed samples presented paraben contents within the acceptable concentration according to European legislation. The MoS value obtained for PrP (37.58) suggested its reduced safety, indicating that PrP may significantly contribute to systemic exposure resulting from the use of personal care products.
Collapse
Affiliation(s)
- Thalita da Silva Ramos
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Karina Borba Gonçalves
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Luiz Paulo de Aguiar Marciano
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Mariana Azevedo Rosa
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| | - Isarita Martins
- Laboratory of Toxicants and Drugs Analysis - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Gabriel Monteiro da Silva St. 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
7
|
Jullakan S, Rattanakunsong N, Płotka-Wasylka J, Bunkoed O. A magnetic stir bar sorbent of metal organic frameworks, carbon foam decorated zinc oxide and cryogel to enrich and extract parabens and bisphenols from food samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123970. [PMID: 38128167 DOI: 10.1016/j.jchromb.2023.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
A porous composite magnetic stir bar adsorbent was fabricated for the extraction and enrichment of parabens and bisphenols from selected beverage samples. The adsorbent comprised a metal organic framework, carbon foam decorated zinc oxide and magnetic nanoparticles embedded in polyvinyl alcohol cryogel. The porous composite stir bar adsorbent could adsorb parabens and bisphenols via hydrogen bonding, π-π and hydrophobic interactions. In the best conditions, linearity was good from 5.0 to 200.0 µg/L for methyl paraben, ethyl paraben and bisphenol A and from 10.0 to 200.0 µg/L for bisphenol B and butyl paraben. Limits of detection ranged from 1.5 to 3.0 µg/L. The developed composite stir bar was successfully applied to extract and determine parabens and bisphenols in fruit juice, beer and milk. Recoveries ranged from 89.5 to 99.5 % with RSDs lower than 6 %. The developed sorbent and new methodology were evaluated in terms of its green character with satisfactory results.
Collapse
Affiliation(s)
- Sirintorn Jullakan
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Natnaree Rattanakunsong
- Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
8
|
Xiao G, Yuan L, Liao D, Dong H, Luo X, Huang Y. A study on the applicability of one-step vortex extraction and purification combined with gas chromatography-tandem mass spectrometry for analysis of four skin penetration enhancers in cosmetics. J Chromatogr A 2023; 1710:464379. [PMID: 37778099 DOI: 10.1016/j.chroma.2023.464379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Based on one-step vortex extraction and purification combined with gas chromatography-tandem mass spectrometry (GC-MS/MS), we established a simple, rapid, and efficient method for the simultaneous determination of four skin penetration enhancers in cosmetics, including isosorbide dimethyl ether, isopropyl myristate, N-butylsaccharin and Azone. The extraction procedure was performed in a centrifuge tube, allowing extraction and purification in a single step. The cosmetic sample was extracted by n-hexane-ethyl acetate (1:1, V/V), purified by silica gel and anhydrous magnesium sulfate as the solid phase purification agent, separated on a TG-5 ms column (30.0 m × 0.25 mm × 0.25 μ m), confirmed and detected by GC-MS/MS in the selected reaction monitoring (SRM) mode, and quantified by the internal standard method with Di-n‑butyl phthalate-D4(DBP-D4) as the internal standard. The selections of a column, extraction solvent, and solid phase purification agent were optimized. Under the optimized conditions, the four skin penetration enhancers showed good linearities in the range of 0.02∼0.50 mg L - 1. The correlation coefficients (r) were 0.992 ∼ 0.997, exceeding the specifications requirements (r ≥ 0.990); The detection (LODs, S/N = 3) and quantification limits (LOQs, S/N = 10) of the method were 0.08 ∼ 0.12 mg kg-1 and 0.25 ∼ 0.40 mg kg-1, respectively. According to the cosmetic matrix in different formulation systems, the spiked recovery tests were carried out at three levels, i.e., low, medium, and high. The average recoveries of the analytes were 85.3% ∼ 95.6%, and the relative standard deviations (RSDs, n = 6) were 2.1% ∼ 7.8%. The established method was also employed to analyze cosmetics in the market. Azone, isosorbide dimethyl ether, and isopropyl myristate resulted as the most widely used skin penetration enhancers in cosmetics. The method established in this study has the advantages of operational simplicity, high sensitivity, good reproducibility, and low consumption of samples and solvents. Moreover, it can be used to determine skin penetration enhancers in cosmetics.
Collapse
Affiliation(s)
- Gengpeng Xiao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Lu Yuan
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Dandan Liao
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Huanhuan Dong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiang Luo
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Yousheng Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China.
| |
Collapse
|
9
|
Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023; 28:molecules28041980. [PMID: 36838967 PMCID: PMC9959700 DOI: 10.3390/molecules28041980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the rapid development of the cosmetic industry, cosmetic safety has become the focus of consumers' attention. However, in order to achieve the desired effects in the short term, the illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review, we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics in China from 2017 to 2022. Results showed that although the frequency of adding hormones in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics, especially facial masks. Because of the complex composition and the low concentration of hormones in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in cosmetics, we summarize the advanced sample preparation techniques and commonly used detection techniques of hormones in cosmetics in the last decade (2012-2022). We found that ultrasound-assisted extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still the most widely used analytical technologies for hormones in cosmetics. Through the investigation of market status, the summary of sample pretreatment and detection technologies, as well as the discussion of their development trends in the future, our purpose is to provide a reference for the supervision of illegal hormone residues in cosmetics.
Collapse
|
10
|
Tahmasebi E, Sattari R. Development of a new strategy for the synthesis of graphene oxide-alumina nanocomposite as an efficient adsorbent for dispersive solid-phase extraction of parabens. J Sep Sci 2023; 46:e2200698. [PMID: 36333934 DOI: 10.1002/jssc.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The present study investigates the synthesis and application of the graphene oxide-alumina nanocomposite as a new adsorbent for the dispersive solid-phase extraction of three parabens and their determination using high-performance liquid chromatography-ultraviolet detection. The characterization of the synthesized material was accomplished and its size, morphology, chemical composition, porosity, and thermal stability were studied. Application of the proposed strategy for the synthesis of the nanocomposite resulted in the incorporation of Al2 O3 nanoparticles into graphene oxide nanosheets, further resulting in the exfoliation of graphene oxide nanosheets increasing their surface area. An orthogonal rotatable central composite design was used to optimize the extraction. Under the optimum conditions, the analytical performance of the method showed a suitable linear dynamic range (0.2-100.0 μg/L), reasonable limits of detection (0.03-0.05 μg/L), and preconcentration factors ranging from 128 to 173. Finally, the new validated method was applied for the determination of parabens in some real samples including wastewater, cream, toothpaste, and juice samples with satisfactory recoveries (88%-109%), and relative standard deviations less than 8.7% (n = 3). Results demonstrated that inserting alumina nanoparticles into graphene oxide nanosheets improved the extraction efficiency of parabens, as polar acidic compounds, by providing additional efficient interactions including hydrogen bonding, dipole-dipole, and Brønsted and Lewis acid-base interactions.
Collapse
Affiliation(s)
- Elham Tahmasebi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Rasoul Sattari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
11
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
12
|
XIAO G, YUAN L, LUO C, LUO X, HUANG Y. [Simultaneous determination of seven dimethylcyclosiloxanes in cosmetics of different formulation systems by gel permeation chromatography purification-gas chromatography-tandem mass spectrometry]. Se Pu 2022; 40:576-583. [PMID: 35616203 PMCID: PMC9404057 DOI: 10.3724/sp.j.1123.2021.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 11/25/2022] Open
Abstract
At present, the addition of dimethylcyclosiloxanes (DMCs) in cosmetics is being debated and no substantial progress has been made in their safety risk assessment because of the lack of a suitable analytical method. Therefore, it is of theoretical and practical significance to establish a method suitable for the determination of DMCs in cosmetics with different formulation systems. Accordingly, a method based on gel permeation chromatography (GPC) purification combined with gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the determination of seven DMCs in cosmetics. The cosmetic samples were extracted by ethyl acetate-cyclohexane (1∶1, v/v), purified by gel permeation chromatography, separated on a DB-5ms column (30.0 m×0.25 mm×0.25 μm), confirmed and detected by gas chromatography-tandem mass spectrometry in the selected reaction monitoring (SRM) mode, and quantified by the internal standard method with n-hexadecane as the internal standard. Experiments were carried out using n-tetradecane, n-hexadecane, and n-octadecane as the internal standards, and based on the retention time in GPC and GC, n-hexadecane was found to be the suitable choice for further analyses. The extraction efficiency for the target compounds was tested in different solvents such as methanol, n-hexane, acetonitrile, ethyl acetate, and ethyl acetate-cyclohexane (1∶1, v/v). Given the high recovery, ethyl acetate-cyclohexane (1∶1, v/v) was selected as the extraction solvent for analyses. Among the three purification methods (analysis without purification, solid-phase extraction (SPE), and GPC purification), GPC was selected as the best method because of the minimal matrix interference to the target compounds. Under the optimized conditions, the seven DMCs showed good linearities in the range of 0.05-1.0 mg/L. The correlation coefficients (r) were 0.994-0.998, which were greater than the required of the specification (r≥0.990). The limits of detection (LODs, S/N=3) were 0.04-0.08 mg/kg, and the limits of quantification (LOQs, S/N=3) were 0.12-0.24 mg/kg. According to the cosmetic matrix in different formulation systems, standard addition recovery tests at three levels of low, medium, and high were carried out. The average recovery rates of the targets were 85.3%-108.8%. The relative standard deviations (RSDs, n=6) were 3.1%-9.4%. The established method was also employed for the analysis of cosmetics in the market, and octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) were detected at various levels in the cosmetics. The method established in this study has the advantages of operational simplicity, high sensitivity, and good reproducibility, and it allows for the determination of seven DMCs in cosmetics with different formulation systems. The establishment of this method provides a basis for the quality supervision and inspection of DMCs in cosmetics in China, in addition to providing technical support for follow-up health and safety evaluation.
Collapse
|
13
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
14
|
Kaykhaii M, Hashemi SH, Andarz F, Piri A, Sargazi G. Chromium-based metal organic framework for pipette tip micro-solid phase extraction: an effective approach for determination of methyl and propyl parabens in wastewater and shampoo samples. BMC Chem 2021; 15:60. [PMID: 34740383 PMCID: PMC8571821 DOI: 10.1186/s13065-021-00786-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A chromium-based metal organic framework was synthesized and employed as an efficient sorbent for pipette tip micro-solid phase extraction and preconcentration of parabens from wastewater and shampoo samples up to sub-ppb level before their spectrophotometric analysis. RESULTS Factors affecting preconcentration including volume and type of solvent, amount of sorbent, number of extraction, and volume and pH of samples were optimized employing one-variable-at-a-time and response surface methodology. Obtained analytical characteristics of the method proves its usefulness for analysis of real samples. Linear range of the method for parabens was 1.0-200.0 μg/L. Detection limit of the protocol was 0.24 µg/L for propyl paraben and 0.25 µg/L for methyl paraben. Reproducibility of the protocol defined as % RSD was better than 5.78%. Synthesized adsorbent can be re-used for at least 20 extractions. CONCLUSION The method showed a good detection limit and precision for determination of methyl- and propyl-paraben in wastewater and shampoo samples.
Collapse
Affiliation(s)
- Massoud Kaykhaii
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98136-674, Iran.
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Sayyed Hossein Hashemi
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Fariba Andarz
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98136-674, Iran
| | - Amin Piri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98136-674, Iran
| | - Ghasem Sargazi
- Nanomaterial Technology Department, Non-Communicable Diseases Research Centre, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
15
|
Ahn J, Avonto C, Chittiboyina AG, Khan IA. Solvents effect on dansyl cysteamine depletion and reactivity classification of skin sensitizers: Tackling the challenges using binary solvent systems. J Pharmacol Toxicol Methods 2021; 112:107116. [PMID: 34403747 DOI: 10.1016/j.vascn.2021.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The high throughput method using dansyl cysteamine (HTS-DCYA™) is a sensitive and rapid in chemico approach to characterize skin sensitizers' thio-reactivity. The direct quantification of fluorescent hapten-DCYA adducts facilitates the rapid testing of pure chemicals as well as mixtures. Poor solubility in acetonitrile was occasionally observed and can represent a limitation. To enable the range of solvent options compatible with the testing, the effect of binary solvent systems on thio-reactivity and the HTS-DCYA classification was explored. The method's robustness was validated using five different solvent modifiers: water, DMSO, methanol, ethanol, and tetrahydrofuran. Some modifiers, viz., water and methanol, resulted in unexpected DCYA depletion, negatively affecting the thio-reactivity and classification of potential sensitizers. This undesirable, non-specific depletion was circumvented by optimizing the original HTS-DCYA™ method's workflow, resulting in a more robust and reliable thio-reactivity and hence classification with a binary solvent system. The results were validated for both pure compounds and plant extracts as examples of complex test samples. Based on the obtained results, the modified HTS-DCYA optimal conditions in the various solvent systems were established. Concentrations of modifiers up to 10% DMSO, 40% water, 40% EtOH, 60% MeOH, or 60% THF in acetonitrile were found acceptable for the modified protocol, with results comparable to the original method. The improved workflow with binary solvent systems provides significant advantages by expanding the applicability of the HTS-DCYA to a wider array of chemicals poorly soluble in acetonitrile.
Collapse
Affiliation(s)
- Jongmin Ahn
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, United States
| | - Cristina Avonto
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, United States.
| | - Amar G Chittiboyina
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| |
Collapse
|
16
|
Recent Advances in Sample Preparation for Cosmetics and Personal Care Products Analysis. Molecules 2021; 26:molecules26164900. [PMID: 34443488 PMCID: PMC8399500 DOI: 10.3390/molecules26164900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The use of cosmetics and personal care products is increasing worldwide. Their high matrix complexity, together with the wide range of products currently marketed under different forms imply a challenge for their analysis, most of them requiring a sample pre-treatment step before analysis. Classical sample preparation methodologies involve large amounts of organic solvents as well as multiple steps resulting in large time consumption. Therefore, in recent years, the trends have been moved towards the development of simple, sustainable, and environmentally friendly methodologies in two ways: (i) the miniaturization of conventional procedures allowing a reduction in the consumption of solvents and reagents; and (ii) the development and application of sorbent- and liquid-based microextraction technologies to obtain a high analyte enrichment, avoiding or significantly reducing the use of organic solvents. This review provides an overview of analytical methodology during the last ten years, placing special emphasis on sample preparation to analyse cosmetics and personal care products. The use of liquid–liquid and solid–liquid extraction (LLE, SLE), ultrasound-assisted extraction (UAE), solid-phase extraction (SPE), pressurized liquid extraction (PLE), matrix solid-phase extraction (MSPD), and liquid- and sorbent-based microextraction techniques will be reviewed. The most recent advances and future trends including the development of new materials and green solvents will be also addressed.
Collapse
|
17
|
Sun W, Hu X, Meng X, Xiang Y, Ye N. Molybdenum disulfide-graphene oxide composites as dispersive solid-phase extraction adsorbents for the enrichment of four paraben preservatives in cosmetics. Mikrochim Acta 2021; 188:256. [PMID: 34268616 DOI: 10.1007/s00604-021-04908-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Molybdenum disulfide-graphene oxide composite (MoS2/GO) was synthesized and used as the adsorbent in dispersive solid-phase extraction. Four paraben preservatives, namely, methylparaben, ethylparaben, propylparaben, and butylparaben, were enriched with MoS2/GO and determined by ultra-high-performance liquid chromatography. Molybdenum disulfide was intercalated into graphene oxide layers to reduce self-aggregation by using the solvothermal method. The experimental results indicated that the as-prepared MoS2/GO composite exhibited great enrichment capability toward those four paraben preservatives, and the adsorption time was 10 min and the elution time was as short as 1 min. The mechanism of MoS2/GO composite and parabens is attributed to hydrogen bonding and electrostatic attraction. The relative standard deviation (RSD, n = 9) of this method was below 7.6%. Limits of detection and limits of quantification were in the range 0.4-2.3 ng/mL and 1.4-7.6 ng/mL, respectively. The recoveries obtained from the parabens of cosmetic sample were in the range 91.3-124% with RSDs below 10%. The developed method has great potential for the determination of emerging contaminants with low cost and high sensitivity.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyang Meng
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
18
|
Martín-Pozo L, Gómez-Regalado MDC, Moscoso-Ruiz I, Zafra-Gómez A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. Talanta 2021; 234:122642. [PMID: 34364451 DOI: 10.1016/j.talanta.2021.122642] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Personal care products (PCPs) and cosmetics are indispensable product in our daily routine. Their widespread use makes them a potential route of exposure for certain contaminants to which human would not be normally exposed. One of these contaminants includes endocrine disrupting chemicals, molecules capable of mimicking the body's natural hormones and interfering with the endocrine system. Some of them are ingredients included in the product's formulation, such as UV-filters (sunscreens), phthalates (plasticizers and preservatives), synthetic musks (fragrances), parabens and other antimicrobial agents (antimicrobial preservatives). Others are non-intended added substances that may result from the manufacturing process or migration from the plastic packaging, as with bisphenols and perfluorinated compounds. Some of these endocrine disruptors have been restricted or even banned in cosmetics and PCPs given the high risk they pose to health. Thus, the development of fast, sensitive and precise methods for the identification and quantification of these compounds in cosmetics is a substantial need in order to ensure consumer safety and provide insight into the real risk of human exposure. The present work aims at reviewing the more recently developed analytical methods published in the literature for the determination of endocrine disrupting chemicals in cosmetics and PCPs using chromatographic techniques, with a focus on sample treatment and the quality of analytical parameters.
Collapse
Affiliation(s)
- Laura Martín-Pozo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, E-18071, Granada, Spain.
| | | | - Inmaculada Moscoso-Ruiz
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, E-18071, Granada, Spain; Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, E-18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, E-18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs, E-18016, Granada, Spain.
| |
Collapse
|
19
|
The enrichment and extraction of parabens with polydopamine-coated microporous carrageenan hydrogel beads incorporating a hierarchical composite of metal-organic frameworks and magnetite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Celeiro M, Rubio L, Garcia-Jares C, Lores M. Multi-Target Strategy to Uncover Unexpected Compounds in Rinse-Off and Leave-On Cosmetics. Molecules 2021; 26:molecules26092504. [PMID: 33923004 PMCID: PMC8123312 DOI: 10.3390/molecules26092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The wide range and complexity of cosmetic formulations currently available on the market poses a challenge from an analytical point of view. In addition, during cosmetics manufacture, impurities coming from raw materials or formed by reaction of different organic compounds present in the formulation may be present. Their identification is mandatory to assure product quality and consumer health. In this work, micro-matrix solid-phase dispersion (μMSPD) is proposed as a multi-target sample preparation strategy to analyze a wide number of unexpected families of compounds including polycyclic aromatic hydrocarbons (PAHs), pesticides, plasticizers, nitrosamines, alkylphenols (APs), and alkylphenol ethoxylates (APEOs). Analytical determination was performed by gas chromatography-mass spectrometry (GC-MS) for the determination of 51 target compounds in a single run, whereas liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed for the analysis of six APs and APEOs. Both methodologies were successfully validated in terms of linearity, accuracy, and precision in leave-on and rinse-off cosmetics. Limits of detection (LODs) were calculated in the low ng g−1, showing their suitability to determine trace levels of impurities and banned compounds with different chemical natures, providing useful tools to cosmetic control laboratories and companies.
Collapse
|
21
|
Pasupuleti RR, Tsai PC, Ponnusamy VK. Low-cost disposable Poly(ethyleneimine)-Functionalized Carbon Nanofibers Coated Cellulose Paper as efficient solid phase extraction sorbent material for the extraction of Parahydroxybenzoates from environmental waters. CHEMOSPHERE 2021; 267:129274. [PMID: 33338718 DOI: 10.1016/j.chemosphere.2020.129274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 05/24/2023]
Abstract
Parahydroxybenzoates (parabens) are considered as emerging environmental contaminants because of their extensive usage in our daily life products, causing parabens contamination into environmental water systems and lead to toxic effects on environmental health. This study describes a greener extraction method using a new cationic polymer poly (ethyleneimine) functionalized acid-treated carbon nanofibers (PEI-CNFs) coated cellulose paper (CP) as solid-phase extraction (SPE) sorbent material for the extraction of parabens from environmental water samples. The fabrication of PEI-CNFs modified CP was confirmed using field-emission scanning electron microscope, transmission electron microscopy, and fourier-transformer infrared spectroscopy techniques. Various factors affecting the adsorption and desorption of parabens on PEI-CNFs@CP and its extraction efficiencies were studied using HPLC-UV analysis. Under the optimal experimental conditions, maximum extraction efficiencies were achieved for four target parabens, and PEI-CNFs@CP/HPLC-UV method exhibited excellent linearities ranged from 0.5-50 ng mL-1 with regression coefficient values were between 0.9952-0.9970. The presented method showed good sensitivity with quantification limits between 0.5-0.75 ng mL-1 and detection limits between 0.1-0.25 ng mL-1. The developed technique was applied for the real sample analysis (river, lake, domestic sewage water, and drinking tap water). The spiked recovery revealed good recoveries between 86.8-116.0% with RSD less than 8.8% for all the water samples. These results proved that it a simple, fast, efficient, low-cost, and eco-friendly method for the extraction and determination of parabens in environmental water samples and can be applied as a routine analytical tool in environmental monitoring and quality control laboratories.
Collapse
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
22
|
Özcan S, Levent S, Can NÖ, Kozanli M. A Novel HPLC Method for Simultaneous Determination of Methyl, Ethyl, n-propyl, Isopropyl, n-butyl, Isobutyl and Benzyl Paraben in Pharmaceuticals and Cosmetics. Comb Chem High Throughput Screen 2020; 24:352-365. [PMID: 32723231 DOI: 10.2174/1386207323999200728121657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The alkyl esters of p-hydroxybenzoic acid at the C-4 position, "the parabens," including methyl, ethyl, propyl, and butyl, are widely used as antimicrobial preservatives in foods, cosmetics, and pharmaceuticals. Official regulations on the use of these compounds make their analysis essential for the estimation of their exposure. METHODS On this basis, the presented study was realized to develop a simple, selective and cheap high-performance liquid chromatographic method for the quantitative determination of methylparaben, ethylparaben (EP), n-propyl paraben (NPP), isopropyl paraben (IPP), n-butyl paraben (NBP), isobutyl paraben (IBP) and benzyl paraben (BP) in pharmaceuticals and cosmetic products. RESULTS The chromatographic separation of the analytes was achieved under flow rate gradient elution conditions using a C18-bonded core-shell silica particle column (2.6 μm particle size, 150 × 3.0 mm from Phenomenex Co.). The samples were injected into the system as aliquots of 1.0 μL, and the compounds were detected by using a photodiode array detector set at 254 nm wavelength. With this technique, seven paraben derivatives can be determined in the concentration range of 250-2000 ng/mL. The recovery of the method is in the range of 99.95-13.84%, and the RSD is at a maximum value of 3.95%. CONCLUSION The proposed method was fully validated and successfully applied to different pharmaceutical and cosmetic samples (n=16), including syrups, suspensions, oral sprays, gels, etc. At least one paraben derivative was detected in six samples and was determined quantitatively. The maximum amount of a paraben derivative found in the analyzed samples was 321.7 ng/mL, which was MP. To the best of our knowledge, this is the first LC method, which is applicable both on pharmaceutical and cosmetic samples.
Collapse
Affiliation(s)
- Saniye Özcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Serkan Levent
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Murat Kozanli
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
23
|
Kreidl M, Rainer M, Jakschitz T, Bonn GK. Determination of phototoxic furanocoumarins in natural cosmetics using SPE with LC-MS. Anal Chim Acta 2020; 1101:211-221. [DOI: 10.1016/j.aca.2019.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022]
|
24
|
Seidi S, Sadat Karimi E, Rouhollahi A, Baharfar M, Shanehsaz M, Tajik M. Synthesis and characterization of polyamide-graphene oxide-polypyrrole electrospun nanofibers for spin-column micro solid phase extraction of parabens in milk samples. J Chromatogr A 2019; 1599:25-34. [DOI: 10.1016/j.chroma.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
25
|
Xu N, Piao M, Arkin K, Ren L, Zhang J, Hao J, Zheng Y, Shang Q. Imaging of water soluble CdTe/CdS core-shell quantum dots in inhibiting multidrug resistance of cancer cells. Talanta 2019; 201:309-316. [DOI: 10.1016/j.talanta.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
|
26
|
S. Wood R, S. Greenstein R, M. Hildebrandt I, S. George Parsons K. The Apoptotic Effects of Methylparaben and Ultraviolet B Light on M624 Human Melanoma Cells. Med Chem 2019. [DOI: 10.5772/intechopen.78575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Yin XL, Gu HW, Jalalvand AR, Liu YJ, Chen Y, Peng TQ. Dealing with overlapped and unaligned chromatographic peaks by second-order multivariate calibration for complex sample analysis: Fast and green quantification of eight selected preservatives in facial masks. J Chromatogr A 2018; 1573:18-27. [DOI: 10.1016/j.chroma.2018.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
|
28
|
Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction. J Chromatogr A 2018; 1564:102-109. [DOI: 10.1016/j.chroma.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/18/2022]
|
29
|
Demirkurt M, Olcer Y, Demir M, Eroglu A. Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Mashile GP, Mpupa A, Nomngongo PN. In-Syringe Micro Solid-Phase Extraction Method for the Separation and Preconcentration of Parabens in Environmental Water Samples. Molecules 2018; 23:molecules23061450. [PMID: 29904011 PMCID: PMC6100510 DOI: 10.3390/molecules23061450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, a simple, rapid and effective in-syringe micro-solid phase extraction (MSPE) method was developed for the separation and preconcetration of parabens (methyl, ethyl, propyl and butyl paraben) in environmental water samples. The parabens were determined and quantified using high performance liquid chromatography and a photo diode array detector (HPLC-PDA). Chitosan-coated activated carbon (CAC) was used as the sorbent in the in-syringe MSPE device. A response surface methodology based on central composite design was used for the optimization of factors (eluent solvent type, eluent volume, number of elution cycles, sample volume, sample pH) affecting the extraction efficiency of the preconcentration procedure. The adsorbent used displayed excellent absorption performance and the adsorption capacity ranged from 227–256 mg g−1. Under the optimal conditions the dynamic linear ranges for the parabens were between 0.04 and 380 µg L−1. The limits of detection and quantification ranged from 6–15 ng L−1 and 20–50 ng L−1, respectively. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were below 5%. Furthermore, the in-syringe MSPE/HPLC procedure was validated using spiked wastewater and tap water samples and the recoveries ranged between from 96.7 to 107%. In conclusion, CAC based in-syringe MSPE method demonstrated great potential for preconcentration of parabens in complex environmental water.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| | - Anele Mpupa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
31
|
Kallscheuer N, Marienhagen J. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Microb Cell Fact 2018; 17:70. [PMID: 29753327 PMCID: PMC5948850 DOI: 10.1186/s12934-018-0923-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Hydroxybenzoic acids are industrially relevant aromatic compounds, which also play key roles in the microbial carbon metabolism, e.g., as precursors for the synthesis of cofactors or metal-chelating molecules. Due to its pronounced resistance to aromatics Corynebacterium glutamicum represents an interesting platform for production of these compounds. Unfortunately, a complex catabolic network for aromatic molecules prevents application of C. glutamicum for microbial production of aromatic compounds other than aromatic amino acids, which cannot be metabolized by this microorganism. Results We completed the construction of the platform strain C. glutamicum DelAro5, in which the deletion of altogether 27 genes in five gene clusters abolished most of the peripheral and central catabolic pathways for aromatic compounds known in this microorganism. The obtained strain was subsequently applied for the production of 2-hydroxybenzoate (salicylate), 3-hydroxybenzoate, 4-hydroxybenzoate and protocatechuate, which all derive from intermediates of the aromatic amino acid-forming shikimate pathway. For an optimal connection of the designed hydroxybenzoate production pathways to the host metabolism, C. glutamicum was additionally engineered towards increased supply of the shikimate pathway substrates erythrose-4-phosphate and phosphoenolpyruvate by manipulation of the glucose transport and key enzymatic activities of the central carbon metabolism. With an optimized genetic background the constructed strains produced 0.01 g/L (0.07 mM) 2-hydroxybenzoate, 0.3 g/L (2.2 mM) 3-hydroxybenzoate, 2.0 g/L (13.0 mM) protocatechuate and 3.3 g/L (23.9 mM) 4-hydroxybenzoate in shaking flasks. Conclusion By abolishing its natural catabolic network for aromatic compounds, C. glutamicum was turned into a versatile microbial platform for aromatics production, which could be exemplarily demonstrated by rapidly engineering this platform organism towards producing four biotechnologically interesting hydroxybenzoates. Production of these compounds was optimized following different metabolic engineering strategies leading to increased precursor availability. The constructed C. glutamicum strains are promising hosts for the production of hydroxybenzoates and other aromatic compounds at larger scales. Electronic supplementary material The online version of this article (10.1186/s12934-018-0923-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
32
|
Pacheco-Fernández I, Pino V, Ayala JH, Afonso AM. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products. J Chromatogr A 2017; 1559:102-111. [PMID: 28487122 DOI: 10.1016/j.chroma.2017.04.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/18/2023]
Abstract
The IL-based surfactant octylguanidinium chloride (C8Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL-1, respectively. Cytotoxicity studies were carried out with C8Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C8MIm-Cl), and other imidazolium- (C16MIm-Br) and pyridinium- (C16Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C8Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C8Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C8Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4μgL-1; high reproducibility: with RSD values lower than 10% (intra-day) and 16% (inter-day) for a spiked level of 15μgL-1; and an average enrichment factor of 89. The requirement of low volumes (30μL) of a low cytotoxic IL-based surfactant allows the method to be considered less harmful than other common analytical microextraction approaches.
Collapse
Affiliation(s)
- Idaira Pacheco-Fernández
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Juan H Ayala
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Ana M Afonso
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| |
Collapse
|
33
|
Fumes BH, Lanças FM. Use of graphene supported on aminopropyl silica for microextraction of parabens from water samples. J Chromatogr A 2017; 1487:64-71. [DOI: 10.1016/j.chroma.2017.01.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
|
34
|
Determination of parabens in domestic sewage by isotope-coded derivatization coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Hu K, Zhao D, Wu G, Ma J. Aromatic poly(ether ester)s derived from a naturally occurring building block nipagin and linear aliphatic α,ω-diols. RSC Adv 2017. [DOI: 10.1039/c7ra01810j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(ether ester) materials were synthesized from renewable nipagin and linear aliphatic α,ω-diols, and the thermal, crystalline and mechanical properties were investigated.
Collapse
Affiliation(s)
- Keling Hu
- Key Laboratory of Functional Polymer Materials of MOE
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Dongping Zhao
- Key Laboratory of Functional Polymer Materials of MOE
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials of MOE
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300191
- P. R. China
| |
Collapse
|
36
|
Wang FL, Zhao YG, Muhammad N, Wu SC, Zhu Y. Simultaneous determination of parabens and inorganic anions in cosmetics by a two-dimensional ultrahigh-performance liquid chromatography-ion chromatography valve-switching method. RSC Adv 2017. [DOI: 10.1039/c7ra00867h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simultaneous determination of parabens and inorganic anions in cosmetics in a single injection was obtained in a two-dimensional UHPLC-IC valve switching system.
Collapse
Affiliation(s)
- Feng-Lian Wang
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Yong-Gang Zhao
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Nadeem Muhammad
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Shu-Chao Wu
- Zhejiang Institute of Geology and Mineral Resources
- Hangzhou 310007
- China
| | - Yan Zhu
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| |
Collapse
|
37
|
Jan-E S, Santaladchaiyakit Y, Burakham R. Ultrasound-Assisted Surfactant-Enhanced Emulsification Micro-Extraction Followed by HPLC for Determination of Preservatives in Water, Beverages and Personal Care Products. J Chromatogr Sci 2016; 55:90-98. [DOI: 10.1093/chromsci/bmw140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022]
|
38
|
Zhong Z, Li G. Current trends in sample preparation for cosmetic analysis. J Sep Sci 2016; 40:152-169. [PMID: 27333942 DOI: 10.1002/jssc.201600367] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/11/2016] [Accepted: 06/11/2016] [Indexed: 11/08/2022]
Abstract
The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, China
| | - Gongke Li
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
Molins-Delgado D, Díaz-Cruz MS, Barceló D. Ecological risk assessment associated to the removal of endocrine-disrupting parabens and benzophenone-4 in wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:143-151. [PMID: 26905612 DOI: 10.1016/j.jhazmat.2016.02.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of four widely used and endocrine disrupting parabens (PBs) (methylparaben, propylparaben, butylparaben and benzylparaben) and a polar UV filter (benzophenone-4) were determined in influent and effluent wastewater from the 19 major wastewater treatment plants (WWTPs) of Catalonia, Spain. For their analysis an on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) method was developed and validated. Laboratory analysis revealed high levels for both PBs and BP4, with maximum concentrations of 5700ngL(-1) and 1806ngL(-1), respectively, in influent samples, and 137ngL(-1) and 1080ngL(-1), respectively in effluent wastewaters. Removal rates (RE%) for the target compounds in each WWTPs were calculated. RE% for parabens were almost 100%, whereas for BP4 values where in the range 5-91%. The half-life time (t1/2), hydraulic retention time (HRT), and annual mass load (ML) for each facility was estimated. Results indicated that there was no clear influence of HRT on the RE% of BP4. MLs for BP4 were in the range 0.9-110.1kgy(-1), with the highest values in the most populated areas. Finally, a risk assessment, estimated in terms of hazard quotients (HQs), was carried out for aquatic biota. HQs for the target compounds in effluent wastewaters indicated a negligible effect, whereas for some influent wastewaters' HQs pointed out that some species are at risk.
Collapse
Affiliation(s)
- Daniel Molins-Delgado
- Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain
| |
Collapse
|
40
|
Yi F, Zheng Y, Wang T, Liu L, Yu Q, Xu S, Ma H, Cheng R, Ye J, Chu Q. Simultaneous Determination of Phenolic Endocrine Disruptors in Water Samples by Poly(sodium 4-styrenesulfonate) Modified CE Coupled with Hollow-Fiber Liquid-Phase Microextraction. Chromatographia 2016. [DOI: 10.1007/s10337-016-3073-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Zgoła-Grześkowiak A, Jeszka-Skowron M, Czarczyńska-Goślińska B, Grześkowiak T. Determination of Parabens in Polish River and Lake Water as a Function of Season. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1120739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Hu K, Wu G, Ma J. Aromatic copolyesters with enhanced crystallizability and mechanical properties by adding the renewable nipagin-based composition. RSC Adv 2016. [DOI: 10.1039/c6ra02154a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Moreta C, Tena MT, Kannan K. Analytical method for the determination and a survey of parabens and their derivatives in pharmaceuticals. ENVIRONMENTAL RESEARCH 2015; 142:452-60. [PMID: 26252961 DOI: 10.1016/j.envres.2015.07.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 05/27/2023]
Abstract
Exposure of humans to parabens is a concern due to the estrogenic activity of these compounds. Parabens are widely used as preservatives in some personal care products, foodstuffs and pharmaceuticals owing to their low cost, high water solubility and broad spectrum antimicrobial properties. Despite this, little is known on the occurrence of parabens in pharmaceutical products. In this study, a method based on solid-liquid or liquid-liquid extraction (SLE or LLE), and high performance liquid chromatography (HPLC) coupled with triple quadrupole tandem mass spectrometry (QqQ or MS/MS) was developed for the determination of six most frequently used parabens and four paraben derivatives (methyl- and ethyl-protocatechuates, and mono- and di-hydroxybenzoic acids) in pharmaceuticals. A sample-purification step involving solid phase extraction (SPE) was optimized for the analysis of solid and lipid-rich pharmaceuticals. To our knowledge, this is the first comprehensive report on the occurrence of parabens in pharmaceuticals. The developed method was applied for the analysis of 128 liquid/syrup, cream, solid, prescription or over-the counter (OTC) drugs collected from the USA and a few other countries in Europe and Asia. Although majority of the drugs analyzed in the study did not contain parabens, concentrations as high as 2 mg/g were found in some drugs. Methyl- and propyl- parabens were the frequently detected compounds. 4-Hydroxybenzoic acid was the major metabolite found in pharmaceutical products.
Collapse
Affiliation(s)
- Cristina Moreta
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, USA; Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logroño, La Rioja, Spain
| | - María-Teresa Tena
- Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logroño, La Rioja, Spain
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, USA; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
44
|
Kokosa JM. Recent trends in using single-drop microextraction and related techniques in green analytical methods. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 2015; 139:13-20. [DOI: 10.1016/j.talanta.2015.02.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
|
46
|
|
47
|
Rodas M, Portugal LA, Avivar J, Estela JM, Cerdà V. Parabens determination in cosmetic and personal care products exploiting a multi-syringe chromatographic (MSC) system and chemiluminescent detection. Talanta 2015; 143:254-262. [PMID: 26078157 DOI: 10.1016/j.talanta.2015.04.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 11/28/2022]
Abstract
Parabens are widely used in dairy products, such as in cosmetics and personal care products. Thus, in this work a multi-syringe chromatographic (MSC) system is proposed for the first time for the determination of four parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) in cosmetics and personal care products, as a simpler, practical, and low cost alternative to HPLC methods. Separation was achieved using a 5mm-long precolumn of reversed phase C18 and multi-isocratic separation, i.e. using two consecutive mobile phases, 12:88 acetonitrile:water and 28:72 acetonitrile:water. The use of a multi-syringe buret allowed the easy implementation of chemiluminescent (CL) detection after separation. The chemiluminescent detection is based on the reduction of Ce(IV) by p-hydroxybenzoic acid, product of the acid hydrolysis of parabens, to excite rhodamine 6G (Rho 6G) and measure the resulting light emission. Multivariate designs combined with the concepts of multiple response treatments and desirability functions have been employed to simultaneously optimize and evaluate the responses. The optimized method has proved to be sensitive and precise, obtaining limits of detection between 20 and 40 µg L(-1) and RSD <4.9% in all cases. The method was satisfactorily applied to cosmetics and personal care products, obtaining no significant differences at a confidence level of 95% comparing with the HPLC reference method.
Collapse
Affiliation(s)
- Melisa Rodas
- Group of Analytical Chemistry, Automation and Environment, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Lindomar A Portugal
- Group of Analytical Chemistry, Automation and Environment, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jessica Avivar
- Sciware Systems, S.L. Spin-off from the University of the Balearic Islands, E-07193 Bunyola, Spain
| | - José Manuel Estela
- Group of Analytical Chemistry, Automation and Environment, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Víctor Cerdà
- Group of Analytical Chemistry, Automation and Environment, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
48
|
Celeiro M, Lamas JP, Garcia-Jares C, Llompart M. Pressurized liquid extraction-gas chromatography-mass spectrometry analysis of fragrance allergens, musks, phthalates and preservatives in baby wipes. J Chromatogr A 2015; 1384:9-21. [DOI: 10.1016/j.chroma.2015.01.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/27/2022]
|
49
|
Cheng GJS, Li GK, Xiao XH. Microwave-assisted extraction coupled with counter-current chromatography and preparative liquid chromatography for the preparation of six furocoumarins from Angelica Pubescentis Radix. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Lopez-Gazpio J, Garcia-Arrona R, Millán E. Simultaneous determination of multiclass preservatives including isothiazolinones and benzophenone-type UV filters in household and personal care products by micellar electrokinetic chromatography. Electrophoresis 2015; 36:1064-72. [PMID: 25598506 DOI: 10.1002/elps.201400519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/19/2014] [Accepted: 01/09/2015] [Indexed: 11/10/2022]
Abstract
In this work, a simple and reliable micellar electrokinetic chromatography method for the separation and quantification of 14 preservatives, including isothiazolinones, and two benzophenone-type UV filters in household, cosmetic and personal care products was developed. The selected priority compounds are widely used as ingredients in many personal care products, and are included in the European Regulation concerning cosmetic products. The electrophoretic separation parameters were optimized by means of a modified chromatographic response function in combination with an experimental design, namely a central composite design. After optimization of experimental conditions, the BGE selected for the separation of the targets consisted of 60 mM SDS, 18 mM sodium tetraborate, pH 9.4 and 10% v/v methanol. The MEKC method was checked in terms of linearity, LODs and quantification, repeatability, intermediate precision, and accuracy, providing appropriate values (i.e. R(2) ≥ 0.992, repeatability RSD values ˂9%, and accuracy 90-115%). Applicability of the validated method was successfully assessed by quantifying preservatives and UV filters in commercial consumer products.
Collapse
Affiliation(s)
- Josu Lopez-Gazpio
- Faculty of Chemistry, Department of Applied Chemistry, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | | | | |
Collapse
|