1
|
Dai Y, Yu L, Ao J, Wang R. Analyzing the differences and correlations between key metabolites and dominant microorganisms in different regions of Daqu based on off-target metabolomics and high-throughput sequencing. Heliyon 2024; 10:e36944. [PMID: 39286152 PMCID: PMC11402928 DOI: 10.1016/j.heliyon.2024.e36944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Daqu is usually produced in an open environment, which makes its quality unstable. The microbial community of Daqu largely determines its quality. Therefore, in order to improve the fermentation characteristics of Daqu, samples were collected from Jinsha County (MT1), Xishui County (MT2), and Maotai Town (MT3) in Guizhou Province to explore the microbial diversity of Daqu and its impact on Daqu's metabolites.Off-target metabolomics was used to detect metabolites, and high-throughput sequencing was used to detect microorganisms. Metabolomics results revealed that MT1 and MT2 had the highest relative fatty acid content, whereas MT3 had the highest organooxygen compound content. Principal component analysis and partial least squares discriminant analysis revealed significant differences in the metabolites among the three groups, followed by the identification of 33 differential metabolites (key metabolites) filtered using the criteria of variable importance in projection >1 and p < 0.001. According to the microbiological results, Proteobacteria was the dominant bacteria phylum in three samples. Gammaproteobacteria was the dominant class in MT1(26.84 %) and MT2(36.54 %), MT3 is Alphaproteobacteria(25.66 %). And Caulobacteraceae was the dominant family per the abundance analysis, MTI was 24.32 %, MT2 and MT3 were 33.71 % and 24.40 % respectively. Three samples dominant fungi phylum were Ascomycota, and dominant fungi family were Thermoascaceae. Pseudomonas showed a significant positive connection with various fatty acyls, according to correlation analyses between dominant microorganisms (genus level) and key metabolites. Fatty acyls and Thermomyces showed a positive correlation, but Thermoascus had the reverse relation. These findings offer a theoretical framework for future studies on the impact of metabolites on Baijiu quality during fermentation.
Collapse
Affiliation(s)
- Yijie Dai
- School of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, China
- Key Laboratory for Critical Degradation Technologies of Pesticide Residues in Superior Agricultural Products, Guiyang University, Guiyang, 550005, China
| | - Lei Yu
- Key Laboratory for Critical Degradation Technologies of Pesticide Residues in Superior Agricultural Products, Guiyang University, Guiyang, 550005, China
| | - Jintao Ao
- School of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, China
| | - Rui Wang
- Key Laboratory for Critical Degradation Technologies of Pesticide Residues in Superior Agricultural Products, Guiyang University, Guiyang, 550005, China
| |
Collapse
|
2
|
Ren Y, Liu Y, Zhang W, Ran J, Li L, Zhang Z. Sheathless CESI-MS versus LC-MS: Results of qualitative and quantitative analyses of the primary and secondary metabolites of Pleioblastus amarus bamboo shoots. Electrophoresis 2024; 45:266-274. [PMID: 37817363 DOI: 10.1002/elps.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023]
Abstract
The bamboo shoot of Pleioblastus amarus (Keng) Keng f. is a medicinal and edible resource in China. In this study, three separation techniques were applied to identify the primary and secondary metabolites component of P. amarus bamboo shoots, including sheathless capillary electrophoresis electrospray ionization-mass spectrometry (CESI-MS), reverse-phase liquid chromatography-MS (RPLC-MS), and hydrophilic interaction liquid chromatography-MS (HILIC-MS). A total of 201 metabolites were identified by the three methods. Among those metabolites, 146 were identified by RPLC-MS, 85 were identified by HILIC-MS, and 46 were identified by sheathless CESI-MS. These methods were complementary and had a linear coefficient. CESI-MS presented advantages in the identification of isomers, high sensitivity, very low sample usage, and good detection of polar and nonpolar metabolites, showing its unique applications in food analysis and prospects in metabolic research.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wenming Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Junfeng Ran
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Li Li
- The Sixth People's Hospital of Hengshui, Hengshui, Hebei, P. R. China
| | - Zhidan Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Systems Biology Centre, Technical Support Core Facilities, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P. R. China
| |
Collapse
|
3
|
Kopra K, Mahran R, Yli-Hollo T, Tabata S, Vuorinen E, Fujii Y, Vuorinen I, Ogawa-Iio A, Hirayama A, Soga T, Sasaki AT, Härmä H. Homogeneous luminescent quantitation of cellular guanosine and adenosine triphosphates (GTP and ATP) using QT-Luc GTP&ATP assay. Anal Bioanal Chem 2023; 415:6689-6700. [PMID: 37714971 PMCID: PMC10598090 DOI: 10.1007/s00216-023-04944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Guanosine triphosphate (GTP) and adenosine triphosphate (ATP) are essential nucleic acid building blocks and serve as energy molecules for a wide range of cellular reactions. Cellular GTP concentration fluctuates independently of ATP and is significantly elevated in numerous cancers, contributing to malignancy. Quantitative measurement of ATP and GTP has become increasingly important to elucidate how concentration changes regulate cell function. Liquid chromatography-coupled mass spectrometry (LC-MS) and capillary electrophoresis-coupled MS (CE-MS) are powerful methods widely used for the identification and quantification of biological metabolites. However, these methods have limitations related to specialized instrumentation and expertise, low throughput, and high costs. Here, we introduce a novel quantitative method for GTP concentration monitoring (GTP-quenching resonance energy transfer (QRET)) in homogenous cellular extracts. CE-MS analysis along with pharmacological control of cellular GTP levels shows that GTP-QRET possesses high dynamic range and accuracy. Furthermore, we combined GTP-QRET with luciferase-based ATP detection, leading to a new technology, termed QT-LucGTP&ATP, enabling high-throughput compatible dual monitoring of cellular GTP and ATP in a homogenous fashion. Collectively, GTP-QRET and QT-LucGTP&ATP offer a unique, high-throughput opportunity to explore cellular energy metabolism, serving as a powerful platform for the development of novel therapeutics and extending its usability across a range of disciplines.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland.
| | - Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Titta Yli-Hollo
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Emmiliisa Vuorinen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Yuki Fujii
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH, 45267-0508, USA
| | - Iida Vuorinen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Aki Ogawa-Iio
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH, 45267-0508, USA
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH, 45267-0508, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| |
Collapse
|
4
|
Naumann L, Haun A, Höchsmann A, Mohr M, Novák M, Flottmann D, Neusüß C. Augmented region of interest for untargeted metabolomics mass spectrometry (AriumMS) of multi-platform-based CE-MS and LC-MS data. Anal Bioanal Chem 2023; 415:3137-3154. [PMID: 37225900 PMCID: PMC10287804 DOI: 10.1007/s00216-023-04715-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
In mass spectrometry (MS)-based metabolomics, there is a great need to combine different analytical separation techniques to cover metabolites of different polarities and apply appropriate multi-platform data processing. Here, we introduce AriumMS (augmented region of interest for untargeted metabolomics mass spectrometry) as a reliable toolbox for multi-platform metabolomics. AriumMS offers augmented data analysis of several separation techniques utilizing a region-of-interest algorithm. To demonstrate the capabilities of AriumMS, five datasets were combined. This includes three newly developed capillary electrophoresis (CE)-Orbitrap MS methods using the recently introduced nanoCEasy CE-MS interface and two hydrophilic interaction liquid chromatography (HILIC)-Orbitrap MS methods. AriumMS provides a novel mid-level data fusion approach for multi-platform data analysis to simplify and speed up multi-platform data processing and evaluation. The key feature of AriumMS lies in the optimized data processing strategy, including parallel processing of datasets and flexible parameterization for processing of individual separation methods with different peak characteristics. As a case study, Saccharomyces cerevisiae (yeast) was treated with a growth inhibitor, and AriumMS successfully differentiated the metabolome based on the augmented multi-platform CE-MS and HILIC-MS investigation. As a result, AriumMS is proposed as a powerful tool to improve the accuracy and selectivity of metabolome analysis through the integration of several HILIC-MS/CE-MS techniques.
Collapse
Affiliation(s)
- Lukas Naumann
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Adrian Haun
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Alisa Höchsmann
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Michael Mohr
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Martin Novák
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Dirk Flottmann
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
5
|
Fabrile MP, Ghidini S, Conter M, Varrà MO, Ianieri A, Zanardi E. Filling gaps in animal welfare assessment through metabolomics. Front Vet Sci 2023; 10:1129741. [PMID: 36925610 PMCID: PMC10011658 DOI: 10.3389/fvets.2023.1129741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Sustainability has become a central issue in Italian livestock systems driving food business operators to adopt high standards of production concerning animal husbandry conditions. Meat sector is largely involved in this ecological transition with the introduction of new label claims concerning the defense of animal welfare (AW). These new guarantees referred to AW provision require new tools for the purpose of authenticity and traceability to assure meat supply chain integrity. Over the years, European Union (EU) Regulations, national, and international initiatives proposed provisions and guidelines for assuring AW introducing requirements to be complied with and providing tools based on scoring systems for a proper animal status assessment. However, the comprehensive and objective assessment of the AW status remains challenging. In this regard, phenotypic insights at molecular level may be investigated by metabolomics, one of the most recent high-throughput omics techniques. Recent advances in analytical and bioinformatic technologies have led to the identification of relevant biomarkers involved in complex clinical phenotypes of diverse biological systems suggesting that metabolomics is a key tool for biomarker discovery. In the present review, the Five Domains model has been employed as a vademecum describing AW. Starting from the individual Domains-nutrition (I), environment (II), health (III), behavior (IV), and mental state (V)-applications and advances of metabolomics related to AW setting aimed at investigating phenotypic outcomes on molecular scale and elucidating the biological routes most perturbed from external solicitations, are reviewed. Strengths and weaknesses of the current state-of-art are highlighted, and new frontiers to be explored for AW assessment throughout the metabolomics approach are argued. Moreover, a detailed description of metabolomics workflow is provided to understand dos and don'ts at experimental level to pursue effective results. Combining the demand for new assessment tools and meat market trends, a new cross-strategy is proposed as the promising combo for the future of AW assessment.
Collapse
Affiliation(s)
| | - Sergio Ghidini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Adriana Ianieri
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
6
|
Lima NM, Dos Santos GF, da Silva Lima G, Vaz BG. Advances in Mass Spectrometry-Metabolomics Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:101-122. [PMID: 37843807 DOI: 10.1007/978-3-031-41741-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Highly selective and sensitive analytical techniques are necessary for microbial metabolomics due to the complexity of the microbial sample matrix. Hence, mass spectrometry (MS) has been successfully applied in microbial metabolomics due to its high precision, versatility, sensitivity, and wide dynamic range. The different analytical tools using MS have been employed in microbial metabolomics investigations and can contribute to the discovery or accelerate the search for bioactive substances. The coupling with chromatographic and electrophoretic separation techniques has resulted in more efficient technologies for the analysis of microbial compounds occurring in trace levels. This book chapter describes the current advances in the application of mass spectrometry-based metabolomics in the search for new biologically active agents from microbial sources; the development of new approaches for in silico annotation of natural products; the different technologies employing mass spectrometry imaging to deliver more comprehensive analysis and elucidate the metabolome involved in ecological interactions as they enable visualization of the spatial dispersion of small molecules. We also describe other ambient ionization techniques applied to the fingerprint of microbial natural products and modern techniques such as ion mobility mass spectrometry used to microbial metabolomic analyses and the dereplication of natural microbial products through MS.
Collapse
|
7
|
Ahmad F, Nadeem H. Mass Spectroscopy as an Analytical Tool to Harness the Production of Secondary Plant Metabolites: The Way Forward for Drug Discovery. Methods Mol Biol 2023; 2575:77-103. [PMID: 36301472 DOI: 10.1007/978-1-0716-2716-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular map of diverse biological molecules linked with structure, function, signaling, and regulation within a cell can be elucidated using an analytically demanding omic approach. The latest trend of using "metabolomics" technologies has explained the natural phenomenon of opening a new avenue to understand and enhance bioactive compounds' production. Examination of sequenced plant genomes has revealed that a considerable portion of these encodes genes of secondary metabolism. In addition to genetic and molecular tools developed in the current era, the ever-increasing knowledge about plant metabolism's biochemistry has initiated an approach for wisely designed, more productive genetic engineering of plant secondary metabolism for improved defense systems and enhanced biosynthesis of beneficial metabolites. Secondary plant metabolites are natural products synthesized by plants that are not directly involved with their average growth and development but play a vital role in plant defense mechanisms. Plant secondary metabolites are classified into four major classes: terpenoids, phenolic compounds, alkaloids, and sulfur-containing compounds. More than 200,000 secondary metabolites are synthesized by plants having a unique and complex structure. Secondary plant metabolites are well characterized and quantified by omics approaches and therefore used by humans in different sectors such as agriculture, pharmaceuticals, chemical industries, and biofuel. The aim is to establish metabolomics as a comprehensive and dynamic model of diverse biological molecules for biomarkers and drug discovery. In this chapter, we aim to illustrate the role of metabolomic technology, precisely liquid chromatography-mass spectrometry, capillary electrophoresis mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy, specifically as a research tool in the production and identification of novel bioactive compounds for drug discovery and to obtain a unified insight of secondary metabolism in plants.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Hera Nadeem
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
8
|
Advances in capillary electrophoresis mass spectrometry for metabolomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Seyfinejad B, Jouyban A. Capillary electrophoresis-mass spectrometry in pharmaceutical and biomedical analyses. J Pharm Biomed Anal 2022; 221:115059. [DOI: 10.1016/j.jpba.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
10
|
Makhumbila P, Rauwane M, Muedi H, Figlan S. Metabolome Profiling: A Breeding Prediction Tool for Legume Performance under Biotic Stress Conditions. PLANTS 2022; 11:plants11131756. [PMID: 35807708 PMCID: PMC9268993 DOI: 10.3390/plants11131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Legume crops such as common bean, pea, alfalfa, cowpea, peanut, soybean and others contribute significantly to the diet of both humans and animals. They are also important in the improvement of cropping systems that employ rotation and fix atmospheric nitrogen. Biotic stresses hinder the production of leguminous crops, significantly limiting their yield potential. There is a need to understand the molecular and biochemical mechanisms involved in the response of these crops to biotic stressors. Simultaneous expressions of a number of genes responsible for specific traits of interest in legumes under biotic stress conditions have been reported, often with the functions of the identified genes unknown. Metabolomics can, therefore, be a complementary tool to understand the pathways involved in biotic stress response in legumes. Reports on legume metabolomic studies in response to biotic stress have paved the way in understanding stress-signalling pathways. This review provides a progress update on metabolomic studies of legumes in response to different biotic stresses. Metabolome annotation and data analysis platforms are discussed together with future prospects. The integration of metabolomics with other “omics” tools in breeding programmes can aid greatly in ensuring food security through the production of stress tolerant cultivars.
Collapse
Affiliation(s)
- Penny Makhumbila
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodeport 1709, South Africa; (M.R.); (S.F.)
- Correspondence:
| | - Molemi Rauwane
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodeport 1709, South Africa; (M.R.); (S.F.)
| | - Hangwani Muedi
- Research Support Services, North West Provincial Department of Agriculture and Rural Development, 114 Chris Hani Street, Potchefstroom 2531, South Africa;
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodeport 1709, South Africa; (M.R.); (S.F.)
| |
Collapse
|
11
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
12
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
13
|
Analytical Platforms for Mass Spectrometry-Based Metabolomics of Polar and Ionizable Metabolites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:215-242. [PMID: 34628634 DOI: 10.1007/978-3-030-77252-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metabolomics studies rely on the availability of suitable analytical platforms to determine a vast collection of chemically diverse metabolites in complex biospecimens. Liquid chromatography-mass spectrometry operated under reversed-phase conditions is the most commonly used platform in metabolomics, which offers extensive coverage for nonpolar and moderately polar compounds. However, complementary techniques are required to obtain adequate separation of polar and ionic metabolites, which are involved in several fundamental metabolic pathways. This chapter focuses on the main mass-spectrometry-based analytical platforms used to determine polar and/or ionizable compounds in metabolomics (GC-MS, HILIC-MS, CE-MS, IPC-MS, and IC-MS). Rather than comprehensively describing recent applications related to GC-MS, HILIC-MS, and CE-MS, which have been covered in a regular basis in the literature, a brief discussion focused on basic principles, main strengths, limitations, as well as future trends is presented in this chapter, and only key applications with the purpose of illustrating important analytical aspects of each platform are highlighted. On the other hand, due to the relative novelty of IPC-MS and IC-MS in the metabolomics field, a thorough compilation of applications for these two techniques is presented here.
Collapse
|
14
|
Capillary Electrophoresis-Mass Spectrometry for Metabolomics: Possibilities and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:159-178. [PMID: 34628632 DOI: 10.1007/978-3-030-77252-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) is a very useful analytical technique for the selective and highly efficient profiling of polar and charged metabolites in a wide range of biological samples. Compared to other analytical techniques, the use of CE-MS in metabolomics is relatively low as the approach is still regarded as technically challenging and not reproducible. In this chapter, the possibilities of CE-MS for metabolomics are highlighted with special emphasis on the use of recently developed interfacing designs. The utility of CE-MS for targeted and untargeted metabolomics studies is demonstrated by discussing representative and recent examples in the biomedical and clinical fields. The potential of CE-MS for large-scale and quantitative metabolomics studies is also addressed. Finally, some general conclusions and perspectives are given on this strong analytical separation technique for probing the polar metabolome.
Collapse
|
15
|
Xu X. Capillary Electrophoresis-Mass Spectrometry for Cancer Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:189-200. [PMID: 33791983 DOI: 10.1007/978-3-030-51652-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter presents the fundamentals, instrumentation, methodology, and applications of capillary electrophoresis-mass spectrometry (CE-MS) for cancer metabolomics. CE offers fast and high-resolution separation of charged analytes from a very small amount of sample. When coupled to MS, it represents a powerful analytical technique enabling identification and quantification of metabolites in biological samples. Several issues need to be addressed when combining CE with MS, especially the interface between CE and MS and the selection of a proper separation methodology, sample pretreatment, and capillary coatings. We will discuss these aspects of CE-MS and detail representative applications for cancer metabolomic analysis.
Collapse
Affiliation(s)
- Xiangdong Xu
- School of Public Health and Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
16
|
Ohno S, Quek LE, Krycer JR, Yugi K, Hirayama A, Ikeda S, Shoji F, Suzuki K, Soga T, James DE, Kuroda S. Kinetic Trans-omic Analysis Reveals Key Regulatory Mechanisms for Insulin-Regulated Glucose Metabolism in Adipocytes. iScience 2020; 23:101479. [PMID: 32891058 PMCID: PMC7479629 DOI: 10.1016/j.isci.2020.101479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Insulin regulates glucose metabolism through thousands of regulatory mechanisms; however, which regulatory mechanisms are keys to control glucose metabolism remains unknown. Here, we performed kinetic trans-omic analysis by integrating isotope-tracing glucose flux and phosphoproteomic data from insulin-stimulated adipocytes and built a kinetic mathematical model to identify key allosteric regulatory and phosphorylation events for enzymes. We identified nine reactions regulated by allosteric effectors and one by enzyme phosphorylation and determined the regulatory mechanisms for three of these reactions. Insulin stimulated glycolysis by promoting Glut4 activity by enhancing phosphorylation of AS160 at S595, stimulated fatty acid synthesis by promoting Acly activity through allosteric activation by glucose 6-phosphate or fructose 6-phosphate, and stimulated glutamate synthesis by alleviating allosteric inhibition of Gls by glutamate. Most of glycolytic reactions were regulated by amounts of substrates and products. Thus, phosphorylation or allosteric modulator-based regulation of only a few key enzymes was sufficient to change insulin-induced metabolism.
Collapse
Affiliation(s)
- Satoshi Ohno
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lake-Ee Quek
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - James R. Krycer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- PRESTO, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Futaba Shoji
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Kumi Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - David E. James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shinya Kuroda
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Sauer F, Sydow C, Trapp O. A robust sheath-flow CE-MS interface for hyphenation with Orbitrap MS. Electrophoresis 2020; 41:1280-1286. [PMID: 32358866 DOI: 10.1002/elps.202000044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/10/2022]
Abstract
The hyphenation of capillary electrophoresis with high-resolution mass spectrometry, such as Orbitrap MS, is of broad interest for the unambiguous and exceptionally sensitive identification of compounds. However, the coupling of these techniques requires a robust ionization interface that does not influence the stability of the separation voltage while coping with oxidation of the emitter tip at large ionization voltages. Herein, we present the design of a sheath-flow CE-ESI-MS interface which combines a robust and easy to operate set-up with high-resolution Orbitrap MS detection. The sheath liquid interface is equipped with a gold coated electrospray emitter which increases the stability and overall lifetime of the system. For the characterization of the interface, the spray stability and durability were investigated in dependence of the sheath-flow rate, electrospray voltage, and additional gold coating. The optimized conditions were applied to a separation of angiotensin II and neurotensin resulting in LODs of 2.4 and 3.5 ng/mL.
Collapse
Affiliation(s)
- Fabian Sauer
- Department Chemie, Ludwig-Maximilians-Universität München, München, Germany
| | - Constanze Sydow
- Department Chemie, Ludwig-Maximilians-Universität München, München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, München, Germany.,Max-Planck-Institute for Astronomy, Heidelberg, Germany
| |
Collapse
|
18
|
Wang L, Cheng J, McNutt JE, Morin GB, Chen DDY. Dynamic pH barrage junction focusing of amino acids, peptides, and digested monoclonal antibodies in capillary electrophoresis-mass spectrometry. Electrophoresis 2020; 41:1832-1842. [PMID: 32436592 DOI: 10.1002/elps.202000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/28/2023]
Abstract
Dynamic pH barrage junction focusing in CE enables effective signal enhancement, quantitative capture efficiencies, and straightforward optimization. The method is a technical variant of dynamic pH junction focusing. CE separation with dynamic pH barrage junction focusing is compatible with both optical and mass spectrometric detection. We developed a CE-MS/MS method using hydrophilic polyethyleneimine-coated capillaries and validated it for the qualitative analysis of amino acids, peptides, and tryptic peptides of digested monoclonal antibodies. The S/N of extracted ion electropherograms of zwitterionic analytes were enhanced by approximately two orders of magnitude with a tradeoff of a shortened separation window. Online focusing improved the MS signal intensity of a diluted antibody digest, enabling more precursor ions to be analyzed with subsequent tandem mass spectrometric identification. It also broadened the concentration range of protein digest samples for which adequate sequence coverage data can be obtained. With only 0.9 ng of digested infliximab sample loaded into the capillary, 76% and 100% sequence coverage was realized for antibody heavy and light chains, respectively, after online focusing. Full coverage was achieved with 9 ng of injected digest.
Collapse
Affiliation(s)
- Lingyu Wang
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jianhui Cheng
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Julie E McNutt
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Pöhö P, Lipponen K, Bespalov MM, Sikanen T, Kotiaho T, Kostiainen R. Comparison of liquid chromatography-mass spectrometry and direct infusion microchip electrospray ionization mass spectrometry in global metabolomics of cell samples. Eur J Pharm Sci 2019; 138:104991. [PMID: 31404622 DOI: 10.1016/j.ejps.2019.104991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
In this study, the feasibility of direct infusion electrospray ionization microchip mass spectrometry (chip-MS) was compared to the commonly used liquid chromatography-mass spectrometry (LC-MS) in non-targeted metabolomics analysis of human foreskin fibroblasts (HFF) and human induced pluripotent stem cells (hiPSC) reprogrammed from HFF. The total number of the detected features with chip-MS and LC-MS were 619 and 1959, respectively. Approximately 25% of detected features showed statistically significant changes between the cell lines with both analytical methods. The results show that chip-MS is a rapid and simple method that allows high sample throughput from small sample volumes and can detect the main metabolites and classify cells based on their metabolic profiles. However, the selectivity of chip-MS is limited compared to LC-MS and chip-MS may suffer from ion suppression.
Collapse
Affiliation(s)
- Päivi Pöhö
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Katriina Lipponen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Maxim M Bespalov
- Biomedicum Stem Cell Center, Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tiina Sikanen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
20
|
Hamid SS, Wakayama M, Ichihara K, Sakurai K, Ashino Y, Kadowaki R, Soga T, Tomita M. Metabolome profiling of various seaweed species discriminates between brown, red, and green algae. PLANTA 2019; 249:1921-1947. [PMID: 30891648 DOI: 10.1007/s00425-019-03134-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Among seaweed groups, brown algae had characteristically high concentrations of mannitol, and green algae were characterised by fructose. In red algae, metabolite profiles of individual species should be evaluated. Seaweeds are metabolically different from terrestrial plants. However, general metabolite profiles of the three major seaweed groups, the brown, red, and green algae, and the effect of various extraction methods on metabolite profiling results have not been comprehensively explored. In this study, we evaluated the water-soluble metabolites in four brown, five red, and two green algae species collected from two sites in northern Japan, located in the Sea of Japan and the Pacific Ocean. Freeze-dried seaweed samples were processed by methanol-water extraction with or without chloroform and analysed by capillary electrophoresis- and liquid chromatography-mass spectrometry for metabolite characterisation. The metabolite concentration profiles showed distinctive characteristic depends on species and taxonomic groups, whereas the extraction methods did not have a significant effect. Taxonomic differences between the various seaweed metabolite profiles were well defined using only sugar metabolites but no other major compound types. Mannitol was the main sugar metabolites in brown algae, whereas fructose, sucrose, and glucose were found at high concentrations in green algae. In red algae, individual species had some characteristic metabolites, such as sorbitol in Pyropia pseudolinearis and panose in Dasya sessilis. The metabolite profiles generated in this study will be a resource and provide guidance for nutraceutical research studies because the information about metabolites in seaweeds is still very limited compared to that of terrestrial plants.
Collapse
Affiliation(s)
- Shahlizah Sahul Hamid
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Masataka Wakayama
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.
| | - Kensuke Ichihara
- Muroran Marine Station, Field Science Centre for Northern Biosphere, Hokkaido University, 1-133-31, Funami-cho, Muroran, Hokkaido, 051-0013, Japan
| | - Katsutoshi Sakurai
- Yamagata Prefecture Fisheries Experiment Station, Kamo Ookuzure 594, Tsuruoka, Yamagata, 997-1204, Japan
| | - Yujin Ashino
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Rie Kadowaki
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2, Kakuganji-Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
21
|
Duncan KD, Lanekoff I. Spatially Defined Surface Sampling Capillary Electrophoresis Mass Spectrometry. Anal Chem 2019; 91:7819-7827. [DOI: 10.1021/acs.analchem.9b01516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Duncan
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 24, Sweden
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
22
|
A new optimization strategy for MALDI FTICR MS tissue analysis for untargeted metabolomics using experimental design and data modeling. Anal Bioanal Chem 2019; 411:3891-3903. [PMID: 31093699 DOI: 10.1007/s00216-019-01863-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
Ultra-high-resolution imaging mass spectrometry using matrix-assisted laser desorption ionization (MALDI) MS coupled to a Fourier transform ion cyclotron resonance (FTICR) mass analyzer is a powerful technique for the visualization of small molecule distribution within biological tissues. The FTICR MS provides ultra-high resolving power and mass accuracy that allows large molecular coverage and molecular formula assignments, both essential for untargeted metabolomics analysis. These performances require fine optimizations of the MALDI FTICR parameters. In this context, this study proposes a new strategy, using experimental design, for the optimization of ion transmission voltages and MALDI parameters, for tissue untargeted metabolomics analysis, in both positive and negative ionization modes. These experiments were conducted by assessing the effects of nine factors for ion transmission voltages and four factors for MALDI on the number of peaks, the weighted resolution, and the mean error within m/z 150-1000 mass range. For this purpose, fractional factorial designs were used with multiple linear regression (MLR) to evaluate factor effects and to optimize parameter values. The optimized values of ion transmission voltages (RF amplitude TOF, RF amplitude octopole, frequency transfer optic, RF frequency octopole, deflector plate, funnel 1, skimmer, funnel RF amplitude, time-of-flight, capillary exit), MALDI parameters (laser fluence, number of laser shots), and detection parameters (data size, number of scans) led to an increase of 32% and 18% of the number of peaks, an increase of 8% and 39% of the resolution, and a decrease of 56% and 34% of the mean error in positive and negative ionization modes, respectively. Graphical abstract.
Collapse
|
23
|
Advances in capillary electrophoresis for the life sciences. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:116-136. [PMID: 31035134 DOI: 10.1016/j.jchromb.2019.04.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Capillary electrophoresis (CE) played an important role in developments in the life sciences. The technique is nowadays used for the analysis of both large and small molecules in applications where it performs better than or is complementary to liquid chromatographic techniques. In this review, principles of different electromigration techniques, especially capillary isoelectric focusing (CIEF), capillary gel (CGE) and capillary zone electrophoresis (CZE), are described and recent developments in instrumentation, with an emphasis on mass spectrometry (MS) coupling and microchip CE, are discussed. The role of CE in the life sciences is shown with applications in which it had a high impact over the past few decades. In this context, current practice for the characterization of biopharmaceuticals (therapeutic proteins) is shown with CIEF, CGE and CZE using different detection techniques, including MS. Subsequently, the application of CGE and CZE, in combination with laser induced fluorescence detection and CZE-MS are demonstrated for the analysis of protein-released glycans in the characterization of biopharmaceuticals and glycan biomarker discovery in biological samples. Special attention is paid to developments in capillary coatings and derivatization strategies for glycans. Finally, routine CE analysis in clinical chemistry and latest developments in metabolomics approaches for the profiling of small molecules in biological samples are discussed. The large number of CE applications published for these topics in recent years clearly demonstrates the established role of CE in life sciences.
Collapse
|
24
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Sánchez-López E, Kammeijer GSM, Crego AL, Marina ML, Ramautar R, Peters DJM, Mayboroda OA. Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of Polycystic Kidney Disease. Sci Rep 2019; 9:806. [PMID: 30692602 PMCID: PMC6349881 DOI: 10.1038/s41598-018-37512-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) using a sheathless porous tip interface emerged as an attractive tool in metabolomics thanks to its numerous advantages. One of the main advantages compared to the classical co-axial sheath liquid interface is the increased sensitivity, while maintaining the inherent properties of CE, such as a high separation efficiency and low sample consumption. Specially, the ability to perform nanoliter-based injections from only a few microliters of material in the sample vial makes sheathless CE-MS a well-suited and unique approach for highly sensitive metabolic profiling of limited sample amounts. Therefore, in this work, we demonstrate the utility of sheathless CE-MS for metabolic profiling of biomass-restricted samples, namely for 20 µm-thick tissue sections of kidney from a mouse model of polycystic kidney disease (PKD). The extraction method was designed in such a way to keep a minimum sample-volume in the injection vial, thereby still allowing multiple nanoliter injections for repeatability studies. The developed strategy enabled to differentiate between different stages of PKD and as well changes in a variety of different metabolites could be annotated over experimental groups. These metabolites include carnitine, glutamine, creatine, betaine and creatinine. Overall, this study shows the utility of sheathless CE-MS for biomass-limited metabolomics studies.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Antonio L Crego
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - María Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Rawi Ramautar
- Biomedical Microscale Analytics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
26
|
Huang T, Armbruster MR, Coulton JB, Edwards JL. Chemical Tagging in Mass Spectrometry for Systems Biology. Anal Chem 2018; 91:109-125. [DOI: 10.1021/acs.analchem.8b04951] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Michael R. Armbruster
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - John B. Coulton
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
27
|
Huang T, Armbruster M, Lee R, Hui DS, Edwards JL. Metabolomic analysis of mammalian cells and human tissue through one-pot two stage derivatizations using sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. J Chromatogr A 2018; 1567:219-225. [PMID: 30005940 DOI: 10.1016/j.chroma.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022]
Abstract
Analysis of metabolites is often performed using separations coupled to mass spectrometry which is challenging due to their vast structural heterogeneity and variable charge states. Metabolites are often separated based on their class/functional group which in large part determine their acidity or basicity. This charge state dictates the ionization mode and efficiency of the molecule. To improve the sensitivity and expand the coverage of the mammalian metabolome, multifunctional derivatization with sheathless CE-ESI-MS was undertaken. In this work, amines, hydroxyls and carboxylates were labeled with tertiary amines tags. This derivatization was performed in under 100 min and resulted in high positive charge states for all analytes investigated. Amino acids and organic acids showed average limits of detection of 76 nM with good linearity of 0.96 and 10% RSD for peak area. Applying this metabolomic profiling system to bovine aortic endothelial cells showed changes in 15 metabolites after treatment with high glucose. The sample injection volume on-capillary was <300 cells for quantitative analyses. Targeted metabolites were found in human tissue, which indicates possible application of the system complex metabolome quantitation.
Collapse
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA
| | - Michael Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA
| | - Richard Lee
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St Louis, MO, USA
| | - Dawn S Hui
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St Louis, MO, USA
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA.
| |
Collapse
|
28
|
Current and future perspectives of functional metabolomics in disease studies-A review. Anal Chim Acta 2018; 1037:41-54. [PMID: 30292314 DOI: 10.1016/j.aca.2018.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Functional metabolomics is a new concept, which studies the functions of metabolites and related enzymes focused on metabolomics. It overcomes the shortcomings of traditional discovery metabolomics of mainly relying on literatures for biological interpretation. Functional metabolomics has many advantages. Firstly, the functional roles of metabolites and related metabolic enzymes are focused. Secondly, the in vivo and in vitro experiments are conducted to validate the metabolomics findings, therefore, increasing the reliability of metabolomics study and producing the new knowledge. Thirdly, functional metabolomics can be used by biologists to investigate functions of metabolites, and related genes and proteins. In this review, we summarize the analytical, biological and clinical platforms used in functional metabolomics studies. Recent progresses of functional metabolomics in cancer, metabolic diseases and biological phenotyping are reviewed, and future development is also predicted. Because of the tremendous advantages of functional metabolomics, it will have a bright future.
Collapse
|
29
|
Sanderson P, Stickney M, Leach FE, Xia Q, Yu Y, Zhang F, Linhardt RJ, Amster IJ. Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry. J Chromatogr A 2018; 1545:75-83. [PMID: 29501428 PMCID: PMC5862776 DOI: 10.1016/j.chroma.2018.02.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022]
Abstract
Reverse polarity capillary zone electrophoresis coupled to negative ion mode mass spectrometry (CZE-MS) is shown to be an effective and sensitive tool for the analysis of glycosaminoglycan mixtures. Covalent modification of the inner wall of the separation capillary with neutral or cationic reagents produces a stable and durable surface that provides reproducible separations. By combining CZE-MS with a cation-coated capillary and a sheath flow interface, a rapid and reliable method has been developed for the analysis of sulfated oligosaccharides from dp4 to dp12. Several different mixtures have been separated and detected by mass spectrometry. The mixtures were selected to test the capability of this approach to resolve subtle differences in structure, such as sulfation position and epimeric variation of the uronic acid. The system was applied to a complex mixture of heparin/heparan sulfate oligosaccharides varying in chain length from dp3 to dp12 and more than 80 molecular compositions were identified by accurate mass measurement.
Collapse
Affiliation(s)
- Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Franklin E Leach
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Qiangwei Xia
- 760 Parkside Avenue, STE 211, CMP Scientific, Corp., Brooklyn, NY, 11226, United States
| | - Yanlei Yu
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Fuming Zhang
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Robert J Linhardt
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
30
|
Parastar H, Garreta-Lara E, Campos B, Barata C, Lacorte S, Tauler R. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna
metabolic profiles exposed to salinity. J Sep Sci 2018; 41:2368-2379. [DOI: 10.1002/jssc.201701336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry; Sharif University of Technology; Tehran Iran
| | | | - Bruno Campos
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Carlos Barata
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Roma Tauler
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| |
Collapse
|
31
|
Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E. Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E99. [PMID: 29439415 PMCID: PMC5853730 DOI: 10.3390/nano8020099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.
Collapse
Affiliation(s)
- Andrew J. Chetwynd
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Emily J. Guggenheim
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Sophie M. Briffa
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - James A. Thorn
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| |
Collapse
|
32
|
The application of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol 2018; 42:60-66. [DOI: 10.1016/j.cbpa.2017.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
|
33
|
Ramautar R. Metabolic Profiling of Urine by Capillary Electrophoresis-Mass Spectrometry Using Non-covalently Coated Capillaries. Methods Mol Biol 2018; 1730:295-304. [PMID: 29363083 DOI: 10.1007/978-1-4939-7592-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the field of metabolomics, capillary electrophoresis-mass spectrometry (CE-MS) can be considered a very useful analytical tool for the profiling of polar and charged metabolites. However, variability of migration time is an important issue in CE. An elegant way to minimize this problem is the use of non-covalently coated capillaries that is dynamic coating of the bare fused-silica capillary with solutions of charged polymers. In this protocol, an improved strategy for the profiling of cationic metabolites in urine by CE-MS using multilayered non-covalent capillary coatings is presented. Capillaries are coated with a bilayer of polybrene (PB) and poly(vinyl sulfonate) (PVS) or with a triple layer of PB, dextran sulfate (DS), and PB. The bilayer- and triple-layer-coated capillaries have a negative and positive outside layer, respectively. It is shown that the use of such capillaries provides very repeatable migration times.
Collapse
Affiliation(s)
- Rawi Ramautar
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
34
|
Jiang Y, He MY, Zhang WJ, Luo P, Guo D, Fang X, Xu W. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Hamilton JS, Aguilar R, Petros RA, Verbeck GF. DAPNe with micro-capillary separatory chemistry-coupled to MALDI-MS for the analysis of polar and non-polar lipid metabolism in one cell. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:918-928. [PMID: 28251574 DOI: 10.1007/s13361-017-1623-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
The cellular metabolome is considered to be a representation of cellular phenotype and cellular response to changes to internal or external events. Methods to expand the coverage of the expansive physiochemical properties that makeup the metabolome currently utilize multi-step extractions and chromatographic separations prior to chemical detection, leading to lengthy analysis times. In this study, a single-step procedure for the extraction and separation of a sample using a micro-capillary as a separatory funnel to achieve analyte partitioning within an organic/aqueous immiscible solvent system is described. The separated analytes are then spotted for MALDI-MS imaging and distribution ratios are calculated. Initially, the method is applied to standard mixtures for proof of partitioning. The extraction of an individual cell is non-reproducible; therefore, a broad chemical analysis of metabolites is necessary and will be illustrated with the one-cell analysis of a single Snu-5 gastric cancer cell taken from a cellular suspension. The method presented here shows a broad partitioning dynamic range as a single-step method for lipid analysis demonstrating a decrease in ion suppression often present in MALDI analysis of lipids. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jason S Hamilton
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Roberto Aguilar
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Robby A Petros
- Department of Chemistry, Texas Women's Univeristy, Denton, TX, USA
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX, USA.
| |
Collapse
|
36
|
Next-generation capillary electrophoresis–mass spectrometry approaches in metabolomics. Curr Opin Biotechnol 2017; 43:1-7. [DOI: 10.1016/j.copbio.2016.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
|
37
|
Rodrigues KT, Cieslarová Z, Tavares MFM, Simionato AVC. Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis in Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:99-141. [DOI: 10.1007/978-3-319-47656-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Begou O, Gika HG, Wilson ID, Theodoridis G. Hyphenated MS-based targeted approaches in metabolomics. Analyst 2017; 142:3079-3100. [DOI: 10.1039/c7an00812k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Review of targeted metabolomics, with a focus on the description of analytical methods.
Collapse
Affiliation(s)
- O. Begou
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - H. G. Gika
- Department of Medicine
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - I. D. Wilson
- Division of Computational and Systems Medicine
- Department of Surgery and Cancer
- Imperial College
- London
- UK
| | - G. Theodoridis
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| |
Collapse
|
39
|
Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system. Anal Bioanal Chem 2016; 409:1789-1795. [PMID: 27981343 DOI: 10.1007/s00216-016-0122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.
Collapse
|
40
|
Petucci C, Zelenin A, Culver JA, Gabriel M, Kirkbride K, Christison TT, Gardell SJ. Use of Ion Chromatography/Mass Spectrometry for Targeted Metabolite Profiling of Polar Organic Acids. Anal Chem 2016; 88:11799-11803. [PMID: 27782384 DOI: 10.1021/acs.analchem.6b03435] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic acids (OAs) serve as metabolites that play pivotal roles in a host of different metabolic and regulatory pathways. The polar nature of many OAs poses a challenge to their measurement using widely practiced analytical methods. In this study, a targeted metabolomics method was developed using ion chromatography/triple quadrupole mass spectrometry (IC/MS) to quantitate 28 polar OAs with limits of quantitation ranging from 0.25 to 50 μM. The interday assay precisions ranged from 1% to 19%, with accuracies ranging from 82% to 115%. The IC/MS assay was used to quantitate OAs in quadriceps muscle from sedentary mice compared to fatigued mice subjected to either a low intensity, long duration (LILD) or high intensity, short duration (HISD) forced treadmill regimen. Among the OAs examined, significant differences were detected for hippuric acid, malic acid, fumaric acid, and 2-ketoglutaric acid between the sedentary and fatigued mice. In conclusion, the IC/MS method enabled the separation and quantitative survey of a broad range of polar OAs that are difficult to analyze by chromatographic techniques.
Collapse
Affiliation(s)
- Chris Petucci
- Sanford Burnham Prebys Medical Discovery Institute , 6400 Sanger Road, Orlando, Florida 32827, United States.,Southeast Center for Integrated Metabolomics, Clinical and Translational Sciences Institute, University of Florida , 2004 Mowry Road, Gainesville, Florida 32610, United States
| | - Andrew Zelenin
- Sanford Burnham Prebys Medical Discovery Institute , 6400 Sanger Road, Orlando, Florida 32827, United States.,Southeast Center for Integrated Metabolomics, Clinical and Translational Sciences Institute, University of Florida , 2004 Mowry Road, Gainesville, Florida 32610, United States
| | - Jeffrey A Culver
- Sanford Burnham Prebys Medical Discovery Institute , 6400 Sanger Road, Orlando, Florida 32827, United States.,Southeast Center for Integrated Metabolomics, Clinical and Translational Sciences Institute, University of Florida , 2004 Mowry Road, Gainesville, Florida 32610, United States
| | - Meghan Gabriel
- Sanford Burnham Prebys Medical Discovery Institute , 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Ken Kirkbride
- Thermo Fisher Scientific , 1214 Oakmead Parkway, Sunnyvale, California 94088, United States
| | - Terri T Christison
- Thermo Fisher Scientific , 1214 Oakmead Parkway, Sunnyvale, California 94088, United States
| | - Stephen J Gardell
- Sanford Burnham Prebys Medical Discovery Institute , 6400 Sanger Road, Orlando, Florida 32827, United States.,Southeast Center for Integrated Metabolomics, Clinical and Translational Sciences Institute, University of Florida , 2004 Mowry Road, Gainesville, Florida 32610, United States
| |
Collapse
|
41
|
Jorge TF, Mata AT, António C. Mass spectrometry as a quantitative tool in plant metabolomics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150370. [PMID: 27644967 PMCID: PMC5031636 DOI: 10.1098/rsta.2015.0370] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana T Mata
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
42
|
Yamamoto M, Ly R, Gill B, Zhu Y, Moran-Mirabal J, Britz-McKibbin P. Robust and High-Throughput Method for Anionic Metabolite Profiling: Preventing Polyimide Aminolysis and Capillary Breakages under Alkaline Conditions in Capillary Electrophoresis-Mass Spectrometry. Anal Chem 2016; 88:10710-10719. [DOI: 10.1021/acs.analchem.6b03269] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mai Yamamoto
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Ritchie Ly
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Biban Gill
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Yujie Zhu
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
43
|
Review of sample preparation strategies for MS-based metabolomic studies in industrial biotechnology. Anal Chim Acta 2016; 938:18-32. [DOI: 10.1016/j.aca.2016.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
|
44
|
|
45
|
Kwon HN, Phan HD, Xu WJ, Ko YJ, Park S. Application of a Smartphone Metabolomics Platform to the Authentication of Schisandra sinensis. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:199-205. [PMID: 27313157 DOI: 10.1002/pca.2617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Herbal medicines have been used for a long time all around the world. Since the quality of herbal preparations depends on the source of herbal materials, there has been a strong need to develop methods to correctly identify the origin of materials. OBJECTIVE To develop a smartphone metabolomics platform as a simpler and low-cost alternative for the identification of herbal material source. METHODOLOGY Schisandra sinensis extracts from Korea and China were prepared. The visible spectra of all samples were measured by a smartphone spectrometer platform. This platform included all the necessary measures built-in for the metabolomics research: data acquisition, processing, chemometric analysis and visualisation of the results. The result of the smartphone metabolomics platform was compared to that of NMR-based metabolomics, suggesting the feasibility of smartphone platform in metabolomics research. RESULTS The smartphone metabolomics platform gave similar results to the NMR method, showing good separation between Korean and Chinese materials and correct predictability for all test samples. CONCLUSION With its accuracy and advantages of affordability, user-friendliness, and portability, the smartphone metabolomics platform could be applied to the authentication of other medicinal plants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, Korea
| | - Hong-Duc Phan
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, Korea
| | - Wen Jun Xu
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, Korea
| | - Yoon-Joo Ko
- National Centre for Inter-University Research Facilities (NCIRF), Seoul National University, Sillim-dong, Gwanak-gu, Seoul, Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, Korea
| |
Collapse
|
46
|
Gulersonmez MC, Lock S, Hankemeier T, Ramautar R. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling. Electrophoresis 2016; 37:1007-14. [PMID: 26593113 PMCID: PMC5064653 DOI: 10.1002/elps.201500435] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022]
Abstract
The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity.
Collapse
Affiliation(s)
- Mehmet Can Gulersonmez
- Leiden Academic Center for Drug Research, Division of Analytical Biosciences, Leiden University, Leiden, The Netherlands
| | - Stephen Lock
- Sciex, Phoenix House, Center Park, Warrington, UK
| | - Thomas Hankemeier
- Leiden Academic Center for Drug Research, Division of Analytical Biosciences, Leiden University, Leiden, The Netherlands
| | - Rawi Ramautar
- Leiden Academic Center for Drug Research, Division of Analytical Biosciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
47
|
|
48
|
Pont L, Benavente F, Jaumot J, Tauler R, Alberch J, Ginés S, Barbosa J, Sanz-Nebot V. Metabolic profiling for the identification of Huntington biomarkers by on-line solid-phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools. Electrophoresis 2016; 37:795-808. [DOI: 10.1002/elps.201500378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Laura Pont
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Fernando Benavente
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Romà Tauler
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - José Barbosa
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
49
|
Abstract
In clinical metabolomics, capillary electrophoresis-mass spectrometry (CE-MS) has become a very useful technique for the analysis of highly polar and charged metabolites in complex biologic samples. A comprehensive overview of recent developments in CE-MS for metabolic profiling studies is presented. This review covers theory, CE separation modes, capillary coatings, and practical aspects of CE-MS coupling. Attention is also given to sample pretreatment and data analysis strategies used for metabolomics. The applicability of CE-MS for clinical metabolomics is illustrated using samples ranging from plasma and urine to cells and tissues. CE-MS application to large-scale and quantitative clinical metabolomics is addressed. Conclusions and perspectives on this unique analytic strategy are presented.
Collapse
|
50
|
Abstract
Metabolomics is an analytical toolbox to describe (all) low-molecular-weight compounds in a biological system, as cells, tissues, urine, and feces, as well as in serum and plasma. To analyze such complex biological samples, high requirements on the analytical technique are needed due to the high variation in compound physico-chemistry (cholesterol derivatives, amino acids, fatty acids as SCFA, MCFA, or LCFA, or pathway-related metabolites belonging to each individual organism) and concentration dynamic range. All main separation techniques (LC-MS, GC-MS) are applied in routine to metabolomics hyphenated or not to mass spectrometry, and capillary electrophoresis is a powerful high-resolving technique but still underused in this field of complex samples. Metabolomics can be performed in the non-targeted way to gain an overview on metabolite profiles in biological samples. Targeted metabolomics is applied to analyze quantitatively pre-selected metabolites. This chapter reviews the use of capillary electrophoresis in the field of metabolomics and exemplifies solutions in metabolite profiling and analysis in urine and plasma.
Collapse
|