1
|
Tohora N, Sahoo R, Ahamed S, Chourasia J, Lama S, Mahato M, Ali S, Kumar Das S. Hg(II) causes photoluminescence quenching of pyrene inside a blue emitting ionic liquid-derived crystalline nanoball. Phys Chem Chem Phys 2025; 27:9478-9490. [PMID: 40266276 DOI: 10.1039/d4cp04660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
This report presents the self-assembly of a blue-emitting ionic liquid (IL), NTIL, prepared by combining pyrene butyrate with a quaternary phosphonium ionic liquid (IL) through a straightforward ion exchange method. Water-dispersible crystalline nanoparticles, referred to as nNTIL, were developed using a reprecipitation technique. The nanocrystalline and molecular-level organization of pyrene moieties within these nanoparticles was validated using various spectroscopic, microscopic, and calorimetric analyses. Pyrene counterparts in the nanocrystalline nanomaterials demonstrate a strong tendency to self-associate when excited. The self-aggregation of pyrene moieties in their electronic excited state is found to be pronounced and beyond the simple excimeric dimerization process. Hg2+ ions cause strong photoluminosity quenching, which is found to be pronounced owing to the strong π-π stacking interactions among the pyrene moieties inside the crystalline nanoball due to the strong electrostatic interaction between pyrene butyrate and Hg2+ ions, causing further clotting of water dispersed nanoparticles. The induction of further coagulation of nNTIL by Hg2+ ions was validated through scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. Analysis of the quenching of photoluminosity through photoluminescence lifetime decay analysis revealed that the process is dynamic. The practical applications of nNTIL were illustrated through analyses of water and soil samples, paving the way for applications in diverse fields. Furthermore, we investigated the sensor's effectiveness in detecting Hg2+ ions using affordable test strips. The present report introduces the fabrication and implications of metal-sensitive IL-based low-dimensional materials exhibiting remarkable photophysical properties compared with traditional ones.
Collapse
Affiliation(s)
- Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Jyoti Chourasia
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Shubham Lama
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Shreya Ali
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
2
|
Zhang Y, Zhao X, Jin L, Xu W, Shao X, Liu Y, Chen Y, Rosei F. Gold nanoparticles-wood nanohybrid as peroxidase-like for simple and selective detection of mercury ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125804. [PMID: 39923707 DOI: 10.1016/j.saa.2025.125804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
We present the design and synthesis of a gold nanoparticle-wood nanohybrid (AuNPs@Wood), synthesized via the in-situ growth of gold nanoparticles (AuNPs) within a hierarchical wood flour nanostructure under mild conditions. The AuNPs@Wood exhibited remarkable peroxidase-like activity, attributed to the unique hierarchical architecture of the wood flour. Furthermore, the use of AuNPs@Wood in conjunction with T-rich DNA (P1) results in the development of a label-free colorimetric approach for detecting mercury ions. The peroxidase-like activity of the AuNPs@Wood-P1 system was found to increase with rising concentrations of Hg (II), demonstrating a linear response to Hg (II) concentration with a correlation coefficient of 0.9917. The detection limit for Hg (II) was determined to be 0.016 μM based on three times the standard deviation (σ). Additionally, sensing Hg2+ ions remained unaffected by other metal ions, underscoring the exceptional selectivity of AuNPs@Wood-P1. In comparison to traditional methods, this approach offers advantages such as high selectivity, sensitivity, cost-effectiveness, and ease of operation without requiring complex instrumentation, thereby presenting significant potential for biosensing applications.
Collapse
Affiliation(s)
- Yuanfu Zhang
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Xue Zhao
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lei Jin
- Centre for Energy, Materials and Telecommunications, Institut National de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1P7, Canada; Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Wenyu Xu
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xianfeng Shao
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yaqi Liu
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yawei Chen
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| |
Collapse
|
3
|
Khan MA, Hoque A, Islam MS, Ghosh S, Alam MA. Coumarin Derivative and Gold Nanoparticle Conjugate as a Selective Fluorescent Sensor for Mercury Ion in Real Sample. J Fluoresc 2025; 35:2845-2853. [PMID: 38647961 DOI: 10.1007/s10895-024-03709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
A biphenyl based coumarin fluorescent molecule, N,N'-bis(7-diethylamino-2-oxo-2 H-chromen-3-yl)methylene)biphenyl-2-2'-dicarbohydrazide (molecule 1) has been synthesized and characterised. Photophysical studies of 1 exhibit solvent polarity dependent absorption and emission maxima. Citrate capped gold nanoparticles (AuNPs) have been mixed with molecule 1 for the preparation of AuNPs/1 conjugate. The association constant of the AuNPs/1 conjugate has been calculated to 4.54 × 104 M- 1. The AuNPs/1 conjugate has been found to detect Hg2+ ion selectively by fluorescence enhancement. While addition of molecule 1 into the solution of AuNPs, fluorescence intensity of 1 quenched. On addition of several monovalent, divalent and trivalent metal ion into the solution of AuNPs/1 conjugate separately, there was no change in fluorescence intensity of 1 has been observed. However, upon addition of Hg2+ ion into the solution of AuNPs/1 conjugate, the fluorescence intensity enhancement occurred, indicating released of 1 from the surface of AuNPs and probably aggregation of AuNPs took place in presence of Hg2+ ion. The AuNPs/1 conjugate has been found to have a detection limit of 2.3 × 10- 9 M for Hg2+ ion in aqueous solvent. Meanwhile, the AuNPs/1 conjugate have also been successfully applied for the determination of Hg2+ in real water samples.
Collapse
Affiliation(s)
- Mehebub Ali Khan
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India
| | - Anamika Hoque
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India
| | - Md Sanaul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India
| | - Soumen Ghosh
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India.
| | - Md Akhtarul Alam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India.
| |
Collapse
|
4
|
Hormozi Jangi SR. Developing a novel ultraselective and ultrasensitive label-free direct spectrofluorimetric nanobiosensor for direct highly fast field detection of explosive triacetone triperoxide. Anal Chim Acta 2024; 1320:343016. [PMID: 39142787 DOI: 10.1016/j.aca.2024.343016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Direct detection of the notorious explosive triacetone triperoxide (TATP) is very difficult because it lacks facile ionization and UV absorbance or fluorescence. Besides, the current indirect methods are time-consuming and need a pre-step for TATP cleavage to hydrogen peroxide. Moreover, they commonly show significant false-positive results in the presence of some camouflage which limits their field applications. Herein, for the first time, a novel label-free field-applicable spectrofluorimetric nanobiosensor was developed for direct TATP detection using a novel activated-protein protected gold nanocluster (ABSA-AuNCs; QY = 28.3 %) synthesized by a combined protein-assisted-ultrasonication procedure. RESULTS The ABSA-AuNCs revealed a fluorescence spectrum centered at 330.0 nm which was significantly quenched by TATP (binding constant = 154.06 M-1; ΔG = -12.5 kJ mol-1; E(%) = 88.5 %). This phenomenon was used as a basis for direct TATP quantification, providing a working range of 0.01-40.0 mg L-1 and a detection limit of 6.7 μg L-1 which is the lowest LOD provided for TATP detection up to now. A %RSD of 0.9 % and 1.56 % was obtained for repeatability and inter-day reproducibility, respectively. The selectivity was checked against a variety of camouflages, revealing ultra-selectivity. Several synthetic samples prepared by several camouflages and real samples (clay soil and real water media) were analyzed, revealing quantitative recoveries of TATP. SIGNIFICANCE During the production of the notorious explosive TATP, it can be discharged into water and soil. This novel method eliminated the false-positive results of traditional methods and is applicable for direct quantitative detection of camouflaged TATP and its residues in real soil and water samples in a highly short response time (2 min). The camouflaged TATP analysis is important for tracking the terrorist attacks in field conditions and analysis of soil and water can provide a first indication of the location of the production site.
Collapse
|
5
|
Dong W, Fan Z, Shang X, Han M, Sun B, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Nanotechnology-based optical sensors for Baijiu quality and safety control. Food Chem 2024; 447:138995. [PMID: 38513496 DOI: 10.1016/j.foodchem.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhen Fan
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Mengjun Han
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | | | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| |
Collapse
|
6
|
Xiao X, Yu S, Zhang G, Chen Z, Hu H, Lai X, Liu D, Lai W. Efficient Photothermal Sensor Based on Coral-Like Hollow Gold Nanospheres for the Sensitive Detection of Sulfonamides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307764. [PMID: 38372021 DOI: 10.1002/smll.202307764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/07/2024] [Indexed: 02/20/2024]
Abstract
Gold nanoparticles (AuNPs), universally regarded as colorimetric signal reporters, are widely employed in lateral flow immunoassays (LFIAs). However, it is difficult for AuNPs-LFIA to achieve a wide range and sensitive detection. Herein, novel coral-like hollow gold nanospheres (CHGNPs) are synthesized. The growth of gold nanospheres can be regulated to obtain a multibranched and hollow construction. The obtained CHGNPs possess intense broadband absorption across the visible to near-infrared region, exhibiting a high molar extinction coefficient of 14.65 × 1011 M-1 cm-1 and a photothermal conversion efficiency of 79.75%. Thus, the photothermal/colorimetric dual-readout LFIA is developed based on CHGNPs (CHGNPs-PT-LFIA and CHGNPs-CM-LFIA) to effectively improve the detection sensitivity and broaden the detection range in regard to sulfonamides (SAs). The limits of detection of the CHGNPs-PT-LFIA and CHGNPs-CM-LFIA reached 1.9 and 2.8 pg mL-1 for the quantitative detection of sulfaquinoxaline, respectively, which are 6.3-fold and 4.3-fold lower than that of the AuNPs-LFIA. Meanwhile, the CHGNPs-PT-LFIA broadened the detection range to three orders of magnitude, which ranged from 2.5 to 5000 pg mL-1. The synthesized photothermal CHGNPs have been proven effective in improving the performance of the LFIA and provide a potential option for the construction of sensing platforms.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Sha Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Zongyou Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Hong Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Xiaocui Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, 555 East Beijing Road, Nanchang, 330029, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang, 330047, China
| |
Collapse
|
7
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
8
|
Thakuri A, Bhosle AA, Hiremath SD, Banerjee M, Chatterjee A. A carbon dots-MnO 2 nanosheet-based turn-on pseudochemodosimeter as low-cost probe for selective detection of hazardous mercury ion contaminations in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133998. [PMID: 38493622 DOI: 10.1016/j.jhazmat.2024.133998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Mercury is a highly hazardous element due to its profound toxicity and wide abundance in the environment. Despite the availability of various fluorimetric detection tools for Hg2+, including organic fluorophores and aptasensors, they often suffer from shortcomings like the utilization of expensive chemicals and toxic organic solvents, multi-step synthesis, sometimes with poor selectivity and low sensitivity. Whereas, biomass-derived fluorophores, such as carbon dots (CDs), present themselves as cost-effective and environmentally benign alternatives that exhibit comparable efficacy. Herein, we report a reaction-driven sensing assembly based on CDs, MnO2 nanosheets, and hydroquinone monothiocarbonate (HQTC) for the detection of Hg2+ ions, which relies on the formation of a CDs-MnO2 FRET-conjugate, resulting in the quenching of the intrinsic fluorescence of CDs. In a pseudochemodosimetric approach, the thiophilic nature of mercury was utilized for in-situ generation of the reducing species, hydroquinone from HQTC, resulting in the reduction of MnO2 nanosheets, the release of fluorescent CDs back to the solution. The low limit of detection (LOD) was achieved as 2 ppb (0.01 μM). The probe worked efficiently in real water samples like sea, river with good recovery of spiked Hg2+ and in some Indian ayurvedic medicines as well. Furthermore, solid-phase detection with sodium alginate beads demonstrated the ability of this cost-effective sensing assembly for onsite detection of Hg2+ ions.
Collapse
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Akhil A Bhosle
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Sharanabasava D Hiremath
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India.
| | - Amrita Chatterjee
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India.
| |
Collapse
|
9
|
Talodthaisong C, Sangiamkittikul P, Chongwichai P, Saenchoopa A, Thammawithan S, Patramanon R, Kosolwattana S, Kulchat S. Highly Selective Colorimetric Sensor of Mercury(II) Ions by Andrographolide-Stabilized Silver Nanoparticles in Water and Antibacterial Evaluation. ACS OMEGA 2023; 8:41134-41144. [PMID: 37970038 PMCID: PMC10633854 DOI: 10.1021/acsomega.3c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Silver nanoparticles (AgNPs) are well known for their exceptional properties and versatility in various applications. This study used andrographolide as a biochemical stabilizer to synthesize AgNPs (andro-AgNPs). The andro-AgNPs were characterized by using UV-vis spectroscopy, revealing a surface plasmon resonance peak at 440 nm. Fourier transform infrared spectroscopy was also used to confirm the presence of AgNPs. Transmission electron microscopy was used to investigate the morphology of andro-AgNPs, which showed a spherical shape with an average diameter of 18.30 ± 5.57 nm (n = 205). Andro-AgNPs were utilized as a colorimetric sensor to detect mercury ions (Hg2+) in water, and the optimized detection conditions were evaluated using UV-vis spectroscopy with a linear range of 15-120 μM. The limit of detection and the limit of quantification for Hg2+ detection were found to be 11.15 and 37.15 μM, respectively. Furthermore, andro-AgNPs exhibited antibacterial properties against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The results imply that andro-AgNPs hold promising potential for future biomedical applications.
Collapse
Affiliation(s)
- Chanon Talodthaisong
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Panupong Chongwichai
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Apichart Saenchoopa
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saengrawee Thammawithan
- Department
of Biochemistry, Faculty of Science, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Department
of Biochemistry, Faculty of Science, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Suppanat Kosolwattana
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Plaeyao K, Kampangta R, Korkokklang Y, Talodthaisong C, Saenchoopa A, Thammawithan S, Latpala K, Patramanon R, Kayunkid N, Kulchat S. Gingerol extract-stabilized silver nanoparticles and their applications: colorimetric and machine learning-based sensing of Hg(ii) and antibacterial properties. RSC Adv 2023; 13:19789-19802. [PMID: 37404322 PMCID: PMC10315996 DOI: 10.1039/d3ra02702c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
This study focused on synthesizing ginger-stabilized silver nanoparticles (Gin-AgNPs) using a more eco-friendly method that utilized AgNO3 and natural ginger solution. These nanoparticles underwent a color change from yellow to colorless when exposed to Hg2+, enabling the detection of Hg2+ in tap water. The colorimetric sensor had good sensitivity, with a limit of detection (LOD) of 1.46 μM and a limit of quantitation (LOQ) of 3.04 μM. Importantly, the sensor operated accurately without being affected by various other metal ions. To enhance its performance, a machine learning approach was employed and achieved accuracy ranging from 0% to 14.66% when trained with images of Gin-AgNP solutions containing different Hg2+ concentrations. Furthermore, the Gin-AgNPs and Gin-AgNPs hydrogels exhibited antibacterial effects against both Gram-negative and Gram-positive bacteria, indicating potential future applications in the detection of Hg2+ and in wound healing.
Collapse
Affiliation(s)
- Kittiya Plaeyao
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Ratchaneekorn Kampangta
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Yuparat Korkokklang
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Apichart Saenchoopa
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Krailikhit Latpala
- Department of Mathematics, Faculty of Education, Sakon Nakhon Rajabhat University Sakon Nakhon 47000 Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Navaphun Kayunkid
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Ladkrabang Bangkok 10520 Thailand
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
11
|
Shalaby EA, Beltagi AM, Hathoot AA, Azzem MA. Simultaneous voltammetric sensing of Zn 2+, Cd 2+, and Pb 2+ using an electrodeposited Bi-Sb nanocomposite modified carbon paste electrode. RSC Adv 2023; 13:7118-7128. [PMID: 36875874 PMCID: PMC9978880 DOI: 10.1039/d3ra00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
A sensor for detecting Zn2+, Cd2+, and Pb2+ ions simultaneously based on the square wave anodic stripping response at a bismuth antimony (Bi-Sb) nanocomposite electrode was developed. The electrode was prepared in situ by electrodepositing bismuth and antimony on the surface of a carbon-paste electrode (CPE) while also reducing the analyte metal ions. The structure and performance of the Bi-Sb/CPE electrode were studied using scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and cyclic voltammetry. Operational conditions including the concentration of Sb and Bi, the type of electrolyte, pH, and preconcentration conditions were optimized. The linear ranges were determined to be 5-200 μg L-1 for Zn2+, 1-200 μg L-1 for Cd2+, and 1-150 μg L-1 for Pb2+ with the optimized parameters. The limits of detection were 1.46 μg L-1, 0.27 μg L-1, and 0.29 μg L-1 for Zn2+, Cd2+, and Pb2+, respectively. Furthermore, the Bi-Sb/CPE sensor is capable of selective determination of the target metals in the presence of the common cationic and anionic interfering species (Na+, K+, Ca2+, Mg2+, Fe3+, Mn2+, Co2+, Cl-, SO4 2- and HCO3 -). Finally, the sensor was successfully applied to the simultaneous determination of Zn2+, Cd2+, and Pb2+ in a variety of real-world water samples.
Collapse
Affiliation(s)
- E A Shalaby
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University Shebin El-Kom 32511 Egypt
| | - A M Beltagi
- Department of Chemistry, Faculty of Science, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - A A Hathoot
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University Shebin El-Kom 32511 Egypt
| | - M Abdel Azzem
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University Shebin El-Kom 32511 Egypt
| |
Collapse
|
12
|
Ulloa-Gomez AM, Agredo A, Lucas A, Somvanshi SB, Stanciu L. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing. Biosens Bioelectron 2023; 222:114938. [PMID: 36462432 DOI: 10.1016/j.bios.2022.114938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
We report an aptasensing platform for the detection of cardiac troponin T (cTnT) in the immediate and early phases of acute myocardial infarction (AMI). High-flow filter paper was used to fabricate a microfluidic paper-based analytical device (μ-PAD), which was further modified with gold-decorated polystyrene microparticles functionalized with a highly specific cTnT aptamer. Herein, cTnT detection is presented in two linear ranges (0.01-0.8 μg/ml and 6.25-50 μg/ml) with an LoD of 3.9X10-4 μg/ml, which is in agreement with reference values determined by the American Heart Association. The proposed platform showed remarkable selectivity against AMI-associated cardiac biomarkers such as TNF-alpha, interleukin-6, cardiac troponin I, and reactive protein-C. This aptasensor is a label-free assay that relies only on smartphone-based image analysis and takes less processing time in comparison with traditional methods like ELISA. Furthermore, it exhibits outstanding stability over 23 days when devices are stored at 4 °C. The reported platform is a stable and cost-effective method for the on-site and user-friendly detection of cTnT in normal saline buffer and diluted human serum.
Collapse
Affiliation(s)
- Ana M Ulloa-Gomez
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA
| | - Alejandra Agredo
- Department of Biological Sciences, West Lafayette, IN, 47907, USA; Purdue Life Sciences Interdisciplinary Program (PULSe), West Lafayette, IN, 47907, USA
| | - Alec Lucas
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA
| | - Sandeep B Somvanshi
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA
| | - Lia Stanciu
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 7907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Chen Z, Zhang Z, Qi J, You J, Ma J, Chen L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129889. [PMID: 36087533 DOI: 10.1016/j.jhazmat.2022.129889] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
Detection of heavy metal ions has drawn significant attention in environmental and food area due to their threats to the human health and ecosystem. Colorimetry is one of the most frequently-used methods for the detection of heavy metal ions owing to its simplicity, easy operation and rapid on-site detection. The development of chromogenic materials and their sensing mechanisms are the key research direction in the area of colorimetric method. Since each chromogenic material has their unique optical and chemical properties, they have totally different colorimetric sensing mechanisms. This review focuses on the chromogenic materials and their sensing strategies for the colorimetric detection of heavy metal ions. We divide the chromogenic materials into three types, including organic materials, inorganic materials, and other materials. As for each type of chromogenic material, we discuss their detailed sensing strategies, sensing performance, and real sample applications. Moreover, current challenges and perspectives related to the colorimetry of heavy metal ions are also discussed in this review. The aim of this review is to help readers to better understand the principles of colorimetric methods for heavy metal ions and push the development of rapid detection of heavy metal ions.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China.
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
14
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
15
|
Abdulateef S, Raypah ME, Omar A, Mat Jafri M, Ahmed NM, Haida Mohd Kaus N, Seeni A, Hafiz Mail M, Tabana Y, Ahmed M, Al Rawashdah S, Barakat K. Rapid Synthesis of Bovine Serum Albumin-Conjugated Gold Nanoparticles Using Pulsed Laser Ablation and Their Anticancer Activity on Hela Cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
17
|
Han YD, Kim KR, Lee KW, Yoon HC. Retroreflection-based optical biosensing: From concept to applications. Biosens Bioelectron 2022; 207:114202. [DOI: 10.1016/j.bios.2022.114202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/31/2022]
|
18
|
Simultaneous colorimetric and electrochemical detection of trace mercury (Hg 2+) using a portable and miniaturized aptasensor. Biosens Bioelectron 2022; 221:114419. [PMID: 35738991 DOI: 10.1016/j.bios.2022.114419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022]
Abstract
We report a novel aptasensor for the simultaneous colorimetric and electrochemical detection of mercury (Hg2+). This device consists of a paper-based microfluidic component (μ-PAD) incorporated into a miniaturized three-electrode system fabricated through printed circuit board (PCB) technology. This biosensor is portable, rapid, versatile, and can detect Hg2+ down to 0.01 ppm based on 3σ of the blank/slope criteria. Moreover, it is highly selective against As2+, Cu2+, Zn2+, Pb2+, Cd2+, Mg2+, and Fe2+, reaching up to 13 times more of the input signal than the other heavy metals. The colorimetric detection mechanism uses aptamer functionalized polystyrene (PS)-AgNPs and Ps-AuNPs microparticles' specific aggregation. The Ps-AuNPs-based system allows qualitative detection (LOD 5 ppm) and stability over seven days (up to 97.59% signal retention). For the Ps-AgNPs-based system, the detection limit is 0.5 ppm with a linear range from 0.5 to 20 ppm (adjusted R2= 0.986) and stability over 30 days (up to 94.95% signal retention). The electrochemical component measures changes in charge transfer resistance upon target-aptamer hybridization using a [Ru (NH3)6]3+Cl3] redox probe. The latest component presents a linear range from 0.01 to 1 ppm (adjusted R2= 0.935) with a LOD of 0.01 ppm and performance stability over seven days (up to 102.52 ± 11.7 signal retention). This device offers a universal dual detection platform with multiplexing, multi-replication, quantitative color analysis, and minimization of false results. Furthermore, detection results in river samples showed recoveries up to 91.12% (RSD 0.85) and 105.61% (RSD 1.62) for the electrochemical and colorimetric components, respectively. The proposed system is highly selective with no false-positive or false-negative results in an overall wide linear range and can safeguard the accuracy of detection results in aptasensing platforms in general.
Collapse
|
19
|
Ali S, Mansha M, Baig N, Khan SA. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments. CHEM REC 2022; 22:e202100327. [PMID: 35253977 DOI: 10.1002/tcr.202100327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Environmental emissions of mercury from industrial waste and natural sources, even in trace amounts, are toxic to organisms and ecosystems. However, industrial-scale mercury detection is limited by the high cost, low sensitivity/specificity, and poor selectivity of the available analytical tools. This review summarizes the key sensors for mercury detection in aqueous environments: colorimetric-, electrochemical-, fluorescence-, and surface-enhanced Raman spectroscopy-based sensors reported between 2014-2021. It then compares the performances of these sensors in the determination of inorganic mercury (Hg2+ ) and methyl mercury (CH3 Hg+ ) species in aqueous samples. Mercury sensors for aquatic applications still face serious challenges in terms of difficult deployment in remote areas and low robustness, reliability, and selectivity in harsh environments. We provide future perspectives on the selective detection of organomercury species, which are especially toxic and reactive in aquatic environments. This review is intended as a valuable resource for scientists in the field of mercury sensing.
Collapse
Affiliation(s)
- Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Logan N, Haughey SA, Liu L, Burns DT, Quinn B, Cao C, Elliott CT. Handheld SERS coupled with QuEChERs for the sensitive analysis of multiple pesticides in basmati rice. NPJ Sci Food 2022; 6:3. [PMID: 35027565 PMCID: PMC8758682 DOI: 10.1038/s41538-021-00117-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Pesticides are a safety issue globally and cause serious concerns for the environment, wildlife and human health. The handheld detection of four pesticide residues widely used in Basmati rice production using surface-enhanced Raman spectroscopy (SERS) is reported. Different SERS substrates were synthesised and their plasmonic and Raman scattering properties evaluated. Using this approach, detection limits for pesticide residues were achieved within the range of 5 ppb-75 ppb, in solvent. Various extraction techniques were assessed to recover pesticide residues from spiked Basmati rice. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERs) acetate extraction was applied and characteristic spectral data for each pesticide was obtained from the spiked matrix and analysed using handheld-SERS. This approach allowed detection limits within the matrix conditions to be markedly improved, due to the rapid aggregation of nanogold caused by the extraction medium. Thus, detection limits for three out of four pesticides were detectable below the Maximum Residue Limits (MRLs) of 10 ppb in Basmati rice. Furthermore, the multiplexing performance of handheld-SERS was assessed in solvent and matrix conditions. This study highlights the great potential of handheld-SERS for the rapid on-site detection of pesticide residues in rice and other commodities.
Collapse
Affiliation(s)
- Natasha Logan
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - Simon A Haughey
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Lin Liu
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - D Thorburn Burns
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Brian Quinn
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Material and Advanced Technologies for Healthcare, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Christopher T Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
21
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
22
|
Shalaby EA, Beltagi AM, Hathoot AA, Azzem MA. Development of a Sensor Based on poly(1,2‐diaminoanthraquinone) for Individual and Simultaneous Determination of Mercury (II) and Bismuth (III). ELECTROANAL 2021. [DOI: 10.1002/elan.202100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- E. A. Shalaby
- Electrochemistry Laboratory Chemistry Department Faculty of Science Menoufia University Shebin El-Kom 32511 Egypt
| | - A. M. Beltagi
- Department of Chemistry Faculty of Science Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - A. A. Hathoot
- Electrochemistry Laboratory Chemistry Department Faculty of Science Menoufia University Shebin El-Kom 32511 Egypt
| | - M. Abdel Azzem
- Electrochemistry Laboratory Chemistry Department Faculty of Science Menoufia University Shebin El-Kom 32511 Egypt
| |
Collapse
|
23
|
Yu R, Pan F, Schreine C, Wang X, Bell DM, Qiu G, Wang J. Quantitative Determination of Airborne Redox-Active Compounds Based on Heating-Induced Reduction of Gold Nanoparticles. Anal Chem 2021; 93:14859-14868. [PMID: 34705434 DOI: 10.1021/acs.analchem.1c03823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Airborne redox-active compounds (ARC) account for a substantial fraction of atmospheric aerosols and play a vital role in chemical processes that influence global climate and human and ecological health. With the exception of the determination of total organic carbon by the expensive total organic carbon (TOC) analyzer, there is currently no easy-to-use method to quantify ARC. Here, we designed a method to detect the concentration of ARC by using the thermal-induced reduction and colorimetric behaviors of gold nanoparticles (AuNPs), in which the humic substances (HS) was used as a standard model of ARC to calculate the HS-equivalent concentration of ARC. Distinguished from the conventional complex methods, e.g., TOC analysis, the proposed approach measured localized surface plasmon resonance absorption of AuNPs and the target ARC concentration can be either directly quantified by the absorption spectrometer or qualitatively evaluated by the naked eyes. By using the absorption spectrometer, a limit of detection of 0.005 ppm by our AuNP sensor was achieved. To validate this sensing technique, aerosol samples collected from Basel (suburban), Bern (urban), and Rigi mountain (rural and high-altitude) sites in Switzerland were further investigated through the TOC combustion method. The results thereby substantiated that our plasmonic absorption-based AuNP sensor upholds a great promise for fast, cost-efficient total ARC detection and air quality assessment.
Collapse
Affiliation(s)
- Ranxue Yu
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Claudia Schreine
- Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Xinhou Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland.,Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
24
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5965. [PMID: 34683560 PMCID: PMC8539628 DOI: 10.3390/ma14205965] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna St., 20-280 Lublin, Poland
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Monika Jaroszuk-Sierocińska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| |
Collapse
|
26
|
Fu LM, Hsu JH, Shih MK, Hsieh CW, Ju WJ, Chen YW, Lee BH, Hou CY. Process Optimization of Silver Nanoparticle Synthesis and Its Application in Mercury Detection. MICROMACHINES 2021; 12:1123. [PMID: 34577766 PMCID: PMC8467733 DOI: 10.3390/mi12091123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
Silver nanoparticles (AgNPs) have stable reactivity and excellent optical absorption properties. They can be applied in various industries, such as environmental protection, biochemical engineering, and analyte monitoring. However, synthesizing AgNPs and determining their appropriate dosage as a coloring substance are difficult tasks. In this study, to optimize the process of AgNP synthesis and obtain a simple detection method for trace mercury in the environment, we evaluate several factors-including the reagent addition sequence, reaction temperature, reaction time, the pH of the solution, and reagent concentration-considering the color intensity and purity of AgNPs as the reaction optimization criteria. The optimal process for AgNP synthesis is as follows: Mix 10 mM of silver nitrate with trisodium citrate in a hot water bath for 10 min; then, add 10 mM of sodium borohydride to produce the AgNPs and keep stirring for 2 h; finally, adjust the pH to 12 to obtain the most stable products. For AgNP-based mercury detection, the calibration curve of mercury over the concentration range of 0.1-2 ppb exhibits good linearity (R2 > 0.99). This study provides a stable and excellent AgNP synthesis technique that can improve various applications involving AgNP-mediated reactions and has the potential to be developed as an alternative to using expensive detection equipment and to be applied for the detection of mercury in food.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (L.-M.F.); (W.-J.J.)
| | - Jia-Hong Hsu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Jhong Ju
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan; (L.-M.F.); (W.-J.J.)
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 600355, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| |
Collapse
|
27
|
Ding W, Chen Z, Cao W, Gu Y, Zhang T, Wang C, Li W, Sun F. Copper nanoclusters with/without salicylaldehyde-modulation for multifunctional detection of mercury, cobalt, nitrite and cyanide ions in aqueous solution and bioimaging. NANOTECHNOLOGY 2021; 32:145704. [PMID: 33333493 DOI: 10.1088/1361-6528/abd4a2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sensitive determination of multiple heavy metal ions and toxic anions is important in biological and environmental fields. Here we report a facile strategy to construct a multifunctional chemosensor for the detection of Hg2+, [Formula: see text]Co2+, and CN- in aqueous solution based on the fluorescent copper nanoclusters (Cu NCs). It was interesting to find that salicylaldehyde (SA) could effectively modulate the fluorescence property and sensing behavior of Cu NCs. In the absence of SA, Cu NCs showed 'on-off' fluorescence responses at the addition of Hg2+ and [Formula: see text] under different quenching mechanisms. Upon the presence of SA, Cu NCs exhibited a strong intramolecular charge transfer emission at 500 nm, accompanied by the decrease of the initial fluorescence of Cu NCs at 430 nm. This fluorescence on-state of Cu NC-SA at 500 nm was found to be exclusively turned off by Co2+ and enhanced by CN-. Spectroscopy results combined with thermodynamic analysis provided sufficient information to deduce the sensing mechanisms. Finally, the Cu NCs showed high biocompatibility and were able to be used for fluorescence bioimaging in living cells. This study provided a novel and simple strategy to construct the multifunctional chemosensors for bioanalytical applications.
Collapse
Affiliation(s)
- Weihua Ding
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Zhichuan Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Wei Cao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Yayun Gu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Ting Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Chengniu Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Wenqing Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Electrochemical Behaviour of Real-Time Sensor for Determination Mercury in Cosmetic Products Based on PANI/MWCNTs/AuNPs/ITO. COSMETICS 2021. [DOI: 10.3390/cosmetics8010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mercury is a common ingredient found in skin lightening soaps, creams, and makeup-cleansing products. It may cause skin rashes, skin discolouration, and scarring, as well as a reduction in the skin’s resistance to bacterial and fungal infections. By looking at this scenario, developing a sensor that involved a simple procedure and fasts for real-time detection without affecting mercury sensitivity is urgently needed. For that reason, a fast and sensitive electrochemical method was developed to determine mercury in cosmetic products with the composition of polyaniline/multi-walled carbon nanotubes/gold nanoparticles/indium tin oxide sheet using methylene blue as a redox indicator. The significantly enhanced electrochemical performance was observed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In order to detect mercury qualitatively and quantitatively, deposition potential and deposition time were respectively optimised to be 0.10 V and 70 s. The modified sensor was revealed a wide detection range of mercury from 0.01 to 10.00 ppm with a limit of detection of 0.08 ppm. The modified sensor towards mercury with a correlation coefficient (r2) was of 0.9948. Multiple cycling, reproducibility, and consistency of different modified sensors were investigated to verify the modified sensor’s performance. The developed sensing platform was highly selective toward mercury among the pool of possible interferents, and the stability of the developed sensor was ensured for at least 21 days after 10 repeated uses. The proposed method is a fast and simple procedure technique for analysing the mercury levels in cosmetic products.
Collapse
|
29
|
Berlina AN, Komova NS, Zherdev AV, Dzantiev BB. Combination of phenylboronic acid and oligocytosine for selective and specific detection of lead(ii) by lateral flow test strip. Anal Chim Acta 2021; 1155:338318. [PMID: 33766321 DOI: 10.1016/j.aca.2021.338318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Detection of lead (II) in water sources is of high importance for protection from this toxic contaminant. This paper presents the development and approbation of a lateral flow test strip of lead (II) with the use of phenylboronic acid as chelating agent and oligocytosine chain as receptor for the formed complexes. To locate the bound lead (II) on the test strip, phenylboronic acid was conjugated with carrier protein (bovine serum albumin) and applied as a binding line. In turn, the oligocytosine was conjugated with gold nanoparticle to provide coloration of the finally formed complexes (bovine serum albumin - phenylboronic acid - lead (II) - oligocytosine - gold nanoparticle). This combination of two binding molecules provides the «sandwich » assay with direct dependence of label binding from the analyte content. The technique is characterized by high sensitivity (0.05 ng mL-1) and the absence of cross-reactions with other metal ions which are often satellite in natural waters. The developed lateral flow tests were successfully applied for lead (II) detection in water. Time of the assay was 5 min. The reached parameters confirm efficiency of the proposed technique for rapid and non-laborious testing under nonlaboratory conditions.
Collapse
Affiliation(s)
- Anna N Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia.
| |
Collapse
|
30
|
Recent advances in the development of colorimetric analysis and testing based on aggregation-induced nanozymes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
RAO HH, LIU HX, LUO MY, XUE X, Ming-Ming W, XUE ZH. Progress of Simple Signal Readout-based Point-of-Care Testing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Wu Y, Yue Y, Deng S, He G, Gao H, Zhou M, Zhong K, Deng R. Ratiometric-enhanced G-Quadruplex Probes for Amplified and Mix-to-Read Detection of Mercury Pollution in Aquatic Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12124-12131. [PMID: 33058672 DOI: 10.1021/acs.jafc.0c05658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mercury, as a global toxic pollutant, is easy to be accumulated in aquatic products and poses a great threat to human health. In this work, we proposed a mix-to-read, label-free, and robust assay for detecting mercury pollution in aquatic products by engineering a ratiometric-enhanced G-quadruplex probe. The transformation from the G-quadruplex to a hairpin-like structure allows us to confer a ratiometric and leveraged response to Hg2+, amplifying the signal-to-background ratio for Hg2+ detection. Hg2+ response was further improved by screening parallel- and antiparallel-, single-, and multiple-stranded G-quadruplex structures. Compared to the common aptamer probes, the ratiometric-enhanced G-quadruplex probe increased the sensitivity for Hg2+ detection by 4.7 times. This proposed sensing system allowed a simple and one-tube homogenous detection of Hg2+ at room temperature using a single unlabeled DNA sequence. Its application for Hg2+ detection in fish and shrimp conferred satisfactory recovery rates ranging from 98.5 to 105.9%. The label-free and mix-to-read assay is promising for the onsite detection of mercury pollution and facilitating food safety of aquatic products.
Collapse
Affiliation(s)
- Yanping Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yuxi Yue
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Enhanced oxidase-like activity of Ag@Ag2WO4 nanorods for colorimetric detection of Hg2+. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Yang J, Zhang Y, Guo J, Fang Y, Pang Z, He J. Nearly Monodisperse Copper Selenide Nanoparticles for Recognition, Enrichment, and Sensing of Mercury Ions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39118-39126. [PMID: 32812737 DOI: 10.1021/acsami.0c09865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current work, Cu(I)1.28Cu(II)0.36Se nanoparticles were synthesized via a simple procedure and were applied for the first time for recognition, adsorption, enrichment, and detection of Hg(II) ions. The experimental results show that 99.9% Hg(II) could be adsorbed by Cu(I)1.28Cu(II)0.36Se nanoparticles within just 30 s, and the Hg(II) concentration could be lowered down to a super-low level of 0.01 ppb. Cu(I)1.28Cu(II)0.36Se nanoparticles also demonstrate high selectivity to Hg(II) and Ag(I) among nine representative metal ions. The enrichment experiments show that Hg(II) of ultratrace concentration could be enriched significantly by Cu(I)1.28Cu(II)0.36Se nanoparticles, and thus, the detection limit of Hg(II) based on inductively coupled plasma emission spectroscopy-mass spectrometry would be pushed down by 2 orders of magnitude. These outstanding features of Cu(I)1.28Cu(II)0.36Se nanoparticles could be well accounted for in terms of the solubility product principle and the high affinity between selenium and mercury. Cu(I)1.28Cu(II)0.36Se nanoparticles were also found to have peroxidase-like activity, which could be inhibited by Hg(II) but not by Ag(I). This unique characteristic coupled with the solubility product principle successfully allows recognition and detection of Hg(II) even in the presence of Ag(I), which has a similar pKsp to Hg(II). As a result, the qualitative and quantitative analyses of Hg(II) could be performed by the naked eye and UV-visible spectroscopy, respectively. The current results indicate that Cu(I)1.28Cu(II)0.36Se nanoparticles not only have great potential in various aspects of dealing with Hg(II) pollution but would also shed light on discovering new nanomaterials to address other heavy metal ions.
Collapse
Affiliation(s)
- Jianzheng Yang
- Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
| | - Jianrong Guo
- Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
| | - Yumeng Fang
- Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Zili Pang
- Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Centre for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
| |
Collapse
|
37
|
Zohrabi T, Amiri-Sadeghan A, Ganjali MR, Hosseinkhani S. Diphenylalanin nanofibers-inspired synthesis of fluorescent gold nanoclusters for screening of anti-amyloid drugs. Methods Appl Fluoresc 2020; 8:045002. [PMID: 32580175 DOI: 10.1088/2050-6120/ab9fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein misfolding and aggregation into amyloid structures is linked with a number of pathophysiological disorders. In the past decade, significant progresses have been made in the drug discovery strategies against toxic aggregates. Although lack of specificity and high sensitivity for in vitro screening system still seen. Here we demonstrate a new targeting probe based on FF diphenylalanine peptide -protected gold nanoclusters (FF AuNCs). Diphenylalanine peptide has previously been shown to self-assemble into well-ordered fiber like the fibers that are observed in amyloid aggregates. We used of the self-assembly properties along with the ability of FF dipeptide in reduction of gold ions for synthesis of novel Au nanoclusters. We used FF AuNCs for monitoring of effectiveness of anti-amyloid drugs. Fluorescence was considerably diminished when drugs at different concentrations added, due to destruction of the amyloid fibers. Furthermore, the analysis of several components demonstrates significant selectivity against the amyloid disrupting molecules. Prepared FF AuNCs will gain possible strategy for in vitro screening of amyloid disrupting molecules.
Collapse
Affiliation(s)
- Tayebeh Zohrabi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
38
|
Díaz-Amaya S, Zhao M, Allebach JP, Chiu GTC, Stanciu LA. Ionic Strength Influences on Biofunctional Au-Decorated Microparticles for Enhanced Performance in Multiplexed Colorimetric Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32397-32409. [PMID: 32645268 DOI: 10.1021/acsami.0c07636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rising development of biosensors offers a great potential for health, food, and environmental monitoring. However, in many colorimetric platforms, there is a performance limitation stemming from the tendency of traditional Au nanoparticles toward nonspecific aggregation in response to changing ionic strength (salt concentration). This work puts forward a new type of colorimetric aptamer-functionalized labeling of microparticles, which allows to leverage an increase in ionic strength as a positive driver of enhanced detection performance of analytical targets. The resulting device is a cost-effective, instrument-free, portable, and reliable aptasensor that serves as basis for the fabrication of universal paper-based colorimetric platforms with the capability of multiplex, multireplicates and provides quantitative colorimetric detection. A controlled fabrication process was demonstrated by keeping 90% of the signal obtained from the as-fabricated devices (n = 40) within ± 1 standard deviation (SD) (relative SD = 5.69%) and following a mesokurtic normal-like distribution (p = 0.385). We propose for the first time a salt-induced aggregation mechanism for highly stable multilayered label particles (ssDNA-PEI-Au-PS) as the basis of the detection scheme. The use of DNA aptamers as capture biomolecules and PEI as an encapsulating agent allows for a sensitive and highly specific colorimetric response. As a proof of concept, multiplexed detection of mercury (Hg2+) and arsenic (As3+) was demonstrated. In addition, we introduced a robust image analysis algorithm for testing zone segmentation and color signal quantification that allowed for analytical detection, reaching a limit of detection of 1 ppm for both targeted analytes, with enough evidence (p > 0.05) to prove the high specificity of the fabricated device versus a pool of possible interferent ions.
Collapse
Affiliation(s)
- Susana Díaz-Amaya
- Department of Materials Engineering, Purdue University. West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University. West Lafayette, Indiana 47907, United States
| | - Min Zhao
- School of Electrical and Computer Engineering, Purdue University. West Lafayette, Indiana 47907, United States
| | - Jan P Allebach
- School of Electrical and Computer Engineering, Purdue University. West Lafayette, Indiana 47907, United States
| | - George T-C Chiu
- School of Electrical and Computer Engineering, Purdue University. West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University. West Lafayette, Indiana 47907, United States
| | - Lia A Stanciu
- Department of Materials Engineering, Purdue University. West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University. West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Abstract
Recently, perovskite-based nanomaterials are utilized in diverse sustainable applications. Their unique structural characteristics allow researchers to explore functionalities towards diverse directions, such as solar cells, light emitting devices, transistors, sensors, etc. Many perovskite nanomaterial-based devices have been demonstrated with extraordinary sensing performance to various chemical and biological species in both solid and solution states. In particular, perovskite nanomaterials are capable of detecting small molecules such as O2, NO2, CO2, etc. This review elaborates the sensing applications of those perovskite materials with diverse cations, dopants and composites. Moreover, the underlying mechanisms and electron transport properties, which are important for understanding those sensor performances, will be discussed. Their synthetic tactics, structural information, modifications and real time sensing applications are provided to promote such perovskite nanomaterials-based molecular designs. Lastly, we summarize the perspectives and provide feasible guidelines for future developing of novel perovskite nanostructure-based chemo- and biosensors with real time demonstration.
Collapse
|
40
|
Colorimetric determination of Hg 2+ based on the mercury-stimulated oxidase mimetic activity of Ag 3PO 4 microcubes. Mikrochim Acta 2020; 187:422. [PMID: 32617681 DOI: 10.1007/s00604-020-04399-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023]
Abstract
Four kinds of Ag3PO4 materials were prepared by controlling the experimental conditions, which were developed as oxidase mimics. Experimental results showed that different synthesis methods led to distinct crystal structures, morphologies, and surface properties, which contributed to diverse oxidase-like activities of Ag3PO4 materials. Among them, Ag3PO4 microcubes (APMCs) can efficiently catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine in the presence of dissolved oxygen to form a blue-colored oxide, presenting the best intrinsic oxidase mimetic ability. The higher-energy [110] facets with more oxygen vacancies exposed and more active sites coupled with more negative charge and larger specific surface area of APMCs contributed to its enhanced oxidase mimetic performance. Besides, mercury ions were proved to remarkably and selectively stimulate the oxidase-like ability of APMCs owing to the formation of Ag-Hg amalgam on its surface. Based on the stimulating effect of Hg2+ towards APMCs, a simple and rapid method for colorimetric determination of Hg2+ was thus established via the significant signal amplification and megascopic color variation. Under the optimal conditions, the sensing system showed a good linear relationship ranging from 0.1 to 7.0 μM and a detection limit of 20 nM for Hg2+, exhibiting high selectivity and good colour stability. Moreover, the colorimetric method was successfully applied to determine Hg2+ in real water samples. Considering these advantages, the developed colorimetric sensing system is expected to hold bright prospects for trace determination of Hg2+ in biological, environmental, and food samples. Graphical abstract The preparation process of Ag3PO4 materials and Hg2+-stimulated enhanced oxidase-like ability of Ag3PO4 microcubes in catalyzing the oxidation of TMB to generate a typical blue color, which can be applied in rapid and ultrasensitive detection of Hg2+ visually.
Collapse
|
41
|
You JQ, Yan D, He Y, Zhou JG, Ge YL, Song GW. Polyethyleneimine-Protected Ag2S Quantum Dots for Near-Infrared Fluorescence-Enhanced Detection of Trace-Level Hg2+ in Water. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Universal preparation of cellulose-based colorimetric sensor for heavy metal ion detection. Carbohydr Polym 2020; 236:116037. [DOI: 10.1016/j.carbpol.2020.116037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
|
43
|
Xiong Z, Wang Q, Zhang J, Yun W, Wang X, Ha X, Yang L. A simple and programmed DNA tweezer probes for one-step and amplified detection of UO 22. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118017. [PMID: 31923792 DOI: 10.1016/j.saa.2019.118017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
A simple DNA tweezer was proposed for one-step and amplified detection of UO22+ based on DNAzyme catalytic cleavage. The two arms of DNA tweezers are close in the original form. Thus, the fluorescent signal of fluorophore at the end of arm is dramatically quenched. However, the structure of DNA tweezers can be changed from "close" to "open" in the presence of UO22+, resulting the strong fluorescent signal. The linear range was obtained in the range of 0.1 nM to 60 nM and the limit of detection was 25 pM with the amplification of DNAzyme catalytic cleavage reaction. Importantly, the whole detection process is very simple and only one operation step is required. In addition, it shows great potential and promising prospects for uranyl detection in practical application.
Collapse
Affiliation(s)
- Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China; Department of Food Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 55338, Republic of Korea
| | - Qiang Wang
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingmin Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xia Ha
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
44
|
Zhou ZQ, Liao YP, Yang J, Huang S, Xiao Q, Yang LY, Liu Y. Rapid ratiometric detection of Cd 2+ based on the formation of ZnSe/CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117795. [PMID: 31753647 DOI: 10.1016/j.saa.2019.117795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Developing simple and sensitive non-aggregation strategy for detecting Cd2+ is necessary for improving the selectivity and sensitivity of probe. Here, we establish a simple, rapid and ratiometric strategy for the recognition of Cd2+ based on the formation of core-shell ZnSe/CdS structure using ZnSe quantum dots (QDs). The transformation from binary ZnSe QDs to core-shell ZnSe/CdS QDs both change the elemental composition and structure of ZnSe QDs, leading to the changes in band gap of ZnSe QDs, which could be observed in the UV-vis spectra. In the detection process, ZnSe QDs only possess absorption peak at 343 nm, the formation of ZnSe/CdS after the addition of Cd2+ leads to the appearance of the new peak at 397 nm, while other heavy metal ions could not cause the appearance of new absorption peak. Therefore, this strategy shows good selectivity for Cd2+ detection. Based on this strategy, the limit of detection (LOD) for Cd2+ is 11 nM by UV-vis spectroscopy with a desirable relation of linearity (R2 = 0.999) between A397/A343 and Cd2+ contents, which is superior to the LOD of most reported nanomaterials. The response time for Cd2+ detection is as short as 60 s, which is suitable for rapid detection. This ratiometric probe has also been applied to the detection of Cd2+ in tap water samples, the recovery of Cd2+ was between 94.9% and 105.6% for tap water samples, indicating the high accuracy of our ratiometric assay. Our strategy not only provided a new method for detecting Cd2+, but also put forward an implication that the band energy changes of QDs caused by heavy metal ions can be applied in the selective and sensitive detection of heavy metal ions.
Collapse
Affiliation(s)
- Zhi-Qiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yuan-Ping Liao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jing Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Li-Yun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
45
|
Zhang Y, Song J, Pan Q, Zhang X, Shao W, Zhang X, Quan C, Li J. An Au@NH2-MIL-125(Ti)-based multifunctional platform for colorimetric detections of biomolecules and Hg2+. J Mater Chem B 2020; 8:114-124. [DOI: 10.1039/c9tb02183c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Au@NH2-MIL-125(Ti) was fabricated and explored as a multifunctional platform for sensitive colorimetric detections of biomolecules and Hg2+.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Jie Song
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Qiaoling Pan
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Xin Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Wenhui Shao
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Xiang Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Chunshan Quan
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Jun Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- China
| |
Collapse
|
46
|
Sahu D, Mohapatra P, Swain SK. Highly orange fluorescence emission by water soluble gold nanoclusters for “turn off” sensing of Hg2+ ion. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Balusamy B, Senthamizhan A, Uyar T. Functionalized Electrospun Nanofibers as Colorimetric Sensory Probe for Mercury Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4763. [PMID: 31684017 PMCID: PMC6864735 DOI: 10.3390/s19214763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/20/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
Mercury is considered the most hazardous pollutant of aquatic resources; it exerts numerous adverse effects on environmental and human health. To date, significant progress has been made in employing a variety of nanomaterials for the colorimetric detection of mercury ions. Electrospun nanofibers exhibit several beneficial features, including a large surface area, porous nature, and easy functionalization; thus, providing several opportunities to encapsulate a variety of functional materials for sensing applications with enhanced sensitivity and selectivity, and a fast response. In this review, several examples of electrospun nanofiber-based sensing platforms devised by utilizing the two foremost approaches, namely, direct incorporation and surface decoration envisioned for detection of mercury ions are provided. We believe these examples provide sufficient evidence for the potential use and progress of electrospun nanofibers toward colorimetric sensing of mercury ions. Furthermore, the summary of the review is focused on providing an insight into the future directions of designing electrospun nanofiber-based, metal ion colorimetric sensors for practical applications.
Collapse
Affiliation(s)
- Brabu Balusamy
- Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Anitha Senthamizhan
- Fondazione Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Lobregas MOS, Bantang JPO, Camacho DH. Carrageenan-stabilized silver nanoparticle gel probe kit for colorimetric sensing of mercury (II) using digital image analysis. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Lien CW, Yu PH, Chang HT, Hsu PH, Wu T, Lin YW, Huang CC, Lai JY. DNA engineered copper oxide-based nanocomposites with multiple enzyme-like activities for specific detection of mercury species in environmental and biological samples. Anal Chim Acta 2019; 1084:106-115. [DOI: 10.1016/j.aca.2019.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
|