1
|
Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: An overview of the last decade. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Pressurized liquid extraction coupled in-line with SPE and on-line with HPLC (PLE-SPExHPLC) for the recovery and purification of anthocyanins from SC-CO2 semi-defatted Açaí (Euterpe oleracea). Food Res Int 2022; 160:111711. [DOI: 10.1016/j.foodres.2022.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022]
|
3
|
Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review. Molecules 2022; 27:molecules27196272. [PMID: 36234823 PMCID: PMC9571248 DOI: 10.3390/molecules27196272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The detection of analytes in complex organic matrices requires a series of analytical steps to obtain a reliable analysis. Sample preparation can be the most time-consuming, prolonged, and error-prone step, reducing the reliability of the investigation. This review aims to discuss the advantages and limitations of extracting bioactive compounds, sample preparation techniques, automation, and coupling with on-line detection. This review also evaluates all publications on this topic through a longitudinal bibliometric analysis, applying statistical and mathematical methods to analyze the trends, perspectives, and hot topics of this research area. Furthermore, state-of-the-art green extraction techniques for complex samples from vegetable matrices coupled with analysis systems are presented. Among the extraction techniques for liquid samples, solid-phase extraction was the most common for combined systems in the scientific literature. In contrast, for on-line extraction systems applied for solid samples, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and pressurized liquid extraction were the most frequent green extraction techniques.
Collapse
|
4
|
Dvořák M, Miró M, Kubáň P. Automated Sequential Injection-Capillary Electrophoresis for Dried Blood Spot Analysis: A Proof-of-Concept Study. Anal Chem 2022; 94:5301-5309. [PMID: 35319181 DOI: 10.1021/acs.analchem.1c05130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A hyphenated analytical platform that enables fully automated analyses of dried blood spots (DBSs) is proposed by the at-line coupling of sequential injection (SI) to capillary electrophoresis (CE). The SI system, exploited herein for the first time for unattended DBS handling, serves as the "front end" mesofluidic platform for facilitating exhaustive elution of the entire DBS by flow programming. The DBS eluates are thus free from hematocrit and nonhomogeneity biases. The SI pump transfers the resulting DBS eluates into CE sample vials through an internal port of the CE instrument and homogenizes the eluates, whereupon the eluted blood compounds are automatically injected, separated, and quantified by the CE instrument. The SI and CE are commercially available off-the-shelf instruments and are interconnected through standard nuts, ferrules, and tubing without additional instrumental adjustments. They are controlled by dedicated software and are synchronized for a fully autonomous operation. The direct determination of endogenous (potassium and sodium) and exogenous (lithium as a model drug) inorganic cations in DBS samples has been used for the proof-of-concept demonstration. The hyphenated SI-CE platform provides excellent precision of the analytical method with relative standard deviation (RSD) values of peak areas below 1.5 and 3.5% for intraday and interday analyses, respectively, of the endogenous concentrations of the two inorganic cations. For the determination of lithium, calibration is linear in a typical clinical range of the drug (R2 better than 0.9993 for 2-20 mg/L), RSD values of peak areas are below 4.5% (in the entire calibration range), the limit of detection (0.4 mg/L) and the limit of quantification (1.3 mg/L) are well below the drug's minimum therapeutic concentration (4 mg/L), and total analysis time is shorter than 5 min. The SI-CE platform reflects the actual trends in the automation of analytical methods, offers rapid and highly flexible DBS elution/analysis processes, and might thus provide a general solution to modern clinical analysis as it can be applied to a broad range of analytes and dried biological materials.
Collapse
Affiliation(s)
- Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
| |
Collapse
|
5
|
Zhang M, Smejkal P, Bester N, Robertson J, Atia MA, Townsend AT, Guijt RM, Breadmore MC. Inexpensive Portable Capillary Electrophoresis Instrument for Monitoring Zinc(II) in Remote Areas. J Chromatogr A 2022; 1668:462895. [DOI: 10.1016/j.chroma.2022.462895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
|
6
|
Poboży E, Trojanowicz M. Application of Capillary Electrophoresis for Determination of Inorganic Analytes in Waters. Molecules 2021; 26:6972. [PMID: 34834063 PMCID: PMC8625978 DOI: 10.3390/molecules26226972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Aside from HPLC and GC, capillary electrophoresis (CE) is one of the most important techniques for high-performance separations in modern analytical chemistry. Its main advantages are the possibility of using different detection techniques, the possibility of in-capillary sample processing for preconcentration or derivatization, and ease of instrumental miniaturization down to the microfluidic scale. Those features are utilized in the separation of macromolecules in biochemistry and in genetic investigations, but they can be also used in determinations of inorganic ions in water analysis. This review, based on about 100 original research works, presents applications of CE methods in water analysis reported in recent decade, mostly regarding conductivity detection or indirect UV detection. The developed applications include analysis of high salinity sea waters, as well as analysis of other surface waters and drinking waters.
Collapse
Affiliation(s)
- Ewa Poboży
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Marek Trojanowicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Laboratory of Nuclear Analytical Techniques, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
7
|
An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting. Molecules 2021; 26:molecules26206268. [PMID: 34684849 PMCID: PMC8540481 DOI: 10.3390/molecules26206268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper, a novel procedure for preparing calibration solutions for capillary electrophoresis (CE)-based quantitative analysis is proposed. Our approach, named the automated hydrodynamically mediated technique (AHMT), uses a capillary and a pressure system to deliver the expected amount of working solution and diluent directly to a sample vial. As a result, calibration solutions are prepared automatically inside the CE instrument, without any or with minimal manual operation. Two different modes were tested: forward and reverse, differing in the direction of hydrodynamic flow. The calibration curves obtained for a model mixture of analytes using AHMT were thorough compared to the standard procedure based on manual pipetting. The results were consistent, though the volume of obtained calibration solutions and the potential risk of random errors were significantly minimized by AHMT. Its effectiveness was further enhanced by the application of SCIEX® nanoVials, reducing the actual volume of calibration solutions down to 10 μL.
Collapse
|
8
|
Liu S, Pan Z, Liang Y, Li F, Breadmore MC, Zhang M. An electrophoretic ion analyzer for on-site autonomous water monitoring. J Chromatogr A 2020; 1637:461791. [PMID: 33359795 DOI: 10.1016/j.chroma.2020.461791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/11/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023]
Abstract
An on-site ion analyzer based on capillary electrophoresis with pressure-driven flow through injection and capacitively coupled contactless conductivity detection has been developed for field monitoring of cations and anions in environmental waters. Automated time-pressure based hydrodynamic injection provides stable pL-nL scale injection (RSD = 1.96%, n = 30). A mixture of 400 mM Bis-Tris, 400 mM MOPS and 2 mM 18-crown-6 is used as the background electrolyte to provide repeatable separations. A proprietary hydrophilic coated 25 μm id capillary is used to suppress the electroosmotic flow. Separations of anions (Cl-, NO3-, NO2-, SO42-, F- and PO43-) and cations (NH4+, K+, Na+, Ca2+ and Mg2+) are achieved by switching the polarity of the high voltage power supply in two individual runs. Signal fluctuations caused by the temperature or viscosity changes in on-site monitoring are corrected by on-line introduction of internal standards. RSDs of the migration time and the corrected peak height over ~35 h and 350 analysis cycles are <4.06%. The LODs of inorganic ions are in the range of 2.1 μM (K+) to 6.8 μM (PO43-). The feasibility for on-site water monitoring with this system has been validated by a standard Ion chromatography method with comparable results obtained.
Collapse
Affiliation(s)
- Shuai Liu
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Zhen Pan
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Ying Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| | - Feng Li
- Australian Centre for Research on Separation Science, School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Min Zhang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
9
|
Ahmed OS, Ladner Y, Bousquet C, Montels J, Dubský P, Philibert L, Perrin C. Direct salting-out assisted liquid–liquid extraction (SALLE) from human blood: Application for the analysis of tyrosine kinase inhibitors. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Automatic On-Line Purge-and-Trap Sequential Injection Analysis for Trace Ammonium Determination in Untreated Estuarine and Seawater Samples. Molecules 2020; 25:molecules25071569. [PMID: 32235335 PMCID: PMC7180869 DOI: 10.3390/molecules25071569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/22/2022] Open
Abstract
An innovative automatic purge-and-trap (P&T) system coupled with fluorimetric sequential injection (SI), for the on-line separation and preconcentration of volatile compounds, is presented. The truth of concept is demonstrated for the ammonium fluorimetric determination in environmental water samples with complex matrices without any pretreatment. The P&T flow system comprises a thermostated purge-vessel where ammonium is converted into gaseous ammonia and a trap-vessel for ammonia collection. This configuration results in matrix removal as well as analyte preconcentration, avoiding membrane-associated problems. All the main parameters affecting the efficiency of a P&T system were studied and optimized. The proposed method is characterized by a working range of 2.7–150.0 μg L−1 of NH4+, with a detection and quantification limit of 0.80 and 2.66 μg L−1, respectively, for a 10-mL sample consumption. The accuracy of the method was assessed by recovery assays in seawater, estuarine, and lake water samples as well as by the analysis of standard reference material.
Collapse
|
11
|
A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma. Talanta 2020; 208:120391. [DOI: 10.1016/j.talanta.2019.120391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
|
12
|
Chocholouš P, Šatínský D, Solich P. New generation of sequential injection chromatography: Great enhancement of capabilities of separation using flow analysis. Talanta 2019; 204:272-277. [DOI: 10.1016/j.talanta.2019.05.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022]
|
13
|
Automated online coupling of robot-assisted single drop microextraction and liquid chromatography. J Chromatogr A 2019; 1595:66-72. [DOI: 10.1016/j.chroma.2019.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
14
|
Screening of extraction properties of nanofibers in a sequential injection analysis system using a 3D printed device. Talanta 2019; 197:517-521. [PMID: 30771970 DOI: 10.1016/j.talanta.2019.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
Abstract
A novel application of the three-dimensional printing technology for the automation of solid phase extraction procedures in a low-pressure sequential injection analysis system is presented. A 3D printed device was used as a housing for nanofiber membranes in solid phase extraction. The applicability of the device is demonstrated with the extraction of substances of various physical-chemical properties. Pharmaceuticals including non-steroidal anti-inflammatory drugs, antihistaminics, and steroidal structures, as well as emerging pollutants such as bisphenols and pesticide metsulfuron methyl were used as model analytes to study the extraction performance of the nanofibers. Six different nanofiber types comprising polyamide, polyethylene, polyvinylidene fluoride, polycaprolactone combined with polyvinylidene fluoride, and polyacrylonitrile, produced by electrospinning were tested in solid phase extraction. The suitability of specific nanofibers for particular analytes is demonstrated.
Collapse
|
15
|
Stoytcheva M, Zlatev R, Velkova Z, Gochev V, Ayala A, Montero G, Valdez B. Resolution of a Mononitrophenol Isomers Mixture by Differential Alternative Pulses Voltammetry. ELECTROANAL 2019. [DOI: 10.1002/elan.201800762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Roumen Zlatev
- Universidad Autónoma de Baja CaliforniaInstituto de Ingeniería Mexicali México
| | - Zdravka Velkova
- Medical University of PlovdivFaculty of PharmacyDep. Chemical Sciences Plovdiv Bulgaria
| | - Velizar Gochev
- Plovdiv University “P. Hilendarski”Faculty of BiologyDep. Biochemistry and Microbiology Plovdiv Bulgaria
| | - Alan Ayala
- Universidad Autónoma de Baja CaliforniaInstituto de Ingeniería Mexicali México
| | - Gisela Montero
- Universidad Autónoma de Baja CaliforniaInstituto de Ingeniería Mexicali México
| | - Benjamín Valdez
- Universidad Autónoma de Baja CaliforniaInstituto de Ingeniería Mexicali México
| |
Collapse
|
16
|
Granado-Castro M, Díaz-de-Alba M, Chinchilla-Real I, Galindo-Riaño M, García-Vargas M, Casanueva-Marenco M. Coupling liquid membrane and flow-injection technique as an analytical strategy for copper analysis in saline water. Talanta 2019; 192:374-379. [DOI: 10.1016/j.talanta.2018.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
|
17
|
Shishov A, Wieczorek M, Kościelniak P, Dudek-Adamska D, Telk A, Moskvin L, Bulatov A. An automated continuous homogeneous microextraction for the determination of selenium and arsenic by hydride generation atomic fluorescence spectrometry. Talanta 2018; 181:359-365. [DOI: 10.1016/j.talanta.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
|
18
|
Cherkashina K, Vakh C, Lebedinets S, Pochivalov A, Moskvin L, Lezov A, Bulatov A. An automated salting-out assisted liquid-liquid microextraction approach using 1-octylamine: On-line separation of tetracycline in urine samples followed by HPLC-UV determination. Talanta 2018; 184:122-127. [PMID: 29674022 DOI: 10.1016/j.talanta.2018.02.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 02/08/2023]
Abstract
An automated salting-out assisted liquid-liquid microextraction (SALLME) procedure based on a flow system was developed as new approach for pretreatment of complex sample matrix. In this procedure 1-octylamine was investigated as novel extractant for the SALLME. The procedure involved aspiration of the 1-octylamine and sample solution into a mixing chamber of a flow system followed by their air-bubble mixing resulting to isotropic solution formation. To provide phase separation a salting-out agent solution was added into the mixing chamber. After phase separation, the micellar 1-octylamine phase containing analyte was mixed with methanol and transported to a HPLC-UV system. To demonstrate the efficiency of the suggested approach, the automated procedure was applied for the HPLC-UV determination of tetracycline as a proof-of-concept analyte in human urine samples. Under the optimal conditions, the detector response of the analytes was linear in the concentration ranges of 0.5-20 mg L-1. The limit of detection, calculated from a blank test based on 3σ, was 0.17 mg L-1. The results demonstrate that the developed approach is highly cost-effective, simple and rapid.
Collapse
Affiliation(s)
- Ksenia Cherkashina
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Christina Vakh
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Sofya Lebedinets
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Aleksei Pochivalov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Leonid Moskvin
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Aleksey Lezov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
19
|
Ferreira SL, Bezerra MA, Santos AS, dos Santos WN, Novaes CG, de Oliveira OM, Oliveira ML, Garcia RL. Atomic absorption spectrometry – A multi element technique. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Švarc-Gajić J, Clavijo S, Suárez R, Cvetanović A, Cerdà V. Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems. Anal Bioanal Chem 2018; 410:1943-1953. [DOI: 10.1007/s00216-018-0858-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 11/30/2022]
|
21
|
Cerdà V, Ferrer L, Portugal LA, de Souza CT, Ferreira SL. Multisyringe flow injection analysis in spectroanalytical techniques – A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Maya F, Palomino Cabello C, Ghani M, Turnes Palomino G, Cerdà V. Emerging materials for sample preparation. J Sep Sci 2017; 41:262-287. [DOI: 10.1002/jssc.201700836] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Fernando Maya
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | | | - Milad Ghani
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | - Gemma Turnes Palomino
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | - Víctor Cerdà
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| |
Collapse
|
23
|
Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with uv detection. Talanta 2017; 168:291-297. [DOI: 10.1016/j.talanta.2017.03.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
|
24
|
Gerent GG, Spinelli A. Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:105-115. [PMID: 28214399 DOI: 10.1016/j.jhazmat.2017.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 05/12/2023]
Abstract
A glassy carbon electrode was modified with magnetite and platinum nanoparticles stabilized with 3-n-propyl-4-picoline silsesquioxane chloride. This chemically-modified electrode is proposed for the first time for the individual or simultaneous electrochemical detection of nitrophenol isomers. Nanoparticles act as catalysts and also increase the surface area. The polymer stabilizes the particles and provides the electrochemical separation of isomers. Under optimized conditions, the reduction peak currents, obtained by differential-pulse voltammetry, of 2-, 3-, and 4-nitrophenol increased linearly with increases in their concentration in the range of 0.1-1.5μmolL-1. In individual analysis, the detection limits were 33.7nmolL-1, 45.3nmolL-1 and 48.2nmolL-1, respectively. Also, simultaneous analysis was possible for 2-, and 4-nitrophenol. In this case, the separation of the peak potentials was 0.138V and the detection limits were 69.6nmolL-1 and 58.0nmolL-1, respectively. These analytical figures of merit evidence the outstanding performance of the modified electrode, which was also successfully applied to the individual determination of isomers in environmental and biological samples. The magnetite and platinum nanoparticles modified glassy carbon electrode was able to detect nitrophenol isomers at the ppm level in rain water and human urine samples.
Collapse
Affiliation(s)
- Giles G Gerent
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil
| | - Almir Spinelli
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
25
|
Timofeeva I, Shishov A, Kanashina D, Dzema D, Bulatov A. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 2017; 167:761-767. [DOI: 10.1016/j.talanta.2017.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
26
|
Serrano M, Bartolomé M, Bravo JC, Paniagua G, Gañan J, Gallego-Picó A, Garcinuño RM. On-line flow injection molecularly imprinted solid phase extraction for the preconcentration and determination of 1-hydroxypyrene in urine samples. Talanta 2017; 166:375-382. [DOI: 10.1016/j.talanta.2016.01.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/14/2022]
|
27
|
Porous monoliths for on-line sample preparation: A review. Anal Chim Acta 2017; 964:24-44. [DOI: 10.1016/j.aca.2017.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
|
28
|
Néri-Quiroz J, Canto F, Guillerme L, Couston L, Magnaldo A, Dugas V. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry. Talanta 2016; 159:330-335. [PMID: 27474315 DOI: 10.1016/j.talanta.2016.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/16/2022]
Abstract
A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of <7.0% (n=11). The linearity range of the free nitric acid measurement is excellent up to 2.77molL(-1) with a correlation coefficient (R(2)) of 0.995. The method is specific, presence of actinide ions up to 0.54molL(-1) does not interfere on the determination of free nitric acid. In addition to automation, the developed sequential injection analysis method greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight fold. These analytical parameters are important especially in nuclear-related applications to improve laboratory safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste.
Collapse
Affiliation(s)
- José Néri-Quiroz
- CEA Nuclear Energy Division, Radiochemistry & Processes Department, Marcoule, F-30207 Bagnols-sur-Cèze, France
| | - Fabrice Canto
- CEA Nuclear Energy Division, Radiochemistry & Processes Department, Marcoule, F-30207 Bagnols-sur-Cèze, France
| | - Laurent Guillerme
- CEA Nuclear Energy Division, Radiochemistry & Processes Department, Marcoule, F-30207 Bagnols-sur-Cèze, France
| | - Laurent Couston
- CEA Nuclear Energy Division, Radiochemistry & Processes Department, Marcoule, F-30207 Bagnols-sur-Cèze, France
| | - Alastair Magnaldo
- CEA Nuclear Energy Division, Radiochemistry & Processes Department, Marcoule, F-30207 Bagnols-sur-Cèze, France
| | - Vincent Dugas
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100 Villeurbanne, France.
| |
Collapse
|
29
|
Vakh C, Falkova M, Timofeeva I, Moskvin A, Moskvin L, Bulatov A. Flow Analysis: A Novel Approach For Classification. Crit Rev Anal Chem 2016; 46:374-88. [DOI: 10.1080/10408347.2015.1087301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Christina Vakh
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Falkova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Irina Timofeeva
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Moskvin
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Leonid Moskvin
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
30
|
In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction and silylation prior gas chromatography–mass spectrometry for ultraviolet filters determination in environmental water samples. J Chromatogr A 2016; 1443:26-34. [DOI: 10.1016/j.chroma.2016.03.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
|
31
|
On-line in-syringe magnetic stirring assisted dispersive liquid–liquid microextraction HPLC – UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant. Talanta 2016; 148:589-95. [DOI: 10.1016/j.talanta.2015.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/20/2022]
|
32
|
Abstract
A dynamic development of methodologies of analytical flow injection measurements during four decades since their invention has reinforced the solid position of flow analysis in the arsenal of techniques and instrumentation of contemporary chemical analysis.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Methods
- Institute of Nuclear Chemistry and Technology
- 03-195 Warsaw
- Poland
- Department of Chemistry
| | - Kamila Kołacińska
- Laboratory of Nuclear Analytical Methods
- Institute of Nuclear Chemistry and Technology
- 03-195 Warsaw
- Poland
| |
Collapse
|
33
|
González A, Avivar J, Cerdà V. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography. J Chromatogr A 2015; 1413:1-8. [PMID: 26319623 DOI: 10.1016/j.chroma.2015.08.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Abstract
A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested. Chloroform and acetone were chosen as extraction and disperser solvent, respectively, as they provided the best extraction efficiency. Then, a multivariate optimization of the extraction conditions was carried out. Derivatization conditions were also studied to ensure the conversion of the estrogens to their respective trimethylsilyl derivatives. Low LODs and LOQs were achieved, i.e. between 11 and 82ngL(-1), and 37 and 272ngL(-1), respectively. Good values for intra and inter-day precision were obtained (RSDs≤7.06% and RSD≤7.11%, respectively). The method was successfully applied to wastewater samples.
Collapse
Affiliation(s)
- Alba González
- Group of Analytical Chemistry, Automation and Environment, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jessica Avivar
- Sciware Systems, S.L. Spin-off of the University of the Balearic Islands, E-07193 Bunyola, Spain
| | - Víctor Cerdà
- Group of Analytical Chemistry, Automation and Environment, Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|