1
|
Jain R, Singh MK, Ali N, Khan MR, Bajaj A, Mudiam MKR. Innovative disposable in-tip cellulose paper (DICP) device for facile determination of pesticides in postmortem blood samples: A proof-of-concept study. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124268. [PMID: 39126993 DOI: 10.1016/j.jchromb.2024.124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Accurately identifying and quantifying toxicants is crucial for medico-legal investigations in forensic toxicology; however, low analyte concentrations and the complex samples matrix make this work difficult. Therefore, a simplified sample preparation procedure is crucial to streamline the analysis to minimize sample handling errors, reduce cost and improve the overall efficiency of analysis of toxicants. To address these challenges, an innovative disposable in-tip cellulose paper (DICP) device has been developed for the extraction of three pesticides viz. Chlorpyrifos, Quinalphos and Carbofuran from postmortem blood samples. The DICP device leverages cellulose paper strips housed within a pipette tip to streamline the extraction process, significantly reducing solvent usage, time, and labor while maintaining high analytical accuracy. The extraction of pesticides from postmortem blood using the DICP device involves a streamlined process characterized by adsorption and desorption. The diluted blood samples were processed through the DICP device via repeated aspirating and dispensing calyces to adsorb the pesticides onto the cellulose paper. The adsorbed pesticides are then eluted using acetone, which is collected for GC-MS analysis. The method was meticulously optimized, achieving a limit of quantification in the range of 0.009-0.01 µg mL-1. The intra-day and inter-day precisions were consistently less than 5 % and 10 %, respectively, with accuracy ranging from 94-106 %. Relative recoveries for the analytes were observed to be between 60 % and 93.3 %, and matrix effects were determined to be less than 10 %. The method's sustainability was validated with a whiteness score of 98.8, an AGREE score of 0.64, a BAGI score of 70 and ComplexMoGAPI score of 77. Applicability was demonstrated through successful analysis of real postmortem blood samples and proficiency testing samples, highlighting its potential utility in forensic toxicology.
Collapse
Affiliation(s)
- Rajeev Jain
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India.
| | - Mukesh Kumar Singh
- Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atul Bajaj
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India
| | - Mohana Krishna Reddy Mudiam
- Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India; Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Barzegar S, Rehmani M, Farahmandzadeh M, Absalan G, Karimi B. Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO). Molecules 2024; 29:3931. [PMID: 39203009 PMCID: PMC11357376 DOI: 10.3390/molecules29163931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
An ultrasound-assisted dispersive liquid-liquid microextraction by solidifying floating organic droplets, coupled to a form of temperature-programmed gas chromatography flame ionization detection, has been developed for the extraction and determination of thymol and carvacrol. This method utilizes undecanol as the extraction solvent, offering advantages such as facilitating phase transfer through solidification and enhancing solvent-focusing efficiency. The optimal gas chromatography conditions include a sample injection volume of 0.2 µL, a split ratio of 1:10, and a flow rate of 0.7 mL min-1. The extraction conditions entail an extraction solvent volume of 20 µL, a disperser solvent (acetone) volume of 500 µL, pH 7.0, 7.0% NaCl (3.5 M), a sample volume of 5.0 mL, an ultrasound duration of 10 min, and a centrifuge time of 7.5 min (800 rpm). These conditions enable the achievement of a high and reasonable linear range of 3.5 to 70. 0 μg mL-1 for both thymol and carvacrol. The detection limits are found to be 0.95 and 0.89 μg mL-1, respectively, for thymol and carvacrol. The obtained relative standard deviations, 2.7% for thymol and 2.6% for carvacrol, demonstrate acceptable precision for the purpose of quantitative analysis.
Collapse
Affiliation(s)
- Sedigheh Barzegar
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran; (S.B.)
| | - Mousab Rehmani
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | | | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran; (S.B.)
| | - Benson Karimi
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
3
|
Birolli WG, Lanças FM, dos Santos Neto ÁJ, Silveira HCS. Determination of pesticide residues in urine by chromatography-mass spectrometry: methods and applications. Front Public Health 2024; 12:1336014. [PMID: 38932775 PMCID: PMC11199415 DOI: 10.3389/fpubh.2024.1336014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Dos Santos BP, Birk L, Schwarz P, Sebben VC, Sgaravatti ÂM, de Gouveia GC, Silva Petry AU, de Menezes FP, Gonzaga AP, Schlickmann PF, Arbo MD, de Oliveira TF, Eller S. A validated dilute-and-shoot LC-MS-MS urine screening for the analysis of 95 illicit drugs and medicines: Insights from clinical and forensic Brazilian cases. J Anal Toxicol 2024; 48:314-331. [PMID: 38334744 DOI: 10.1093/jat/bkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Urine toxicological analysis is a relevant tool in both clinical and forensic scenarios, enabling the diagnosis of acute poisonings, elucidation of deaths, verification of substance use in the workplace and identification of drug-facilitated crimes. For these analyses, the dilute-and-shoot technique associated with liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) is a promising alternative since it has demonstrated satisfactory results and broad applicability. This study developed and validated a comprehensive LC-MS-MS screening method to analyze 95 illicit drugs and medicines in urine samples and application to clinical and forensic Brazilian cases. The dilute-and-shoot protocol was defined through multivariate optimization studies and was set using 100 µL of sample and 300 µL of solvent. The total chromatographic run time was 7.5 min. The method was validated following the recommendations of the ANSI/ASB Standard 036 Guideline. The lower limits of quantification varied from 20 to 100 ng/mL. Within-run and between-run precision coefficient of variations% were <20%, and bias was within ± 20%. Only 4 of the 95 analytes presented significant ionization suppression or enhancement (>25%). As proof of applicability, 839 urine samples from in vivo and postmortem cases were analyzed. In total, 90.9% of the analyzed samples were positive for at least one substance, and 78 of the 95 analytes were detected. The most prevalent substances were lidocaine (40.2%), acetaminophen (38.0%) and benzoylecgonine (31.5%). The developed method proved to be an efficient and simplified alternative for analyzing 95 therapeutic and illicit drugs in urine samples. Additionally, the results obtained from sample analysis are essential for understanding the profile of Brazilian substance use, serving as a valuable database for the promotion of health and safety public policies.
Collapse
Affiliation(s)
- Bruno Pereira Dos Santos
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Letícia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Patrícia Schwarz
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | | | - Ângela Malysz Sgaravatti
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
- General Institute of Expertise of Rio Grande do Sul, Porto Alegre, RS 90230-010, Brazil
| | - Giovanna Cristiano de Gouveia
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Adriana Ubirajara Silva Petry
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Francisco Paz de Menezes
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Alexsandro Pinto Gonzaga
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Paula Flores Schlickmann
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Marcelo Dutra Arbo
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Tiago Franco de Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
5
|
Terzi M, Manousi N, Tzanavaras PD, Zacharis CK. Utilization of a pH-switchable hydrophilicity solvent for the microextraction of clomipramine from human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124060. [PMID: 38417274 DOI: 10.1016/j.jchromb.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Clomipramine (CLP) is a tricyclic antidepressant drug, and its determination in biological samples is of high importance in clinical and forensic evaluations to assure appropriate drug concentrations. In the present study, benzoic acid was employed as a pH-switchable hydrophilicity solvent (SHS) for the microextraction of CLP from authentic human urine samples prior to its determination by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The microextraction protocol was based on the phase transition of the SHS through pH alteration that resulted in its rapid dispersion and simultaneous phase separation. The obtained solid was collected in a syringe filter, dissolved in methanol, and analyzed. The main parameters that affected the efficiency of the microextraction procedure were studied and optimized to ensure high extraction efficiency for CLP and the analytical method was validated. Under optimum conditions, good linearity was observed between 0.05 and 5.0 μg mL-1. The limit of detection and limit of quantification were found to be 0.015 and 0.05 μg mL-1, respectively. The RSD values for intra-day repeatability and inter-day precision were 2.4-8.9 % and 1.7-9.1 %, respectively. The relative recovery values were within 90.0 and 110.0 % in all cases, demonstrating good method accuracy. The proposed SHS microextraction showed cost-efficiency, handling simplicity, and rapidity resulting in enhanced sample throughput. Moreover, the proposed method exhibited a green character and good applicability based on its evaluation by Green Analytical Procedure Index and Blue Applicability Grade Index.
Collapse
Affiliation(s)
- Maria Terzi
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
6
|
Fattahi N, Heidari R, Ghazanfaripoor B, Masoudipour E, Gharehdaghi J, Nejad KS. Standardization of the analytical procedure based on deep eutectic solvent for the extraction and measurement of tricyclic antidepressants drugs in post-mortem blood samples. J Pharm Biomed Anal 2024; 238:115811. [PMID: 37879218 DOI: 10.1016/j.jpba.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Measuring drugs in post-mortem blood samples is one of the most important challenges in forensic medicine. The development of sensitive analytical techniques for the measurement of drugs in biological samples is of great use in forensic medicine. In this research an easy, safe and environmental friendly vortex-assisted liquid phase microextraction (VA-LPME) based on deep eutectic solvent (DES) followed by high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the extraction, preconcentration and analysis of tricyclic antidepressants drugs (TCAs) in post-mortem blood samples. DES synthesized from thymol as hydrogen bond acceptor (HBA) and ethylene glycol (EG) as hydrogen bond donor (HBD) with a molar ratio of 2:1 was used as an extractant. After adding DES to the sample solution, the resulting mixture was vortexed in order to increase the contact surface and increase the extraction efficiency. Next, phase separation was done using centrifugation. Some effective parameters on the extraction were studied and optimized. Under the optimum conditions, intra- and inter-day %RSDs of the method based on 7 replicate measurements of 100 μg L-1 of TCAs in blood samples were in the range of 2.4-5.1 and 3.7-6.8 %, respectively. The analytical performance of the method showed linearity over the concentration of 3-500 μg L-1 with the detection limits ranging from 1.0-2.0 μg L-1. The trueness of the method was confirmed by spiking different concentrations of TCAs in real blood samples and obtaining relative recoveries in the range of 91.2-108 %.
Collapse
Affiliation(s)
- Nazir Fattahi
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| | - Rohollah Heidari
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Behzad Ghazanfaripoor
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| | - Elham Masoudipour
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| | - Jaber Gharehdaghi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| | - Kambiz Soltani Nejad
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Islamic Republic of Iran
| |
Collapse
|
7
|
Ding X, Liu C, Yu W, Liu Z. Magnetic ionic liquid-based liquid-liquid microextraction followed by ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for simultaneous determination of neurotransmitters in human cerebrospinal fluid and plasma. Talanta 2023; 262:124690. [PMID: 37229812 DOI: 10.1016/j.talanta.2023.124690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
A green, efficient and easy sample pretreatment method of magnetic ionic liquid-based liquid-liquid microextraction (MIL-based LLME) combined with a sensitive, rapid and precise analytical method of ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-QqQ/MS2) was developed to simultaneously - determining of neurotransmitters (NTs) in biosamples. Two magnetic ionic liquids (MILs), [P6,6,6,14]3[GdCl6] and [P6,6,6,14]2[CoCl4] tested, and the latter was selected as the extraction solvent due to its advantages of visual recognition, paramagnetic behavior and higher extraction efficiency. Facile magnetic separation of MIL containing analytes from matrix was realized by applying external magnetic field without rather than centrifugation. Experimental parameters that would influence the extraction efficiency, including type and amount of MIL, extraction time, speed of the vortex process, salt concentration, and environmental pH, were optimized obtained. The proposed method was successfully applied to the simultaneous extraction and determination of 20 NTs in human cerebrospinal fluid and plasma samples. Excellent analytical performance indicates the broad potential of this method for clinical diagnosis and therapy of neurological diseases.
Collapse
Affiliation(s)
- Xiangdong Ding
- Department of Plastic and reconstructive Microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, PR China
| | - Chao Liu
- Department of Medical Cosmetology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Wei Yu
- Department of Plastic and reconstructive Microsurgery, China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, PR China.
| | - Zhongling Liu
- China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130033, PR China.
| |
Collapse
|
8
|
Fabric phase sorptive extraction-gas chromatography-mass spectrometry for the determination of favipiravir in biological and forensic samples. ADVANCES IN SAMPLE PREPARATION 2023. [PMCID: PMC9985823 DOI: 10.1016/j.sampre.2023.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Favipiravir, a pyrazine analog, is proposed as providential antiviral agent against the COVID-19 infection during 2020 pandemic emergency. For the first time, a fabric phase sorptive extraction (FPSE) combined with gas chromatography-mass spectrometry (GC-MS) has been developed and applied for the determination of favipiravir (FAV) in biological samples (human plasma, blood and urine), pharmaceutical and forensic samples. The method comprises of extraction of FAV by FPSE followed by its derivatization with N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and GC-MS analysis. Design of experiment-based optimization was performed using Placket-Burman Design (PBD) and Central Composite Design (CCD) for the screening of significant factors of FPSE and their optimization, respectively. Among all tested membranes, sol-gel polyethylene glycol (PEG) has offered the best extraction efficiency for FAV. Under optimum conditions, the proposed method was found to be linear in the range of 0.01–10 µg mL−1 by GC-MS. The LODs and LOQs were as low as 0.001-0.0026 μg mL−1 and 0.003-0.0086 μg mL−1, respectively by GC-MS. Intra-day and inter-day precisions were less than 5 and 10 %, respectively, showing good method precision. The proposed method has been successfully applied to detect and quantify FAV in human urine, whole blood and plasma samples along with seized forensic samples. In addition, the proposed method has been evaluated for its green character by ComplexGAPI index.
Collapse
|
9
|
Jain R, Jain B, Chauhan V, Deswal B, Kaur S, Sharma S, A S Abourehab M. Simple determination of dichlorvos in cases of fatal intoxication by gas Chromatography-Mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123582. [PMID: 36586343 DOI: 10.1016/j.jchromb.2022.123582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Dichlorvos (DDVP) is an organophosphorous insecticide which is classified as "highly hazardous" Class 1B chemical by World Health Organization (WHO) and largely misused for the purpose of self-poisoning in developing countries. Forensic toxicology laboratories are routinely encountering cases of pesticide poisoning due to their fatal intoxication. Herein; a method is described based on vortex-assisted dispersive liquid-liquid microextraction (VA-DLLME) coupled with Gas Chromatography-Mass Spectrometry (GC-MS) for the determination of an organophosphorous insecticide; dichlorvos (DDVP) in human autopsy samples (blood, stomach content and liver). Under the optimum conditions, the method was found to be linear in the range of 0.5-10 µg mL-1 and 1.5-10 µg g-1 for blood and tissue samples, respectively. Limit of quantification was set at 0.55 µg mL-1 and 1.1 µg g-1 for blood and tissue samples, respectively. Intraday and inter-day precisions were less than 8 and 12 %, respectively. Good recoveries in the range of 86-95 % were obtained for the proposed procedure. The method has been satisfactorily applied for the determination of DDVP in autopsy samples from two different cases received in our laboratory. In comparison to previous methods; the proposed method is relatively short, high sample throughput, inexpensive and adheres to the principles of green analytical chemistry (GAC) for determination of DDVP in human autopsy samples. The method can be adopted in forensic toxicological laboratories for analysis of DDVP in autopsy samples. In addition, the green character of the proposed method was evaluated using ComplexGAPI procedure.
Collapse
Affiliation(s)
- Rajeev Jain
- Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India.
| | - Bharti Jain
- Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India; Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Vimukti Chauhan
- Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India
| | - Bhawna Deswal
- Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India
| | - Sukhminder Kaur
- Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| | - Mohammad A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
10
|
Jain B, Jain R, Jaiswal PK, Zughaibi T, Sharma T, Kabir A, Singh R, Sharma S. A Non-Instrumental Green Analytical Method Based on Surfactant-Assisted Dispersive Liquid-Liquid Microextraction-Thin-Layer Chromatography-Smartphone-Based Digital Image Colorimetry(SA-DLLME-TLC-SDIC) for Determining Favipiravir in Biological Samples. Molecules 2023; 28:529. [PMID: 36677588 PMCID: PMC9860899 DOI: 10.3390/molecules28020529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19. Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method is proposed based on surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) combined with thin-layer chromatography-digital image colourimetry (TLC-DIC) for determining favipiravir in biological and pharmaceutical samples. Triton X-100 and dichloromethane (DCM) were used as the disperser and extraction solvents, respectively. The extract obtained after DLLME procedure was spotted on a TLC plate and allowed to develop with a mobile phase of chloroform:methanol (8:2, v/v). The developed plate was photographed using a smartphone under UV irradiation at 254 nm. The quantification of FAV was performed by analysing the digital images' spots with open-source ImageJ software. Multivariate optimisation using Plackett-Burman design (PBD) and central composite design (CCD) was performed for the screening and optimisation of significant factors. Under the optimised conditions, the method was found to be linear, ranging from 5 to 100 µg/spot, with a correlation coefficient (R2) ranging from 0.991 to 0.994. The limit of detection (LOD) and limit of quantification (LOQ) were in the ranges of 1.2-1.5 µg/spot and 3.96-4.29 µg/spot, respectively. The developed approach was successfully applied for the determination of FAV in biological (i.e., human urine and plasma) and pharmaceutical samples. The results obtained using the proposed methodology were compared to those obtained using HPLC-UV analysis and found to be in close agreement with one another. Additionally, the green character of the developed method with previously reported protocols was evaluated using the ComplexGAPI, AGREE, and Eco-Scale greenness assessment tools. The proposed method is green in nature and does not require any sophisticated high-end analytical instruments, and it can therefore be routinely applied for the analysis of FAV in various resource-limited laboratories during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bharti Jain
- Central Forensic Science Laboratory, Dakshin Marg, Sector—36A, Chandigarh 160036, India
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Dakshin Marg, Sector—36A, Chandigarh 160036, India
| | - Prashant Kumar Jaiswal
- School of Earth Sciences, Department of Environmental Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, India
| | - Torki Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tanvi Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ritu Singh
- School of Earth Sciences, Department of Environmental Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
11
|
Cellulose paper sorptive extraction (CPSE): A simple and affordable microextraction method for analysis of basic drugs in blood as a proof of concept. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123551. [PMID: 36459855 DOI: 10.1016/j.jchromb.2022.123551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Aiming towards simplifying sample preparation procedure, the present work explores use of unmodified laboratory filter paper as sorbent for extraction of nine basic drugs (five antidepressants, four benzodiazepines, and ketamine) from human blood samples and their analysis by gas chromatography-mass spectrometry (GC-MS). The procedure termed as cellulose paper sorptive extraction (CPSE) is straightforward. It involves adsorption of target analytes from deproteinized diluted blood samples on the unmodified cellulose paper followed by elution into 2 mL of methanol. Multivariate optimization, consisting of Placket-Burman design (PBD) and central composite design (CCD), was used to screen and optimize significant factors for CPSE. The proposed method follows the principles of green analytical chemistry (GAC), as the unmodified filter paper used as the sorbent is inexpensive and biodegradable. The technique is easy to perform and requires only 2 mL of MeOH during the entire extraction procedure. Under the optimized conditions, the limit of detection and quantification for the target analytes were estimated to be in the range of 0.003-0.035 and 0.010-0.117 µg mL-1, respectively. In contrast, the relative standard deviations were consistently below 10 %. The calibration curves were linear in the range of 0.015-2 µg mL-1 with a coefficient of determination (R2) in the range of 0.995-0.999.Satisfactory recoveries ranging from 87 to 99 % was achieved. As proof of concept, the analysis of nine drugs in blood samples from the patients was performed to demonstrate the potential application of the proposed method.
Collapse
|
12
|
Sorribes-Soriano A, Albert Esteve-Turrillas F, Armenta S, Manuel Herrero-Martínez J. Molecularly imprinted polymer –stir bar sorptive extraction of diazepam from natural water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Jain B, Jain R, Kabir A, Sharma S. Rapid Determination of Non-Steroidal Anti-Inflammatory Drugs in Urine Samples after In-Matrix Derivatization and Fabric Phase Sorptive Extraction-Gas Chromatography-Mass Spectrometry Analysis. Molecules 2022; 27:molecules27217188. [PMID: 36364020 PMCID: PMC9657276 DOI: 10.3390/molecules27217188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of non-steroidal anti-inflammatory (NSAID) drugs in urine samples followed by FPSE and gas chromatography-mass spectrometry (GC-MS) analysis. Use of MCF as derivatizing reagent saves substantial amounts of time, reagent and energy, and can be directly performed in aqueous samples without any sample pre-treatment. The derivatized analytes were extracted using sol−gel Carbowax 20M coated FPSE membrane and eluted in 0.5 mL of MeOH for GC-MS analysis. A chemometric design of experiment-based approach was utilized comprising a Placket−Burman design (PBD) and central composite design (CCD) for screening and optimization of significant variables of derivatization and FPSE protocol, respectively. Under optimized conditions, the proposed FPSE-GC-MS method exhibited good linearity in the range of 0.1−10 µg mL−1 with coefficients of determination (R2) in the range of 0.998−0.999. The intra-day and inter-day precisions for the proposed method were lower than <7% and <10%, respectively. The developed method has been successfully applied to the determination of NSAIDs in urine samples of patients under their medication. Finally, the green character of the proposed method was evaluated using ComplexGAPI tool. The proposed method will pave the way for simper analysis of polar drugs by FPSE-GC-MS.
Collapse
Affiliation(s)
- Bharti Jain
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Forensic Toxicology Division, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India
- Correspondence: (R.J.); (A.K.); (S.S.)
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Correspondence: (R.J.); (A.K.); (S.S.)
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
- Correspondence: (R.J.); (A.K.); (S.S.)
| |
Collapse
|
14
|
Cabarcos-Fernández P, Álvarez-Freire I, Tabernero-Duque M, Bermejo-Barrera A. Quantitative determination of clozapine in plasma using an environmentally friendly technique. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Overview of Different Modes and Applications of Liquid Phase-Based Microextraction Techniques. Processes (Basel) 2022. [DOI: 10.3390/pr10071347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid phase-based microextraction techniques (LPµETs) have attracted great attention from the scientific community since their invention and implementation mainly due to their high efficiency, low solvent and sample amount, enhanced selectivity and precision, and good reproducibility for a wide range of analytes. This review explores the different possibilities and applications of LPμETs including dispersive liquid–liquid microextraction (DLLME) and single-drop microextraction (SDME), highlighting its two main approaches, direct immersion-SDME and headspace-SDME, hollow-fiber liquid-phase microextraction (HF-LPME) in its two- and three-phase device modes using the donor–acceptor interactions, and electro membrane extraction (EME). Currently, these LPμETs are used in very different areas of interest, from the environment to food and beverages, pharmaceutical, clinical, and forensic analysis. Several important potential applications of each technique will be reported, highlighting its advantages and drawbacks. Moreover, the use of alternative and efficient “green” extraction solvents including nanostructured supramolecular solvents (SUPRASs, deep eutectic solvents (DES), and ionic liquids (ILs)) will be discussed.
Collapse
|
16
|
Teoh WK, Mohamed Sadiq NS, Saisahas K, Phoncai A, Kunalan V, Md Muslim NZ, Limbut W, Chang KH, Abdullah AFL. Vortex-assisted dispersive liquid-liquid microextraction-gas chromatography (VADLLME-GC) determination of residual ketamine, nimetazepam, and xylazine from drug-spiked beverages appearing in liquid, droplet, and dry forms. J Forensic Sci 2022; 67:1836-1845. [PMID: 35616477 DOI: 10.1111/1556-4029.15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Presently, investigations of drug-facilitated crimes (DFCs) rely on the detection of substances extracted from biological samples following intake by the victim. However, such detection requires rapid sampling and analysis prior to metabolism and elimination of the drugs from the body. In cases of suspected DFCs, drug-spiked beverage samples, whether in liquid, droplet, or even dried form, can be tested for the presence of spike drugs and used as evidence for the occurrence of DFCs. This study aimed to quantitatively determine three sedative-hypnotics (ketamine, nimetazepam, and xylazine) from drug-spiked beverages using a vortex-assisted dispersive liquid-liquid microextraction-gas chromatography (VADLLME-GC) approach. In this study, a GC method was first developed and validated, followed by the optimization of the VADLLME protocol, which was then applied to quantify the target substances in simulated forensic case scenarios. The developed GC method was selective, sensitive (limit of detection: 0.08 μg/ml [ketamine]; 0.16 μg/ml [nimetazepam]; 0.08 μg/ml [xylazine]), linear (R2 > 0.99), precise (%RSD <7.2%), and accurate (% recovery: 92.8%-103.5%). Higher recoveries were achieved for the three drugs from beverage samples in liquid form (51%-97%) as compared to droplet (48%-96%) and dried (44%-93%) residues. The recovery was not hindered by very low volumes of spiked beverage and dried residues. In conclusion, the developed VADLLME-GC method successfully recovered ketamine, nimetazepam, and xylazine from spiked beverages that are likely to be encountered during forensic investigation of DFCs.
Collapse
Affiliation(s)
- Way Koon Teoh
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Kasrin Saisahas
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Apichai Phoncai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Vanitha Kunalan
- Narcotics Division, Forensic Science Analysis Centre, Department of Chemistry, Petaling Jaya, Malaysia
| | - Noor Zuhartini Md Muslim
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kah Haw Chang
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Fahmi Lim Abdullah
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
17
|
Roszkowska A, Plenis A, Kowalski P, Bączek T, Olędzka I. Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Singh A, Jha RR, Kamal R, Kesavachandran C, Patel DK. Dispersive liquid–liquid microextraction for the analysis of specific marker compounds in human exposed with Polyaromatic hydrocarbons (PAHs). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Jain R, Singh M, Kumari A, Tripathi RM. A rapid and cost-effective method based on dispersive liquid-liquid microextraction coupled to injection port silylation-gas chromatography-mass spectrometry for determination of morphine in illicit opium. ANALYTICAL SCIENCE ADVANCES 2021; 2:387-396. [PMID: 38715954 PMCID: PMC10989588 DOI: 10.1002/ansa.202000121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2024]
Abstract
A simple, rapid, cost-effective and environment friendly analytical method based on dispersive liquid-liquid microextraction (DLLME) coupled to injection port silylation (IPS)-gas chromatography-mass spectrometry is described for the determination of morphine in illicit opium samples. Raw opium was dispersed in ultrapure water and 5 mL of aqueous sample was subjected to DLLME by rapidly injecting a mixture of chloroform and acetone (extraction and disperser solvent, respectively) followed by ultrasonication for 1 min and subsequent centrifugation for 3 min at 5000 rpm. The sedimented phase thus obtained was reconstituted in acetonitrile and 1 µL along with 1 µL of N,O-Bis(trimethylsilyl)acetamide (BSA) was injected manually into GC-MS injection port at a temperature of 250°C. The derivatization reaction was completed instantaneously inside the heated GC-MS injection port without any side product. Various parameters associated with IPS and DLLME have been thoroughly optimized. Under the optimized conditions, the method has been found linear in the range of 5-50 µg/mL with a correlation coefficient (R 2) of 0.997. The limit of detection (LOD) and limit of quantification (LOQ) for morphine-diTMS were found to be 1.6 and 4.8 µg/mL. The method has been successfully applied for the quantitative analysis of morphine in illicit opium samples. In conclusion, the proposed method has completely eliminated the time consuming and laborious steps of LLE and in-vial silylation and can be routinely used for analysis of opium and other polar analytes in forensic science laboratories.
Collapse
Affiliation(s)
- Rajeev Jain
- Forensic Toxicology DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| | - Meenu Singh
- Explosives DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| | - Aparna Kumari
- Forensic Toxicology DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| | - Rohitshva Mani Tripathi
- Forensic Toxicology DivisionCentral Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Government of IndiaSector 36‐A, Dakshin MargChandigarh160036India
| |
Collapse
|
20
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
21
|
Silveira GDO, Lourenço FR, Fonseca Pego AM, Guimarães Dos Santos R, Rossi GN, Hallak JEC, Yonamine M. Essential oil-based dispersive liquid-liquid microextraction for the determination of N,N-dimethyltryptamine and β-carbolines in human plasma: A novel solvent-free alternative. Talanta 2021; 225:121976. [PMID: 33592724 DOI: 10.1016/j.talanta.2020.121976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
The present study describes the development of a novel solvent-free vortex-assisted dispersive liquid-liquid microextraction alternative based on a natural essential oil as extracting solvent (VA-EO-DLLME) for the determination of N,N-dimethyltryptamine (DMT), harmine (HRM), harmaline (HRL) and tetrahydroarmine (THH) (compounds found in the ayahuasca tea, a psychedelic plant preparation) in human plasma. After optimization through full factorial and Box-Behnken experimental designs, this VA-EO-DLLME followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was completely validated and applied to authentic plasma specimens. Sample preparation consisted in the addition of 60 mg of NaCl, 100 μL of borate buffer and 100 μL of Eucalyptus globulus essential oil to a 200 μL aliquot of human plasma. After 30 s of vortex agitation followed by 5 min of centrifugation (10,000 rpm), 80 μL of the oil supernatant was dried and resuspended in mobile phase prior to injection into the UHPLC-MS/MS system. Once optimized, the validated method yielded LoDs ≤1.0 ng mL-1 for all analytes. LoQ was 1.0 ng mL-1 for DMT, HRL and HRM and 2.0 ng mL-1 for THH. The method has shown to be linear over the range of LoQ up to 150 ng mL-1 (r2 ≥ 0.9926). Intra/inter-day precision and accuracy met the acceptance criteria at three quality control (QC) levels. An additional intermediate precision study demonstrated that, except for THH and HRL at low and medium QCs, the overall method performance was similar for the three different oil sources. Matrix effect evaluation showed predominant ion suppression, ranging from 56% to 83%. Recovery varied from 33 up to 101% with an average of 50 ± 15.8%. Selectivity studies showed no interferences. Analysis of 13 authentic samples proved method feasibility. Finally, we believe that our novel VA-EO-DLLME approach offers a very simple, fast, cost-effective and eco-friendly alternative based on the use of an easily accessible and entirely green material as an extracting solvent. This may represent an incentive for researchers to investigate novel and creative alternatives, such as essential oils, as substitutes of organic solvents for microextraction methods in forensic and clinical contexts.
Collapse
Affiliation(s)
- Gabriela de Oliveira Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Felipe Rebello Lourenço
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Rafael Guimarães Dos Santos
- Department of Neurosciences and Behaviour, University of São Paulo, Ribeirão Preto, 14049-900, Brazil; National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, 14049-900, Brazil
| | - Giordano Novak Rossi
- Department of Neurosciences and Behaviour, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behaviour, University of São Paulo, Ribeirão Preto, 14049-900, Brazil; National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, 14049-900, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
22
|
Jain R, Jha RR, Kumari A, Khatri I. Dispersive liquid-liquid microextraction combined with digital image colorimetry for paracetamol analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Kahl JMM, da Cunha KF, Rodrigues LC, Chinaglia KDO, Oliveira KD, Costa JL. Quantification of amphetamine and derivatives in oral fluid by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2021; 196:113928. [PMID: 33581589 DOI: 10.1016/j.jpba.2021.113928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
Abstract
The abuse of stimulants such as amphetamine, methamphetamine, ecstasy (MDMA), and their analogues (MDEA and MDA) has been increasing considerably worldwide since 2009. In this work, an analytical method using dispersive liquid-liquid microextraction (DLLME) to determine amphetamine and derivatives in oral fluid samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Linearity was achieved between 20 to 5000 ng/mL (r>0.992, 1/x² weighted linear regression), with a limit of quantification (LOQ) of 20 ng/mL. Imprecision (%relative standard deviation) and bias (%) were not higher than 9.1 and -12.3%, respectively. The matrix effect was lower than 14.6%, with no carryover observed up to 5000 ng/mL and no interference with 10 different oral fluid matrix sources and against 14 pharmaceuticals and other common drugs of abuse. MDMA, MDA, and MDEA in processed samples were stable up to 24 h at autosampler (10°C); and amphetamine and methamphetamine up to 18 h. The developed method was successfully applied to authentic oral fluid analyses (n = 140). The proposed method is an example of the Green Analytical Toxicology, since it reduces both the amount of solvent required in samples preparation and the quantity of solvents and reagents used in analytical-instrumental stage, as well as requires a minimal sample volume, being a cheaper, quicker and more ecological alternative to conventional methods. Obtained results showed that DLLME extraction combined with LC-MS/MS is a fast and simple method to quantify amphetamine derivatives in oral fluid samples.
Collapse
Affiliation(s)
- Júlia Martinelli Magalhães Kahl
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | - Kelly Francisco da Cunha
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | - Leonardo Costalonga Rodrigues
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | - Kauê de Oliveira Chinaglia
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | - Karina Diniz Oliveira
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil
| | - Jose Luiz Costa
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-859, Brazil.
| |
Collapse
|
24
|
Bodur S, Erarpat S, Günkara ÖT, Bakırdere S. Development of an easy and rapid analytical method for the extraction and preconcentration of chloroquine phosphate from human biofluids prior to GC-MS analysis. J Pharmacol Toxicol Methods 2021; 108:106949. [PMID: 33503487 PMCID: PMC7830268 DOI: 10.1016/j.vascn.2021.106949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
A vortex assisted spraying based fine droplet formation liquid phase microextraction (VA-SFDF-LPME) method was developed to determine chloroquine phosphate at trace levels in human serum, urine and saliva samples by gas chromatography–mass spectrometry (GC–MS) with single quadrupole mass analyzer. In the first part, several liquid phase microextraction (LPME) and magnetic solid phase extraction (MSPE) methods were compared to each other in order to observe their extraction ability for the analyte. VA-SFDF-LPME method was selected as an efficient and easy extraction method due to its higher extraction efficiency. Optimization studies were carried out for the parameters such as extraction solvent type, sodium hydroxide volume/concentration, sample volume, spraying number and mixing type/period. Tukey's method based on post hoc test was applied to all experimental data for the selection of optimum values. Optimum extraction parameters were found to be 12 mL initial sample volume, two sprays of dichloromethane, 0.75 mL of 60 g/kg sodium hydroxide and 15 s vortex. Under the optimum conditions, limit of detection and quantification (LOD and LOQ) were calculated as 2.8 and 9.2 μg/kg, respectively. Detection power of the GC–MS system was increased by approximately 317 folds with the developed extraction/preconcentration method. The applicability and accuracy of the proposed method was evaluated by spiking experiments and percent recovery results for human urine, serum and saliva samples were found in the range of 90.9% and 114.0% with low standard deviation values (1.9–9.4).
Collapse
Affiliation(s)
- Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Davutpasa, Esenler, Istanbul 34210, Turkey
| | - Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Davutpasa, Esenler, Istanbul 34210, Turkey
| | - Ömer Tahir Günkara
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Davutpasa, Esenler, Istanbul 34210, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Davutpasa, Esenler, Istanbul 34210, Turkey; Turkish Academy of Sciences (TÜBA), Piyade Street No: 27, Çankaya, Ankara 06690, Turkey.
| |
Collapse
|
25
|
Jain R, Kumari A, Khatri I. Simple and rapid analysis of acetaminophen in human autopsy samples by vortex‐assisted dispersive liquid–liquid microextraction‐thin layer chromatography‐image analysis. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rajeev Jain
- Forensic Toxicology Division Central Forensic Science Laboratory Chandigarh India
| | - Aparna Kumari
- Forensic Toxicology Division Central Forensic Science Laboratory Chandigarh India
| | - Indu Khatri
- Forensic Toxicology Division Central Forensic Science Laboratory Chandigarh India
| |
Collapse
|
26
|
Application of microextraction techniques in alternative biological matrices with focus on forensic toxicology: a review. Bioanalysis 2020; 13:45-64. [PMID: 33326299 DOI: 10.4155/bio-2020-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interest in alternative biological matrices (e.g., hair and saliva) for forensic toxicology analysis has increased, and recent developments in sample preparation have targeted rapid, cheap, efficient and eco-friendly methods, including microextraction techniques. For this review, we have gathered information about these two hot topics. We discuss the composition, incorporation of analytes and advantages and disadvantages of different biological matrices, and also present the operation principles of the most reported microextraction procedures and their application in forensic toxicology. The outcome of this review may encourage future forensic researches into alternative samples and microextraction techniques.
Collapse
|
27
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Dispersive Liquid–Liquid Microextraction of Organic Compounds: An Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820100056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Borden SA, Palaty J, Termopoli V, Famiglini G, Cappiello A, Gill CG, Palma P. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. MASS SPECTROMETRY REVIEWS 2020; 39:703-744. [PMID: 32048319 DOI: 10.1002/mas.21624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mass spectrometry has been the "gold standard" for drugs of abuse (DoA) analysis for many decades because of the selectivity and sensitivity it affords. Recent progress in all aspects of mass spectrometry has seen significant developments in the field of DoA analysis. Mass spectrometry is particularly well suited to address the rapidly proliferating number of very high potency, novel psychoactive substances that are causing an alarming number of fatalities worldwide. This review surveys advancements in the areas of sample preparation, gas and liquid chromatography-mass spectrometry, as well as the rapidly emerging field of ambient ionization mass spectrometry. We have predominantly targeted literature progress over the past ten years and present our outlook for the future. © 2020 Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Scott A Borden
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jan Palaty
- LifeLabs Medical Laboratories, Burnaby, BC, V3W 1H8, Canada
| | - Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Achille Cappiello
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195
| | - Pierangela Palma
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
29
|
Fanti F, Vincenti F, Montesano C, Serafini M, Compagnone D, Sergi M. dLLME-μSPE extraction coupled to HPLC-ESI-MS/MS for the determination of F2α-IsoPs in human urine. J Pharm Biomed Anal 2020; 186:113302. [DOI: 10.1016/j.jpba.2020.113302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/11/2023]
|
30
|
Jain R, Tripathi RM, Negi A, Singh SP. A simple, cost-effective and rapid method for simultaneous determination of Strychnos nux-vomica alkaloids in blood and Ayurvedic medicines based on ultrasound-assisted dispersive liquid-liquid microextraction-thin-layer chromatography-image analysis. J Chromatogr Sci 2020; 58:477-484. [PMID: 32100010 DOI: 10.1093/chromsci/bmaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/04/2020] [Accepted: 01/28/2020] [Indexed: 11/13/2022]
Abstract
A simple, rapid, cost-effective and green analytical method is developed based on ultrasound-assisted dispersive liquid-liquid microextraction (US-DLLME) coupled to thin-layer chromatography (TLC)-image analysis for the simultaneous determination of two major alkaloids of Strychnos nux-vomica L i.e., strychnine and brucine. The method is composed of three steps, namely (i) US-DLLME by injecting a mixture of 100-μL chloroform (extraction solvent) and 1-mL methanol (disperser solvent) in 5 mL of aqueous sample, followed by ultrasonication and centrifugation, (ii) TLC of 20 μL of sedimented phase with methanol: ammonia (100:1.5, v/v) as the mobile phase and visualization under ultraviolet radiation (254 nm) and (iii) photography of TLC plate and quantification of spots by image analysis using freely available imageJ software (National Institute of Health, Bethesda, MD, USA). The limit of detection and limit of quantification for both alkaloids were found to be in the range of 0.12-0.15 and 0.36-0.48 μg/spot, respectively. The method was found to be linear in the range of 0.5-5 μg/spot with correlation coefficient (R2) of 0.995 and 0.997 for strychnine and brucine, respectively. The developed method was successfully applied for the determination of strychnine and brucine in Ayurvedic formulations and blood samples. The method does not require any sophisticated instrument and handling skills and can be adopted for rapid analysis of strychnine and brucine in forensic toxicological laboratories.
Collapse
Affiliation(s)
- Rajeev Jain
- Forensic Toxicology Division, Central Forensic Science Laboratory, Urput-Kumeria Road, P.O. Maniari Tiniali, Kamrup (Rural), Assam 781125, India.,Forensic Toxicology Division, Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India, and
| | - Rohitashva Mani Tripathi
- Forensic Toxicology Division, Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India, and
| | - Archna Negi
- Forensic Chemistry Division, Central Forensic Science Laboratory, Plot #2, Sector 36-A, Dakshin Marg, Chandigarh 160036, India
| | - Shishir Pratap Singh
- Forensic Toxicology Division, Central Forensic Science Laboratory, Urput-Kumeria Road, P.O. Maniari Tiniali, Kamrup (Rural), Assam 781125, India
| |
Collapse
|
31
|
A rapid and simultaneous method for the determination of naphthol isomers in urine by molecular complex-based dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01914-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Zhang Y, Yin S, Yu L, Shangguan S, Song C, Li Q, Chen K, Sun J, Li M, Hou H. Protocells self-assembled by hydroxyapatite nanoparticles: Highly efficient and selective enrichment of chlorophenols in an aqueous environment. CHEMOSPHERE 2019; 233:1-8. [PMID: 31163303 DOI: 10.1016/j.chemosphere.2019.05.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
In this paper, amphiphilic hydroxyapatite (HAP) nanoparticles were modified by dibutyl phosphate (DBP) via covalent bonding. The modified HAP particles (m-HAP) were employed as building blocks to construct oil-in-water (O/W) Pickering emulsion, that displayed an excellent performance on the enrichment of organic pollutants dissolved in wastewater by extracting the organic molecules into the oil phase. Environment-friendly organic solvent hexanol was selected as oil phase and three types of monochlorophenol (2-chlorophenol, 3-chlorophenol, 4-chlorophenol) were chosen as model pollutants in simulated wastewater. Two types of natural water were also tested as a proof of principle. The enrichment percentage of chlorophenols was up to 98% in 140 s, following first order kinetics. Thermodynamic study suggested that the enrichment process is spontaneous and exothermic. The external environment of the protocells, such as pH, ionic strength and the natural organic matter have been investigated. This study provides a novel, convenient and environment-friendly approach for enrichment and removal of trace organic pollutants in wastewater.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shanshan Yin
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Lingling Yu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Saijun Shangguan
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Chencheng Song
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Qin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ke Chen
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jie Sun
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Mei Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Haobo Hou
- School of Resource and Environment Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
33
|
Santos AP, Dos Santos MJ, das Graças Andrade Korn M, Lemos VA. Determination of cadmium in bread and biscuit samples using ultrasound-assisted temperature-controlled ionic liquid microextraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4609-4614. [PMID: 30891758 DOI: 10.1002/jsfa.9700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In the present work, a simple and rapid method was proposed for the preconcentration of cadmium using ultrasound-assisted temperature-controlled ionic liquid microextraction (TC-IL-LPME). The dispersion of the ionic liquid (1-Hmim[PF6 ]) in the aqueous phase was performed by heating it in an ultrasonic bath, followed by cooling in an ice bath. After centrifugation, the enriched phase was dissolved in 45% (w/w) nitric acid solution to reduce viscosity, and the cadmium content was measured employing electrothermal atomic absorption spectrometry (ET-AAS). The 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol reagent (Br-PADAP) was used as a complexing agent. RESULTS Under optimized conditions, the method had a detection limit of 2.0 ng L-1 and an enrichment factor of 24. The accuracy of the method was evaluated through the analysis of the certified reference material of brown bread (BCR-191). The method was applied to the determination of cadmium in samples of bread and biscuit. The limit of detection of the solid samples was 0.10 μg kg-1 . The recovery of cadmium in the samples varied between 93% and 107%. CONCLUSION The proposed method is presented as a simple, cheap, ecological and a sensitive alternative for the determination of cadmium in bread and biscuit samples. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Analú P Santos
- Universidade Federal da Bahia, Programa de Pós-Graduação em Química, Campus Universitário de Ondina, Salvador, Bahia, Brazil
- Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Química, Campus de Jequié, Jequié, Bahia, Brazil
| | - Márcio Js Dos Santos
- Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Química, Campus de Jequié, Jequié, Bahia, Brazil
| | - Maria das Graças Andrade Korn
- Universidade Federal da Bahia, Programa de Pós-Graduação em Química, Campus Universitário de Ondina, Salvador, Bahia, Brazil
| | - Valfredo A Lemos
- Universidade Federal da Bahia, Programa de Pós-Graduação em Química, Campus Universitário de Ondina, Salvador, Bahia, Brazil
| |
Collapse
|
34
|
Switchable fatty acid based CO2-effervescence ameliorated emulsification microextraction prior to high performance liquid chromatography for efficient analyses of toxic azo dyes in foodstuffs. Food Chem 2019; 286:185-190. [DOI: 10.1016/j.foodchem.2019.01.197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
|
35
|
Ali I, Suhail M, Alharbi OML, Hussain I. Advances in sample preparation in chromatography for organic environmental pollutants analyses. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1579739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Science, Taibah University, Al-Medina Al-Munawarah, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Omar M. L. Alharbi
- Department of Biology, College of Science, Taibah University, Al-Medina Al-Munawarah, Saudi Arabia
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| |
Collapse
|
36
|
Wang Q, Chen R, Shatner W, Cao Y, Bai Y. State-of-the-art on the technique of dispersive liquid-liquid microextraction. ULTRASONICS SONOCHEMISTRY 2019; 51:369-377. [PMID: 30377081 DOI: 10.1016/j.ultsonch.2018.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Dispersive liquid-liquid microextraction is a new sample pretreatment technology based on traditional liquid liquid extraction. In this paper, the application of low-toxicity extractants such as low-density extractants, auxiliary extractants, stripping agents and ionic liquids in this technology and the extraction modes such as solvent de-emulsification, suspension extractant curing, auxiliary extraction, back extraction, and ionic liquid-dispersion liquid microextraction, are summarized. In addition, the synergism of this technique with other sample preparation techniques, such as liquid-liquid extraction, solid-phase extraction, solid-phase microextraction, dispersive solid phase extraction, matrix solid-phase dispersion extraction, supercritical fluid extraction and ultrasound-assisted dispersive liquid-liquid microextraction is discussed.
Collapse
Affiliation(s)
- Qiangfeng Wang
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| | - Renji Chen
- Cleft Lip and Palate Treatment Center, Beijing Stomatological Hospital, TianTan-XiLi the 4th, DongCheng District, BeiJing 100050, China.
| | - William Shatner
- Jiaotong Institute, A0E 2Z0: Monkstown, Newfoundland, Canada
| | - Yan Cao
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| | - Yu Bai
- College of Electromechanical, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
37
|
Wang S, Li F, Liu Y, Zhao H, Chen H. High-throughput screening of toxic substances by extractive electrospray ionization mass spectrometry and their identification via databank construction. Anal Bioanal Chem 2019; 411:4049-4054. [PMID: 30635664 DOI: 10.1007/s00216-018-1520-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
More than 200 toxic substances (including narcotic drugs, psychotropic drugs, organic phosphorus compounds, carbamates, pyrethroids and other pesticides, veterinary drugs, rodenticides, natural toxins, and other drugs) were identified and quantified using an ion-trap mass spectrometer. The advantages of this technique-its selectivity, accuracy, precision, utilization of only small amounts of the sample, and short analysis time for a single sample (less than 30s)-render it a rapid and accurate methodology for toxin screening. Subsequently, an extractive electrospray ionization (EESI) mass spectrometry database was established by combining the Xcalibur data processing system with NIST database software. This allowed unknown toxicants in urine and blood samples, stomach contents, and liver samples, as provided by the Jiangxi Provincial Public Security Department, to be analyzed and identified. This EESI methodology and databank has the potential for widespread application to the large-scale analysis of practical samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Faliang Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - YongZi Liu
- Institute of Forensic Science, Jiangxi Provincial Public Security Bureau, Nanchang, 330038, Jiangxi, China
| | - Huian Zhao
- Institute of Forensic Science, Jiangxi Provincial Public Security Bureau, Nanchang, 330038, Jiangxi, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
38
|
He Y, Concheiro-Guisan M. Microextraction sample preparation techniques in forensic analytical toxicology. Biomed Chromatogr 2018; 33:e4444. [DOI: 10.1002/bmc.4444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yi He
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| | - Marta Concheiro-Guisan
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| |
Collapse
|
39
|
Emulsification microextraction of amphetamine and methamphetamine in complex matrices using an up-to-date generation of eco-friendly and relatively hydrophobic deep eutectic solvent. J Chromatogr A 2018; 1576:1-9. [DOI: 10.1016/j.chroma.2018.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
40
|
Development of a Liquid–Liquid Microextraction Method Based on a Switchable Hydrophilicity Solvent for the Simultaneous Determination of 11 Drugs in Urine by GC–MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3643-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Simultaneous determination of 20 drugs of abuse in oral fluid using ultrasound-assisted dispersive liquid–liquid microextraction. Anal Bioanal Chem 2018; 411:193-203. [DOI: 10.1007/s00216-018-1428-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022]
|
42
|
Rykowska I, Ziemblińska J, Nowak I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.043] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Piergiovanni M, Cappiello A, Famiglini G, Termopoli V, Palma P. Determination of benzodiazepines in beverages using green extraction methods and capillary HPLC-UV detection. J Pharm Biomed Anal 2018; 154:492-500. [DOI: 10.1016/j.jpba.2018.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023]
|
44
|
Jha RR, Singh C, Pant AB, Patel DK. Ionic liquid based ultrasound assisted dispersive liquid-liquid micro-extraction for simultaneous determination of 15 neurotransmitters in rat brain, plasma and cell samples. Anal Chim Acta 2018; 1005:43-53. [DOI: 10.1016/j.aca.2017.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/24/2022]
|
45
|
Wang K, Xie X, Zhang Y, Huang Y, Zhou S, Zhang W, Lin Y, Fan H. Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem 2018; 240:1233-1242. [DOI: 10.1016/j.foodchem.2017.08.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
|
46
|
Jha RR, Singh N, Kumari R, Patel DK. Dispersion-assisted quick and simultaneous extraction of 30 pesticides from alcoholic and non-alcoholic drinks with the aid of experimental design. J Sep Sci 2018; 41:1625-1634. [DOI: 10.1002/jssc.201701155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/27/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Rakesh Roshan Jha
- Analytical Chemistry Laboratory, Regulatory Toxicology Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR Campus; Lucknow Uttar Pradesh India
| | - Nivedita Singh
- Department of Biochemistry, Babu Banarsi Das College of Dental Sciences; BBD University; Lucknow Uttar Pradesh India
| | - Rupender Kumari
- Toxicology Division; Central Forensic Science Laboratory (CFSL); Kolkota India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group; CSIR-Indian Institute of Toxicology Research (CSIR-IITR); Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR Campus; Lucknow Uttar Pradesh India
| |
Collapse
|
47
|
Nogueira Nunes C, Egéa dos Anjos V, Pércio Quináia S. Determination of Diazepam and Clonazepam in Natural Water - a Voltammetric Study. ELECTROANAL 2017. [DOI: 10.1002/elan.201700566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Fodor B, Molnár-Perl I. The role of derivatization techniques in the analysis of plant cannabinoids by gas chromatography mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Pires Santos A, das Graças Andrade Korn M, Azevedo Lemos V. Methods of liquid phase microextraction for the determination of cadmium in environmental samples. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:444. [PMID: 28795304 DOI: 10.1007/s10661-017-6151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Liquid phase microextraction (LPME) has been widely used in extraction and preconcentration systems as an excellent alternative to conventional liquid phase extraction. In this work, a critical review is presented on liquid phase microextraction techniques used in the determination of cadmium in environmental samples. LPME techniques are classified into three main groups: single-drop liquid phase microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME). Methods involving these liquid phase microextraction techniques are described, addressing advantages and disadvantages, samples, figures of merit, and trends.
Collapse
Affiliation(s)
- Analú Pires Santos
- Universidade Federal da Bahia, Departamento de Química Analítica, Campus Universitário de Ondina, Instituto de Química, Salvador, Bahia, 40170-280, Brazil
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica (LQA), Campus de Jequié, Jequié, Bahia, 45206-510, Brazil
| | - Maria das Graças Andrade Korn
- Universidade Federal da Bahia, Departamento de Química Analítica, Campus Universitário de Ondina, Instituto de Química, Salvador, Bahia, 40170-280, Brazil
| | - Valfredo Azevedo Lemos
- Universidade Federal da Bahia, Departamento de Química Analítica, Campus Universitário de Ondina, Instituto de Química, Salvador, Bahia, 40170-280, Brazil.
- Universidade Estadual do Sudoeste da Bahia, Laboratório de Química Analítica (LQA), Campus de Jequié, Jequié, Bahia, 45206-510, Brazil.
| |
Collapse
|
50
|
Kokosa JM. Selecting an Appropriate Solvent Microextraction Mode for a Green Analytical Method. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|