1
|
Mollania H, Oloomi-Buygi M, Mollania N. Catalytic and anti-cancer properties of platinum, gold, silver, and bimetallic Au-Ag nanoparticles synthesized by Bacillus sp. bacteria. J Biotechnol 2024; 379:33-45. [PMID: 38049076 DOI: 10.1016/j.jbiotec.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Metallic nanoparticles play a significant role in the catalysis of chemical processes, besides, bimetallic nanoparticles with abundant active sites can reduce metallic nanoparticles toxicity in addition to increasing their catalytic performances. In this work, the platinum, gold, and silver nanoparticles are bio-synthesized using a native bacterium (GFCr-4). Also, the Au-Ag and Au@Ag bimetallic nanoparticles with alloy and core-shell structures, respectively, are biologically synthesized. To improve the synthesis, the effects of various factors like pH, temperature, electron donor, and ionic liquids were investigated. The as-synthesized nanoparticles were characterized with different techniques. The microscope images and dynamic light scattering (DLS) analysis confirm the uniform distribution of as-synthesized nanoparticles with average sizes of 25, 30, 47, 77, and 86 nm obtained for Ag, Au, Pt, Au-Ag alloy, and Au@Ag core-shell, respectively. The catalytic performances of as-synthesized nanoparticles were investigated. The Au-Ag alloy nanoparticles exhibit better catalytic performance than the as-synthesized metallic Au nanoparticles, according to the Gewald reaction. According to the photocatalytic study, the yield can be increased by up to 92% by using PtNPs in the presence of a green LED. Additionally, for the first time, PtNPs were utilized as an effective catalyst in a peroxyoxalate chemiluminescence (POCL) system in the presence of nuclear fast red (NFR) as a novel fluorophore. In addition, the results of the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that the synthesized eco-friendly nanoparticles have a low effect on the lethality of 3T3 normal cells whereas MCF-7 cancer cells were inhibited up to 77.3% after treatment by PtNPs nanoparticles.
Collapse
Affiliation(s)
- Hamid Mollania
- Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran
| | - Majid Oloomi-Buygi
- Ferdowsi University of Mashhad, Department of Electrical Engineering, Mashhad, Iran.
| | - Nasrin Mollania
- Hakim Sabzevari University, Faculty of Basic Sciences, Department of Biology, Sabzevar, Iran.
| |
Collapse
|
2
|
Furletov A, Apyari V, Volkov P, Torocheshnikova I, Dmitrienko S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. SENSORS (BASEL, SWITZERLAND) 2023; 23:7994. [PMID: 37766049 PMCID: PMC10536471 DOI: 10.3390/s23187994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Adsorption of silver nanoparticles on polymers may affect the processes in which they participate, adjusting the analytical characteristics of methods for the quantitation of various substances. In the present study, a composite material based on silver triangular nanoplates (AgTNPs) and polyurethane foam was proposed for chemical analysis. The prospects of its application for the solid-phase/colorimetric determination of organic thiols were substantiated. It was found that aggregation of AgTNPs upon the action of thiols is manifested by a decrease in the AgTNPs' localized surface plasmon resonance band and its significant broadening. Spectral changes accompanying the process can be registered using household color-recording devices and even visually. Four thiols differing in their functional groups were tested. It was found that their limits of detection increase in the series cysteamine < 2-mercaptoethanol < cysteine = 3-mercaptopropionic acid and come to 50, 160, 500, and 500 nM, respectively. The applicability of the developed approach was demonstrated during the analysis of pharmaceuticals and food products.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Pavel Volkov
- Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals, National Research Center “Kurchatov Institute”, 107076 Moscow, Russia
| | | | | |
Collapse
|
3
|
Kumar PS, Madapusi S, Goel S. Sub-second synthesis of silver nanoparticles in 3D printed monolithic multilayered microfluidic chip: Enhanced chemiluminescence sensing predictions via machine learning algorithms. Int J Biol Macromol 2023; 245:125502. [PMID: 37348592 DOI: 10.1016/j.ijbiomac.2023.125502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Futuristic microfluidics will require alternative ways to extend its potential in vast areas by integrating various facets such as automation of different subsystems, multiplexing, incorporation of cyber-physical capabilities, and rapid prototyping. On the rapid prototyping aspect, for the last decade, additive manufacturing (AM) or 3D printing (3DP) has advanced to become an alternative fabrication process for microfluidic devices, enabling industry-level abilities towards mass production. In this context, for the first time, this work demonstrates the fabrication of monolithic multilayer microfluidic devices (MMMD) from planar orientation (1 layer) to nonplanar (4 layers) monolithic microchannels. The developed MMM device was impeccable for synthesizing highly potentialized silver nanoparticles (AgNPs) in <1 s. Moreover, the transport of chemical species with laminar flow simulations was performed on the process along with the thorough characterizations of produced AgNPs, finding the mean AgNPs particle size of around 35 nm without any post-processing requirements. The well-known catalytic activity of AgNPs was leveraged to enhance weak chemiluminescence (CL) sensing signals by >1300 %, increasing CL sensitivity. Further, machine learning (ML) predictive models encouraged to obtain the experimental parameters without human intervention iterations for target-specific applications. The proposed methodology finds the potential to save resources, time, and enables automation with rapid prototyping, providing possibilities for mass fabrications.
Collapse
Affiliation(s)
- Pavar Sai Kumar
- MEMS, Microfluidics and Nano electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Srinivasan Madapusi
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai, United Arab Emirates
| | - Sanket Goel
- MEMS, Microfluidics and Nano electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
| |
Collapse
|
4
|
Huang C, Zhou W, Wu R, Guan W, Ye N. Recent Advances in Nanomaterial-Based Chemiluminescence Probes for Biosensing and Imaging of Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111726. [PMID: 37299629 DOI: 10.3390/nano13111726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) play important roles in organisms and are closely related to various physiological and pathological processes. Due to the short lifetime and easy transformation of ROS, the determination of ROS content in biosystem has always been a challenging task. Chemiluminescence (CL) analysis has been widely used in the detection of ROS due to its advantages of high sensitivity, good selectivity and no background signal, among which nanomaterial-related CL probes are rapidly developing. In this review, the roles of nanomaterials in CL systems are summarized, mainly including their roles as catalysts, emitters, and carriers. The nanomaterial-based CL probes for biosensing and bioimaging of ROS developed in the past five years are reviewed. We expect that this review will provide guidance for the design and development of nanomaterial-based CL probes and facilitate the wider application of CL analysis in ROS sensing and imaging in biological systems.
Collapse
Affiliation(s)
- Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A Critical Systematic Review of Developing Aptasensors for Diagnosis and Detection of Diabetes Biomarkers. Crit Rev Anal Chem 2022; 52:1795-1817. [DOI: 10.1080/10408347.2021.1919986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Tian M, Zhao L, Wang Y, Liu G, Zhang P. Determination of Glucose by the Catalysis of Luminol Chemiluminescence Using One-Step Synthesized Platinum/Silver Nanoparticles as a Peroxidase Mimetic. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2096626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Liping Zhao
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Ya Wang
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Gang Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| | - Peng Zhang
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, China
| |
Collapse
|
7
|
Hassanpour-Khaneghah M, Iranifam M, Naseri A, Al Lawati HAJ. Nickel oxide hollow microsphere for the chemiluminescence determination of tuberculostatic drug isoniazid. LUMINESCENCE 2022; 37:1184-1191. [PMID: 35567303 DOI: 10.1002/bio.4273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
In this paper, NiO hollow microspheres (HMSs) were fabricated and used to catalyze chemiluminescence (CL) reaction. The studied CL reaction is the luminol-O2 reaction that was used as a sensitive analytical tool for measuring tuberculostatic drug isoniazid (IND) in pharmaceutical formulations and water samples. The CL method was established based on the suppression impact of IND on the CL reaction. The NiO HMSs were produced by a simple hydrothermal method and characterized by several spectroscopic techniques. The result of essential parameters on the analytical performance of the CL method, including concentrations of NaOH, luminol, and NiO HMSs were investigated. At the optimum conditions, the calibration curve for isoniazid was linear in the range of 8.00 × 10-7 - 1.00 × 10-4 mol L-1 (R2 =0.99). A detection limit (3S) of 2.00 × 10-7 mol L-1 was obtained for this method. The acceptable relative standard deviation (RSD) was obtained for the proposed CL method (2.63%, n=10) for a 5.00 ×10-6 mol L-1 IND solution. The mechanism of the CL reaction was also discussed.
Collapse
Affiliation(s)
| | - Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, Oman
| |
Collapse
|
8
|
Iranifam M, Haggi A, Akhteh H, Amini M, Al Lawati HAJ. Synthesis of rod-like CeO 2 nanoparticles and their application to catalyze the luminal-O 2 chemiluminescence reaction used in the determination of oxcarbazepine and ascorbic acid. ANAL SCI 2022; 38:787-793. [PMID: 35298793 DOI: 10.1007/s44211-022-00096-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
Rod-like CeO2 nanoparticles (NPs) were produced by the quick precipitation approach and employed as a catalyzer to increase the chemiluminescence (CL) intensity of the luminol-O2 reaction. The transmission electron microscopy (TEM) images of the CeO2 NPs showed that rod-like particles with the length and diameter about 15 nm and 5 nm, respectively, were produced. Furthermore, pharmaceuticals including oxcarbazepine (OXP) and ascorbic acid (AA) showed an inhibitory effect against the CL intensity such that the more concentration of the pharmaceuticals, the less was the CL intensity. Therefore, the new CeO2 NPs-luminol-O2 CL reaction was developed to determine OXP and AA in the pharmaceutical formulations. It is the first CL method established for the quantification of OXP. The linear dynamic range of this method for OXP was from 6.0 × 10-7 to 6.0 × 10-5 mol L-1 and for AA from 1.0 × 10-6 to 1.0 × 10-4 mol L-1.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran.
| | - Asghar Haggi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran
| | - Hossein Akhteh
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran
| | - Mojtaba Amini
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box: 55181-83111, Maragheh, Iran.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Muscat, Oman
| |
Collapse
|
9
|
Iranifam M, Dadashi Z. Chemiluminescence determination of vancomycin by using NiS nanoparticles-luminol-O 2 system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120489. [PMID: 34688148 DOI: 10.1016/j.saa.2021.120489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In this research, NiS nanoparticles (NPs) were produced using a hydrothermal technique and characterized by several spectroscopic methods. Here, for the first time, it was shown that NiS NPs could be exploited as a nanocatalyst in a chemiluminescence (CL) reaction. Here, it was introduced that NiS NPs could intensify luminol-O2 CL reaction, remarkably. Besides, it was shown that vancomycin (VAN) suppresses the CL intensity of NiS NPs-luminol-O2 reaction. By exploiting the results obtained, a new and straightforward CL method was developed for the measurement of VAN. The linear concentration range of the CL method was 4.00 × 10-6 - 1.00 × 10-3 mol L-1. The limit of detection (LOD) was equal to 1.40 × 10-6 mol L-1 and the relative standard deviation (RSD) of the CL method was 3.00% (n = 6) for the determination of 8.00 × 10-5 mol L-1 VAN. The established CL method was applied to quantify VAN in the injection and spiked human serum.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | - Zahra Dadashi
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| |
Collapse
|
10
|
Vasil'kov AY, Abd-Elsalam KA, Olenin AY. Biogenic silver nanoparticles: New trends and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:241-281. [DOI: 10.1016/b978-0-12-824508-8.00028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Iranifam M, Toolooe Gardeh Rasht M, Al Lawati HAJ. CuS nanoparticles-enhanced luminol-O 2 chemiluminescence reaction used for determination of paracetamol and vancomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120038. [PMID: 34118521 DOI: 10.1016/j.saa.2021.120038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A new chemiluminescence (CL) method was proposed to measure two widely used drugs, including paracetamol (PCM) and vancomycin (VAN). The CL reaction used was the CuS nanoparticles (CuS NPs)-luminol-O2 system. In this system, CuS NPs played the role of catalyst and increased the CL intensity. CuS NPs were easily synthesized by quick-precipitation. CuS NPs were characterized by spectroscopic techniques, and the mean size of NPs was estimated to be about 9 nm. In the developed CL methods, PCM and VAN decreased the CL intensity. In the proposed method, the linear concentration ranges were 4.0 × 10-5-4.0 × 10-4 mol L-1 of PCM and 2.0 × 10-5-6.0 × 10-4 mol L-1 of VAN. The limit of detections were 2.9 × 10-5 mol L-1 and 8.9 × 10-6 mol L-1 for PCM and VAN, respectively. The relative standard deviations (RSD) of the CL method were 2.99 and 4.31 (n = 6) for the determination of 3.0 × 10-4 mol L-1 PCM and VAN, respectively. It was also shown that the CL methods can measure PCM and VAN concentrations in various real samples.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
12
|
Ultrasensitive prostate specific antigen monitoring based on electrochemiluminescent immunesystem with synergistic signal amplification effect of resonance energy transfer coupling with K2S2O8-H2O2 dual coreactants. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zong C, Wang R, Jiang F, Zhang D, Yang H, Wang J, Lu X, Li F, Li P. Metal enhanced chemiluminescence nanosensor for ultrasensitive bioassay based on silver nanoparticles modified functional DNA dendrimer. Anal Chim Acta 2021; 1165:338541. [PMID: 33975696 DOI: 10.1016/j.aca.2021.338541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
A novel metal enhanced chemiluminescence (MEC) nanosensor was developed for ultrasensitive biosensing and imaging, based on functional DNA dendrimer (FDD), proximity-dependent DNAzyme and silver nanoparticles (AgNPs). The FDD containing two split G-quadruplex structures was prepared through an enzyme-free and step-by-step assembly strategy, and then reacted with AgNPs and hemin molecules to form the FDD/hemin/AgNPs facilely. Such a MEC nanosensor consisted of three modules: FDD (scaffold), the generated G-quadruplex/hemin DNAzyme (signal reporter) and AgNPs (chemiluminescence enhancer). The MEC effect was achieved by controlling the length of DNA sequences between AgNPs on the periphery of FDD and DNAzymes inside it. Such nanosensor exhibited 9-fold amplification and another 6.4-fold metal enhancement in chemiluminescence intensity, which can be easily applied into trace detection of multiple protein markers using a disposable protein immunoarray. The FDD/hemin/AgNPs-based multiplex MEC imaging assay showed wide linear ranges over 5 orders of magnitude and detection limits down to 5× 10-5 ng L-1 and 1.8 × 10-4 U mL-1 for cardiac troponin T and carcinoma antigen 125, demonstrating a promising potential in application to protein analysis and clinical diagnosis. Moreover, the MEC nanosensor can be effectively delivered into cells with excellent biocompatibility and outstanding stability, offering a new tool for detection of intracellular targets and suggesting wide applications in bioassay.
Collapse
Affiliation(s)
- Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ruike Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fan Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Duoduo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Junhong Wang
- Jiangsu Province Hospital, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, PR China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
14
|
|
15
|
A double-nanoprobe based immunoassay for rapid and sensitive detection of phenanthrene and some low-mass homologues. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Vakh C, Kuzmin A, Sadetskaya A, Bogdanova P, Voznesenskiy M, Osmolovskaya O, Bulatov A. Cobalt-doped hydroxyapatite nanoparticles as a new eco-friendly catalyst of luminol-H 2O 2 based chemiluminescence reaction: Study of key factors, improvement the activity and analytical application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118382. [PMID: 32361517 DOI: 10.1016/j.saa.2020.118382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel catalyst based on hydroxyapatite doped by cobalt for chemiluminescence reaction of luminol oxidation by H2O2 was suggested for the first time. The catalyst nanoparticles were synthesized by a hydrothermal method and characterized by various methods including density functional theory calculations. The impact of nanoparticles sizes, surface composition, contact efficiency and crystallinity on chemiluminescence intensity were investigated. The maximum chemiluminescence intensity was obtained for polycrystalline nanoparticles. This phenomenon was studied in detail and applied for chemiluminescence analysis for the first time. The chemiluminescence determination of sulfonamides as model analytes was considered. The sensing was based on sulfonamides-dependent quenching of the chemiluminescence intensity in the presence of novel catalyst existed as an aqueous suspension.
Collapse
Affiliation(s)
- Christina Vakh
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia.
| | - Artem Kuzmin
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Anastasia Sadetskaya
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Polina Bogdanova
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Mikhail Voznesenskiy
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Olga Osmolovskaya
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Institute of Chemistry, St. Petersburg State University, SPbSU, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| |
Collapse
|
17
|
Jiang F, Li P, Zong C, Yang H. Surface-plasmon-coupled chemiluminescence amplification of silver nanoparticles modified immunosensor for high-throughput ultrasensitive detection of multiple mycotoxins. Anal Chim Acta 2020; 1114:58-65. [DOI: 10.1016/j.aca.2020.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 11/29/2022]
|
18
|
Synergistic amplification effect for electrochemiluminescence immunoassay based on dual coreactants coupling with resonance energy transfer. Talanta 2020; 212:120798. [DOI: 10.1016/j.talanta.2020.120798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 11/23/2022]
|
19
|
Xiao Q, Xu C. Research progress on chemiluminescence immunoassay combined with novel technologies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115780] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Black phosphorus quantum dots sensitized lucigenin chemiluminescence in mild alkaline condition and its application in sensitive detection of Co2+. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Shah SNA, Khan M, Rehman ZU. A prolegomena of periodate and peroxide chemiluminescence. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Dinel M, Tartaggia S, Wallace GQ, Boudreau D, Masson J, Polo F. The Fundamentals of Real‐Time Surface Plasmon Resonance/Electrogenerated Chemiluminescence. Angew Chem Int Ed Engl 2019; 58:18202-18206. [DOI: 10.1002/anie.201909806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Marie‐Pier Dinel
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Stefano Tartaggia
- Farmacologia Sperimentale e ClinicaIRCCS Centro di Riferimento Oncologico Via Franco Gallini 2 33081 Aviano Italy
| | - Gregory Q. Wallace
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL)Université Laval 1045, av. de la Médecine Québec Qc G1V 0A6 Canada
| | - Jean‐Francois Masson
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa' Foscari University of Venice Via Torino 155B 30172 Venezia Italy
| |
Collapse
|
23
|
Dinel M, Tartaggia S, Wallace GQ, Boudreau D, Masson J, Polo F. The Fundamentals of Real‐Time Surface Plasmon Resonance/Electrogenerated Chemiluminescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marie‐Pier Dinel
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Stefano Tartaggia
- Farmacologia Sperimentale e ClinicaIRCCS Centro di Riferimento Oncologico Via Franco Gallini 2 33081 Aviano Italy
| | - Gregory Q. Wallace
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL)Université Laval 1045, av. de la Médecine Québec Qc G1V 0A6 Canada
| | - Jean‐Francois Masson
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa' Foscari University of Venice Via Torino 155B 30172 Venezia Italy
| |
Collapse
|
24
|
Sun Y, Lin Y, Sun W, Han R, Luo C, Wang X, Wei Q. A highly selective and sensitive detection of insulin with chemiluminescence biosensor based on aptamer and oligonucleotide-AuNPs functionalized nanosilica @ graphene oxide aerogel. Anal Chim Acta 2019; 1089:152-164. [PMID: 31627812 DOI: 10.1016/j.aca.2019.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022]
Abstract
A novel, highly selective and sensitive chemiluminescence (CL) biosensor for insulin (INS) detection was proposed based on aptamer and oligonucleotide-gold nanoparticles functionalized nanosilica @ graphene oxide aerogel. Initially, nanosilica functionalized graphene oxide aerogel (SiO2@GOAG) was successfully prepared and the composite showed rich pore distribution, large specific surface area and good biocompatibility. Insulin aptamer (IGA3) was used as a biorecognition element and oligonucleotide functionalized gold nanoparticles (ssDNA-AuNPs) was used as CL signal amplification materials, which were functionalized on the surface of SiO2@GOAG. The multi-functionalized composite - ssDNA-AuNPs/IGA3/SiO2@ GOAG was obtained and used to construct the CL biosensor for insulin detection. When insulin is present in a sample, the insulin will bind to the IGA3, which will result in the release of ssDNA-AuNPs. The released ssDNA-AuNPs would catalyze the luminescence of luminol and H2O2. The linear range of the CL biosensor for insulin detection was 7.5 × 10-12 to 5.0 × 10-9 moL/L and the detection limit was 1.6 × 10-12 moL/L (S/N = 3). The selectivity and stability of the CL biosensor were also studied and the results showed that the biosensor exhibited high selectivity and good stability due to the introduction of ssDNA-AuNPs/IGA3/SiO2@GOAG. The CL biosensor was finally used for recombinant human insulin detection in recombinant human insulin injection and the results were satisfactory.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yanna Lin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Weiyan Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Rui Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
25
|
Zong C, Zhang D, Jiang F, Yang H, Liu S, Li P. Metal-enhanced chemiluminescence detection of C-reaction protein based on silver nanoparticle hybrid probes. Talanta 2019; 199:164-169. [DOI: 10.1016/j.talanta.2019.02.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/11/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
26
|
Chemiluminescence reaction of graphene oxide – luminol – dissolved oxygen and its application for determination of isoniazid and paracetamol. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Nalewajko-Sieliwoniuk E, Malejko J, Topczewska A, Kojło A, Godlewska-Żyłkiewicz B. A comparison study of chemiluminescence systems for the flow injection determination of silver nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Lan Y, Yuan F, Fereja TH, Wang C, Lou B, Li J, Xu G. Chemiluminescence of Lucigenin/Riboflavin and Its Application for Selective and Sensitive Dopamine Detection. Anal Chem 2018; 91:2135-2139. [DOI: 10.1021/acs.analchem.8b04670] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yixiang Lan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230022, China
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China
| | - Chao Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230022, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Guobao Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230022, China
| |
Collapse
|
29
|
Synthesis and biophysical characteristics of riboflavin/HSA protein system on silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:30-40. [PMID: 30606536 DOI: 10.1016/j.msec.2018.10.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
Novel l‑Arginine‑Dextran70 based-silver nanoparticles (SNPs) (SNPsArg), functionalized with Riboflavin (RF) and Human Serum Albumin (HSA) were characterized by UV-Vis absorption, Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), fluorescence and circular dichroism spectroscopy, chemiluminescence and Neutral red assays. TEM analysis showed the formed faceted particles, large clumps/fused aggregates, nano-featured with the mean particle size of 41.60 nm. Chemiluminescence and Neutral red assays for in vitro antioxidant and cytotoxic activities of the SNPsArg/RF/HSA systems have been studied. It was pointed out that SNPsArg functionalized with RF and HSA resulted in a bio-nanosystem which leads to a high activity against oxygen free radicals, altered viability, morphology, apoptotic bodies and decreased cell density of L929 fibroblast cells. Results are relevant for understanding the redox properties of RF in the case of biological applications and especially for RF containing drugs.
Collapse
|
30
|
Sharma M, Nayak PS, Asthana S, Mahapatra D, Arakha M, Jha S. Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnol 2018; 12:626-632. [PMID: 30095424 PMCID: PMC8676574 DOI: 10.1049/iet-nbt.2017.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/17/2017] [Accepted: 12/30/2017] [Indexed: 11/19/2022] Open
Abstract
The last decade has observed a rapid advancement in utilising biological system towards bioremediation of metal ions in the form of respective metal nanostructures or microstructures. The process may also be adopted for respective metal nanoparticle biofabrication. Among different biological methods, bacteria-mediated method is gaining great attention for nanoparticle fabrication due to their eco-friendly and cost-effective process. In the present study, silver nanoparticle (AgNP) was synthesised via continuous biofabrication using Aeromonas veronii, isolated from swamp wetland of Sunderban, West Bengal, India. The biofabricated AgNP was further purified to remove non-conjugated biomolecules using size exclusion chromatography, and the purified AgNPs were characterised using UV-visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy (TEM). Additionally, the presence of proteins as capping and stabilising agents was confirmed by the amide-I and amide-II peaks in the spectra obtained using attenuated total reflection Fourier transform infrared spectroscopy. The size of biofabricated AgNP was 10-20 nm, as observed using TEM. Additionally, biofabricated AgNP shows significant antibacterial potential against E. coli and S. aureus. Hence, biofabricated AgNP using Aeromonas veronii, which found resistant to a significant concentration of Ag ion, showed enhanced antimicrobial activity compared to commercially available AgNP.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Parth Sarthi Nayak
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Shreyasi Asthana
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Dipankar Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Manoranjan Arakha
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
31
|
Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 2017; 180:1-11. [PMID: 29332786 DOI: 10.1016/j.talanta.2017.12.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
Abstract
Chemiluminescence (CL) techniques are extensively utilized for detection of analytes due to their high sensitivity, rapidity and selectivity. With the advent of nanotechnology and incorporation of the nanoparticles in the CL system has revolutionized the assays due to their unique optical and mechanical properties. Several CL-based reactions have been developed where these nanoparticle based CL sensors have evolved as excellent prospects for sensing in various analytical applications. This review article addresses the nanoparticles based CL detection system that are recently developed, the mechanisms has been summarized and the role of luminophors have been discussed. This article critically analyzes the optimal conditions for the CL detection along with quantitative assessment of the analytes. We have included the use of semiconductor nanoparticles, metal nanoparticles, graphene based nanostructures, mesoporous nanospheres, layered double hydroxides, clays for CL detection. The scope and application of these nanoscale material based CL system in various branches of science and technology including chemistry, biomedical applications, pharmaceutics, food, environmental and toxicological applications has been critically summarized.
Collapse
Affiliation(s)
- Ashish Tiwari
- Department of Chemistry, Naveen Government College, Pamgarh 495554, India.
| | - S J Dhoble
- Department of Physics, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
32
|
Han S, Fan Z, Chen X, Wu Y, Wang J. Determination of dihydralazine based on chemiluminescence resonance energy transfer of hollow carbon nanodots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:103-108. [PMID: 28441537 DOI: 10.1016/j.saa.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The famous weak chemiluminescence (CL) system of potassium permanganate and sodium bisulfite (KMnO4-HSO3-) was enhanced by the hollow fluorescent carbon nanodots (HCNs). The investigation of mechanism revealed that the enhanced CL was induced by the excited-state HCNs (HCNs⁎), which could be produced from the electron-transfer annihilation of positively charged HCNs (HCNs+) and negatively charged HCNs (HCNs-) as well as by CL resonance energy transfer (CRET) from excited SO2 (SO2⁎)/1O2 to HCNs. The dihydralazine sulfate (DHZS) had a diminishing effect on the CL of HCNs-KMnO4-HSO3- system due to the competitive consumption of O2-. Under the optimal conditions, the reduced CL signal with the concentration of DHZS was linear in the range of 1.0×10-7-7.0×10-5mol/L with a detection limit of 3.0×10-8mol/L. The relative standard deviation for seven repeated determination of 5.0×10-6mol/L DHZS was 2.1%. The established method was applied to the determination of DHZS in pharmaceutical preparations, human urine and plasma samples with good precision and accuracy.
Collapse
Affiliation(s)
- Suqin Han
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, Shanxi Normal University, Linfen 041004, Shanxi, China; School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China.
| | - Zheyan Fan
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Xiaoxia Chen
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Yunfang Wu
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Jianbo Wang
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China.
| |
Collapse
|
33
|
Fan Z, Han S, Zhang J. Chemiluminescence of Luminol-Graphene Oxide for the Sensitive Detection of Puerarin in Biological Fluid and Chinese Gegen. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zheyan Fan
- School of Chemistry and Material Science; Shanxi Normal University; Linfen Shanxi 041004 China
| | - Suqin Han
- School of Chemistry and Material Science; Shanxi Normal University; Linfen Shanxi 041004 China
| | - Junmei Zhang
- School of Chemistry and Material Science; Shanxi Normal University; Linfen Shanxi 041004 China
| |
Collapse
|
34
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Metal-enhanced luminescence: Current trend and future perspectives- A review. Anal Chim Acta 2017; 971:1-13. [DOI: 10.1016/j.aca.2017.03.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
|
36
|
Sun Y, Li J, Wang Y, Ding C, Lin Y, Sun W, Luo C. A chemiluminescence biosensor based on the adsorption recognition function between Fe 3O 4@SiO 2@GO polymers and DNA for ultrasensitive detection of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:1-7. [PMID: 28147299 DOI: 10.1016/j.saa.2017.01.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0×10-12-2.5×10-11mol/L. The detection limit was 1.7×10-12mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chaofan Ding
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanna Lin
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Weiyan Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
37
|
Xing Y, Gao Q, Zhang Y, Ma L, Loh KY, Peng M, Chen C, Cui Y. The improved sensitive detection of C-reactive protein based on the chemiluminescence immunoassay by employing monodispersed PAA-Au/Fe3O4 nanoparticles and zwitterionic glycerophosphoryl choline. J Mater Chem B 2017; 5:3919-3926. [DOI: 10.1039/c7tb00637c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Monodispersed PAA-Au/Fe3O4 NPs were engineered for highly sensitive CRP assay with zwitterionic glycerophosphoryl choline as the co-blocking agent.
Collapse
Affiliation(s)
- Yan Xing
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Qin Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Yanmin Zhang
- Shaanxi Province Hospital of traditional Chinese medicine
- Xi'an
- P. R. China
| | - Le Ma
- National Engineering Research Center for Miniaturized Detection Systems
- Northwest University
- Xi'an
- P. R. China
| | - Kang Yong Loh
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems
- Northwest University
- Xi'an
- P. R. China
| | - Yali Cui
- National Engineering Research Center for Miniaturized Detection Systems
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|