1
|
Ji Y, Tian Y, Pan Y, Sheng N, Dai H, Fan X, Liu X, Bai X, Dai J. Exposure and potential risks of thirteen endocrine- disrupting chemicals in pharmaceuticals and personal care products for breastfed infants in China. ENVIRONMENT INTERNATIONAL 2024; 192:109032. [PMID: 39317008 DOI: 10.1016/j.envint.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Ingestion of breast milk represents the primary exposure pathway for endocrine-disrupting chemicals (EDCs) in newborns. To elucidate the associated risks, it is essential to quantify EDC levels in both breast milk and infant urine. This study measured the concentrations of 13 EDCs, including parabens (methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), iso-propyl paraben, butyl paraben, and iso-butyl paraben), bisphenols (bisphenol A (BPA), bisphenol F, bisphenol S, bisphenol AF, and bisphenol Z), triclosan (TCS), and triclocarban, in breast milk and infant urine to assess their potential health effects and endocrine disruption risks. In total, 1 014 breast milk samples were collected from 20 cities across China, along with 144 breast milk samples and 134 urine samples from a mother-infant cohort in Hangzhou. The EDCs were detected using ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry. Endocrine-disrupting potency was evaluated using a predictive method based on EDC affinity for 15 hormone receptor proteins. The toxicological priority index (ToxPi), incorporating population exposure data, was employed to assess health risks associated with exposure to multiple EDCs. Among the 13 EDCs, MP, EP, PP, BPA, and TCS were detected in over 50 % of breast milk samples, with the highest median concentrations observed for MP (0.37 ng/mL), EP (0.29 ng/mL), and BPA (0.17 ng/mL). Across the 20 cities, 0 %-40 % of infants had a hazard index (HI) exceeding 1. Based on affinity prediction analysis and estimated exposure, cumulative endocrine disruption risk intensity was ranked as MP > TCS > BPA > EP > PP. This research highlights the extensive exposure of Chinese infants to EDCs, offering a detailed analysis of their varying endocrine disruption potencies and underscoring the significant health risks associated with EDCs in breast milk.
Collapse
Affiliation(s)
- Yuyan Ji
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yawen Tian
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haizhen Dai
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xufei Fan
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxia Bai
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Xiang T, Shi C, Guo Y, Zhang J, Min W, Sun J, Liu J, Yan X, Liu Y, Yao L, Mao Y, Yang X, Shi J, Yan B, Qu G, Jiang G. Effect-directed analysis of androgenic compounds from sewage sludges in China. WATER RESEARCH 2024; 256:121652. [PMID: 38657313 DOI: 10.1016/j.watres.2024.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weicui Min
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiliang Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
3
|
Liu H, Rao H, Zhou H, Li J, Li H, Guo J, Du X. A novel top-down strategy for in situ construction of vertically oriented hexagonal NiCr LDHs nanosheet arrays with intercalated sulfate ions on Nichrome fiber for selective solid-phase microextraction of phenolic compounds in water samples. Anal Chim Acta 2024; 1296:342339. [PMID: 38401931 DOI: 10.1016/j.aca.2024.342339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Phenolic compounds (PCs) are a class of polar aromatic pollutants with high toxicity in environmental water. Generally the efficient sample preparation is essential for the quantification of ultra-trace target PCs in real water sample before appropriative instrumental analysis. SPME is a convenient, solvent-free and time-saving miniaturized technique and has been recognized as a green alternative to conventional extraction techniques. In SPME, however, commercial fused-silica fibers are limited to the fragility, operation temperature, extraction capacity and selectivity as well as lifetime. Therefore, the development of new SPME fibers is always needed to overcome such limitations. RESULTS We presented a novel top-down strategy for in situ construction of vertically oriented hexagonal sulfate intercalated NiCr layered double hydroxide nanosheet arrays (NiCr LDHs-SO4 NSAs) on the Nichrome (NiCr) substrate by hydrothermal treatment in NaOH solution containing (NH4)2S2O8. The results showed that much shorter hydrothermal time was needed for the construction of NiCr@NiCr LDHs-SO4 NSAs fiber in the presence of (NH4)2S2O8. Moreover, the unique NiCr LDHs-SO4 NSAs coating offered open access structure, and thereby more available surface area for adsorption. The resulting fiber exhibited better extraction efficiency for phenolic compounds (PCs), faster mass transfer rate, higher mechanical stability, and longer service life than original NiCr@NiCr LDHs NSs fiber and typical commercially fused-silica fibers. After optimizing conditions, the SPME-HPLC-UV method demonstrated a linear range from 0.05 μg L-1 to 200 μg L-1 with LODs of 0.015-0.156 μg L-1 (S/N = 3) and LOQs of 0.048-0.498 μg L-1 (S/N = 10), as well as good repeatability (3.06%-5.22%) and fiber-to-fiber reproducibility (4.32%-6.49%). SIGNIFICANCE The developed SPME-HPLC-UV method with the constructed fiber was applied to the preconcentration and detection of different types of PCs in real water samples, showing satisfactory recoveries ranging from 86.20% to 107.8% with RSDs of 3.18%-6.69%. This study provides a new strategy for in situ construction of bimetallic hydroxides and their derived nanocomposite coatings on the NiCr fiber substrate in practical SPME application.
Collapse
Affiliation(s)
- Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huirong Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jinxin Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Nazar N, Kumaran AK, Athira AS, Sivadas M, Panda SK, Banerjee K, Chatterjee NS. Untargeted metabolomics reveals potential health risks associated with chronic exposure to environmentally relevant concentrations of 2-Phenylphenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169172. [PMID: 38101641 DOI: 10.1016/j.scitotenv.2023.169172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Chronic exposure to endocrine-disrupting chemicals through foods of aquatic origin, at levels that are commonly found in the environment, can affect metabolic health and lead to metabolic diseases. One such chemical is 2-phenylphenol (2-PP), a suspected endocrine disruptor that is used extensively in agriculture and industry, and has become a widespread pollutant in aquatic environments. This study evaluated the risk of exposure to 2-PP through foods of aquatic origin from Vembanad Lake, using a Target Hazard Quotient (THQ) and an untargeted metabolomics approach. The study found that 2-PP content was higher in samples from areas with intense industrial, tourism, and agricultural activities. The average concentration of 2-PP in fish, crustaceans, and mollusks from the Vembanad estuary ranged from 0.012 to 0.017 mg/kg. The mean concentration of 2-PP was used to assess the THQ of exposure to the coastal population. The results showed that the THQ value was <1, indicating a low to moderate health risk for both adults and children. Furthermore, an untargeted metabolomics approach using HPLC-Q-Orbitrap MS was used to study the metabolome changes associated with chronic exposure to 2-PP (at the environmentally relevant concentration) over 60 days in the Wistar albino rat model. The findings indicated significant alterations in the phospholipid, fatty acid, sterol lipid, and amino acid profiles, suggesting that chronic exposure to 2-PP at environmentally relevant concentrations could affect purine, phenylalanine, tyrosine, and cholesterol metabolism.
Collapse
Affiliation(s)
- Nasreen Nazar
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India
| | | | - A S Athira
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India
| | - Megha Sivadas
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India
| | - Satyen Kumar Panda
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi 110002, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Manjri Farm, Pune 412 307, India
| | - Niladri Sekhar Chatterjee
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India.
| |
Collapse
|
5
|
Grau J, Chabowska A, Werner J, Zgoła-Grześkowiak A, Fabjanowicz M, Jatkowska N, Chisvert A, Płotka-Wasylka J. Deep eutectic solvents with solid supports used in microextraction processes applied for endocrine-disrupting chemicals. Talanta 2024; 268:125338. [PMID: 37931567 DOI: 10.1016/j.talanta.2023.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The determination of endocrine-disrupting chemicals (EDCs) has become one of the biggest challenges in Analytical Chemistry. Due to the low concentration of these compounds in different kinds of samples, it becomes necessary to employ efficient sample preparation methods and sensitive measurement techniques to achieve low limits of detection. This issue becomes even more struggling when the principles of the Green Analytical Chemistry are added to the equation, since finding an efficient sample preparation method with low damaging properties for health and environment may become laborious. Recently, deep eutectic solvents (DESs) have been proposed as the most promising green kind of solvents, but also with excellent analytical properties due to the possibility of custom preparation with different components to modify their polarity, viscosity or aromaticity among others. However, conventional extraction techniques using DESs as extraction solvents may not be enough to overcome challenges in analysing trace levels of EDCs. In this sense, combination of DESs with solid supports could be seen as a potential solution to this issue allowing, in different ways, to determine lower concentrations of EDCs. In that aim, the main purpose of this review is the study of the different strategies with solid supports used along with DESs to perform the determination of EDCs, comparing their advantages and drawbacks against conventional DES-based extraction methods.
Collapse
Affiliation(s)
- Jose Grau
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Aneta Chabowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Analytical Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
6
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
7
|
Zhang L, Zhang Y, Zhu M, Chen L, Wu B. A critical review on quantitative evaluation of aqueous toxicity in water quality assessment. CHEMOSPHERE 2023; 342:140159. [PMID: 37716564 DOI: 10.1016/j.chemosphere.2023.140159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Conventional chemical techniques have inherent limitations in detecting unknown chemical substances in water. As a result, effect-based methods have emerged as a viable alternative to overcome these limitations. These methods provide more accurate and intuitive evaluations of the toxic effects of water. While numerous studies have been conducted, only a few have been applied to national water quality monitoring. Therefore, it is crucial to develop toxicity evaluation methods and establish thresholds based on quantifying toxicity. This article provides an overview of the development and application of bioanalytical tools, including in vitro and in vivo bioassays. The available methods for quantifying toxicity are then summarized. These methods include aquatic life criteria for assessing the toxicity of a single compound, comprehensive wastewater toxicity testing for all contaminants in a water sample (toxicity units, whole effluent toxicity, the potential ecotoxic effects probe, the potential toxicology method, and the lowest ineffective dilution), methods based on mechanisms and relative toxicity ratios for substances with the same mode of action (the toxicity equivalency factors, toxic equivalents, bioanalytical equivalents), and effect-based trigger values for micropollutants. The article also highlights the advantages and disadvantages of each method. Finally, it proposes potential areas for applying toxicity quantification methods and offers insights into future research directions. This review emphasizes the significance of enhancing the evaluation methods for assessing aqueous toxicity in water quality assessment.
Collapse
Affiliation(s)
- Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
9
|
Nippes RP, Gomes AD, Macruz PD, de Souza M. Photocatalytic removal of 17β-estradiol from water using a novel bimetallic NiCu/Nb 2O 5 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103731-103742. [PMID: 37688700 DOI: 10.1007/s11356-023-29727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
The development of effective photocatalytic materials is essential for removing emerging pollutants from aqueous media, such as the hormone 17β-estradiol (E2). In this study, a novel photocatalyst based on niobium pentoxide (Nb2O5) functionalized with nickel (Ni) and copper (Cu) was synthesized for E2 removal. The NiCu/Nb2O5 photocatalyst was prepared using a facile wet impregnation method and characterized by various techniques. The incorporation of Ni and Cu into Nb2O5 reduced the band gap energy from 3.3 to 2.8 eV, enabling efficient utilization of visible light. Moreover, NiCu/Nb2O5 exhibited the highest E2 removal efficiency (82%) under UV-A-assisted conditions at a concentration of 1.5 g L-1. The reaction kinetics were found to follow a second-order model with a rate constant of k = 0.0020 L g-1 min-1, and a plausible reaction mechanism was proposed. Through the study of radical elimination, it was proven that the radical oxidation reaction mechanism predominated in the reaction. The results of the toxicity assays, combined with the TOC parameter, demonstrated the efficacy of photocatalytic degradation in reducing E2. These findings demonstrate the great potential of the NiCu/Nb2O5 photocatalyst for removing persistent pollutants.
Collapse
Affiliation(s)
- Ramiro Picoli Nippes
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900.
| | - Aline Domingues Gomes
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900
| | - Paula Derksen Macruz
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900
| | - Marcos de Souza
- Chemical Engineering Department of Maringa State University, Maringa, PR, Av. Colombo Zone 7, Brazil, 579087020-900
| |
Collapse
|
10
|
Guo Y, Gong H, Shi W, Fang N, Tan Y, Zhou W, Huang J, Dai L, Dai X, Guo Y. Insights into multisource sludge distributed in the Yangtze River basin, China: Characteristics, correlation, treatment and disposal. J Environ Sci (China) 2023; 126:321-332. [PMID: 36503760 DOI: 10.1016/j.jes.2022.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 06/17/2023]
Abstract
Sludge is the by-product of wastewater treatment process. Multisource sludge can be defined as sludge from different sources. Based on the sludge properties of five typical cities in the Yangtze River basin, including Jiujiang, Wuhu, Lu'an, Zhenjiang and Wuhan, this study investigated and summarized the characteristic variations and distribution differences of multiple indicators and substances from municipal sludge, dredged sludge, and river and lake sediments. The results demonstrated pH of multisource sludge was relatively stable in the neutral range. Organic matter and water content among municipal sludge were high and varied considerably between different wastewater treatment plants. Dredged sludge had an obviously higher sand content and wider particle distribution, which could be considered for graded utilization depending on its size. The nutrients composition of river and lake sediments was usually stable and special, with lower nitrogen and phosphorus content but higher potassium levels. The sources of heavy metals and persistent organic pollutants in multisource sludge were correlated, generally much higher among municipal sludge than dredged sludge and river and lake sediments, which were the most important limitation for final land utilization. Despite various properties of multisource sludge, the final fate and destination have some overall similarities, which need to be supplemented and improved by standards and laws. The study provided a preliminary analysis of suitable technical routes for municipal sludge, dredged sludge, river and lake sediments based on their different characteristics respectively, which was of great significance for multisource sludge co-treatment and disposal in the future of China.
Collapse
Affiliation(s)
- Yiqun Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Gong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjing Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ning Fang
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200050, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200050, China
| | - Yaqin Tan
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200050, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200050, China
| | - Weiqi Zhou
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200050, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200050, China
| | - Jialiang Huang
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200050, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200050, China
| | - Lingling Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai 200050, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200050, China.
| |
Collapse
|
11
|
Arun J, Nachiappan S, Rangarajan G, Alagappan RP, Gopinath KP, Lichtfouse E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:339-362. [PMID: 36060494 PMCID: PMC9419126 DOI: 10.1007/s10311-022-01503-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/05/2022] [Indexed: 05/04/2023]
Abstract
Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis. The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photocatalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/solvothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Centre for Waste Management-International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Tamil Nadu, Chennai, 6030119 India
| | - S. Nachiappan
- Department of Chemical Engineering, University of Technology and Applied Sciences, Salalah, Sultanate of Oman
| | - Goutham Rangarajan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S3E5 Canada
| | - Ram Prasath Alagappan
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601 DA Delft, The Netherlands
| | - K. P. Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam (OMR), Tamil Nadu, Chennai, 603110 India
| | - Eric Lichtfouse
- European Centre for Research and Education in Geosciences (CEREGE), Aix Marseille University, 13007 Marseille, France
| |
Collapse
|
12
|
Lazofsky A, Buckley B. Recent Trends in Multiclass Analysis of Emerging Endocrine Disrupting Contaminants (EDCs) in Drinking Water. Molecules 2022; 27:8835. [PMID: 36557967 PMCID: PMC9781274 DOI: 10.3390/molecules27248835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ingestion of water is a major route of human exposure to environmental contaminants. There have been numerous studies exploring the different compounds present in drinking water, with recent attention drawn to a new class of emerging contaminants: endocrine-disrupting compounds (EDCs). EDCs encompass a broad range of physio-chemically diverse compounds; from naturally occurring to manmade. Environmentally, EDCs are found as mixtures containing multiple classes at trace amounts. Human exposure to EDCs, even at low concentrations, is known to lead to adverse health effects. Therefore, the ability to evaluate EDC contamination with a high degree of sensitivity and accuracy is of the utmost importance. This review includes (i) discussion on the perceived and actual risks associated with EDC exposure (ii) regulatory actions that look to limit EDC contamination (iii) analytical methods, including sample preparation, instrumentation and bioassays that have been advanced and employed for multiclass EDC identification and quantitation.
Collapse
Affiliation(s)
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Vaudreuil MA, Vo Duy S, Munoz G, Sauvé S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157353. [PMID: 35842153 DOI: 10.1016/j.scitotenv.2022.157353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Quantification of drugs residues in wastewaters of different sources could help better understand contamination pathways, eventually leading to effluent regulation. However, limited data are available for hospital-derived wastewaters. Here, an analytical method based on automated on-line solid-phase extraction liquid chromatography tandem mass spectrometry (on-line SPE - UPLC-MS/MS) was developed for the quantification of multi-class pharmaceuticals in wastewaters. Filtrate phase and suspended solids (SPM) were both considered to evaluate the distribution of targeted analytes. Experimental design optimization involved testing different chromatographic columns, on-line SPE columns, and loading conditions for the filtrate phase, and different organic solvents and cleanup strategies for suspended solids. The selected methods were validated with suitable limits of detection, recovery, accuracy, and precision. A total of 30 hospital effluents and 6 wastewater treatment plants were sampled to evaluate concentrations in real field-collected samples. Certain pharmaceuticals were quantified at high levels such as caffeine at 670,000 ng/L in hospital wastewaters and hydroxyibuprofen at 49,000 ng/L in WWTP influents. SPM samples also had high contaminant concentrations such as ibuprofen at 31,000 ng/g in hospital effluents, fluoxetine at 529 ng/g in WWTP influents or clarithromycin at 295 ng/g in WWTP effluents. Distribution coefficients (Kd) and particle-associated fractions (Φ) indicate that pharmaceuticals tend to have better affinity to suspended solids in hospital wastewater than in municipal wastewaters. The results also bring arguments for at source treatment of these specific effluents before their introduction into urban wastewater systems.
Collapse
Affiliation(s)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Liao Z, Zi Y, Zhou C, Zeng W, Luo W, Zeng H, Xia M, Luo Z. Recent Advances in the Synthesis, Characterization, and Application of Carbon Nanomaterials for the Removal of Endocrine-Disrupting Chemicals: A Review. Int J Mol Sci 2022; 23:13148. [PMID: 36361935 PMCID: PMC9654603 DOI: 10.3390/ijms232113148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
The large-scale production and frequent use of endocrine-disrupting chemicals (EDCs) have led to the continuous release and wide distribution of these pollutions in the natural environment. At low levels, EDC exposure may cause metabolic disorders, sexual development, and reproductive disorders in aquatic animals and humans. Adsorption treatment, particularly using nanocomposites, may represent a promising and sustainable method for EDC removal from wastewater. EDCs could be effectively removed from wastewater using various carbon-based nanomaterials, such as carbon nanofiber, carbon nanotubes, graphene, magnetic carbon nanomaterials, carbon membranes, carbon dots, carbon sponges, etc. Important applications of carbon nanocomposites for the removal of different kinds of EDCs and the theory of adsorption are discussed, as well as recent advances in carbon nanocomposite synthesis technology and characterization technology. Furthermore, the factors affecting the use of carbon nanocomposites and comparisons with other adsorbents for EDC removal are reviewed. This review is significant because it helps to promote the development of nanocomposites for the decontamination of wastewater.
Collapse
Affiliation(s)
- Ze Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Zi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chunyan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenqian Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenwen Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hui Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Muqing Xia
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Cho H, Ryu CS, Lee SA, Adeli Z, Meupea BT, Kim Y, Kim YJ. Endocrine-disrupting potential and toxicological effect of para-phenylphenol on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113965. [PMID: 35994907 DOI: 10.1016/j.ecoenv.2022.113965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Several phenol derivatives are suspected endocrine disruptors and have received attention in risk assessment studies for several decades owing to the structural similarity between estrogens and phenolic compounds. We assessed the endocrine disrupting effect of the phenolic compound para-phenylphenol (PPP) through acute tests and evaluating chronic endpoints in an invertebrate model, Daphnia magna. Exposure of D. magna to PPP induced substantial adverse effects, namely, reduced fecundity, slowed growth rate, delayed first brood, and a reduction in neonate size. Furthermore, we investigated the mRNA expression of relevant genes to elucidate the mechanism of endocrine disruption by PPP. Exposure of D. magna to PPP induced the substantial downregulation of genes and markers related to reproduction and development, such as EcR-A, EcR-B, Jhe, and Vtg. Consequently, we demonstrated that PPP has an endocrine disrupting effect on reproduction and development in D. magna.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Zahra Adeli
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Brenda Tenou Meupea
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| |
Collapse
|
16
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
17
|
Caglak A, Chormey DS, Bakirdere S, Onkal Engin G. Performance evaluation of ceramic membrane bioreactor: effect of operational parameters on micropollutant removal and membrane fouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68306-68319. [PMID: 35538336 DOI: 10.1007/s11356-022-20612-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
This paper presents the removal of nine potential endocrine disruptors including pesticides, pharmaceuticals and industrial chemicals using a submerged membrane bioreactor (MBR) system. Two lab-scale submerged MBRs having ceramic membranes were operated at three different sludge retention times (SRT: 15, 45, 90 days) and two hydraulic retention times (HRT: 12, 6 h) and the effects of SRT and HRT on both micropollutant removal and membrane fouling were investigated. While the effect of SRT and HRT change was observed on the removal of atrazine, fluoxetine, penconazole, no significant change was detected for the other micropollutants studied. It was determined that physicochemical properties such as distribution coefficient (LogD) and hydrophobicity of micropollutants are also effective on the removal efficiency of micropollutants. High removal efficiencies ([Formula: see text] 97.5%) were observed for hydrophobic pollutants (logD > 3.2) except for penconazole (72.1%) and for hydrophilic pollutants (logD < 3.2) except for atrazine (42.5%). Membrane fouling was significantly affected by different operational parameters applied, with the slowest fouling occurring at 45 days of SRT and 12 h of HRT. However, micropollutant addition did not have a significant effect on membrane fouling. It has been shown that the simultaneous and effective treatment performance for micropollutants makes the membrane bioreactor system a promising wastewater treatment process.
Collapse
Affiliation(s)
- Abdulkadir Caglak
- Environmental Engineering Department, Civil Engineering Faculty, Yildiz Technical University, 34220, Istanbul, Turkey
| | | | - Sezgin Bakirdere
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Guleda Onkal Engin
- Environmental Engineering Department, Civil Engineering Faculty, Yildiz Technical University, 34220, Istanbul, Turkey.
| |
Collapse
|
18
|
Mohd Hir ZA, Abdullah AH. Hybrid polymer-based photocatalytic materials for the removal of selected endocrine disrupting chemicals (EDCs) from aqueous media: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Pierri ME, Morés L, Bernardi G, Carasek E. Multiclass determination of endocrine disruptors in urine by hollow fiber microporous membrane and liquid chromatography. Anal Biochem 2022; 652:114725. [PMID: 35597269 DOI: 10.1016/j.ab.2022.114725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
A simple and rapid methodology was developed using hollow fiber membrane microporous and a 96-well plate system for a high throughput multiclass determination of endocrine disruptors in human urine (diclofenac, diazepam, carbamazepine, ibuprofen, naproxen, carbofuran, methyl parathion, 17-α-ethynyl estradiol, bisphenol A and benzophenone). The quantification and detection of the chemicals were carried out by an HPLC-diode array detector. The fixed conditions for carrying out the method optimization were 1.5 mL of sample and 300 μL of solvent desorption. Multivariate and univariate models were applied to optimize the parameters of the method, achieving the following conditions: 20% diluted urine, 1-octanol of extraction solvent impregnated in the microporous membrane, 70 min extraction in pH 3.0 and 30 min with a mixture of 75% methanol and 25% acetonitrile (v/v) for the desorption. The R2 were ≤ 0.9973 for ibuprofen. The LOD ranged from 3.3 to 16.7 ng mL-1 and the LOQ from 10 to 50 ng mL-1. Relative recoveries ranged from 71% to 126%. The repeatability (n = 3) ranged from 0.22% to 12.01%, and the intermediate precision (n = 9) ranged from 0.13% to 17.76%. The method presents a good alternative for the determination of different classes of compounds in human urine.
Collapse
Affiliation(s)
- Maria Eduarda Pierri
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil
| | - Lucas Morés
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil
| | - Gabrieli Bernardi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, SC, Brazil.
| |
Collapse
|
20
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. ENVIRONMENTAL RESEARCH 2022; 207:112658. [PMID: 34990614 DOI: 10.1016/j.envres.2021.112658] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Many classes of compounds are known or suspected to disrupt the endocrine system of vertebrate and invertebrate organisms. This review of the sources and fate of selected endocrine disrupting chemicals (EDCs) in the environment includes classes of compounds that are "legacy" contaminants, as well as contaminants of emerging concern. EDCs included for discussion are organochlorine compounds, halogenated aromatic hydrocarbons, brominated flame retardants, per- and polyfluoroalkyl substances, alkylphenols, phthalates, bisphenol A and analogues, pharmaceuticals, drugs of abuse and steroid hormones, personal care products, and organotins. An exhaustive survey of the fate of these contaminants in all environmental media (e.g., air, water, soil, biota, foods and beverages) is beyond the scope of this review, so the priority is to highlight the fate of EDCs in environmental media for which there is a clear link between exposure and endocrine effects in humans or in biota from other taxa. Where appropriate, linkages are also made between the fate of EDCs and regulatory limits such as environmental quality guidelines for water and sediments and total daily intake values for humans.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques du Québec. Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
21
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. Methods for the analysis of endocrine disrupting chemicals in selected environmental matrixes. ENVIRONMENTAL RESEARCH 2022; 206:112616. [PMID: 34953884 DOI: 10.1016/j.envres.2021.112616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are heterogenous in structure, chemical and physical properties, and their capacity to partition into various environmental matrixes. In many cases, these chemicals can disrupt the endocrine systems of vertebrate and invertebrate organisms when present at very low concentrations. Therefore, sensitive and varied analytical methods are required to detect these compounds in the environment. This review summarizes the analytical methods and instruments that are most used to monitor for EDCs in selected environmental matrixes. Only those matrixes for which there is a clear link between exposures and endocrine effects are included in this review. Also discussed are emerging methods for sample preparation and advanced analytical instruments that provide greater selectivity and sensitivity.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte Contre les Changements Climatiques du Québec, Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
22
|
Pollution Characteristics and Risk Prediction of Endocrine Disruptors in Lakes of Wuhan. TOXICS 2022; 10:toxics10020093. [PMID: 35202278 PMCID: PMC8880694 DOI: 10.3390/toxics10020093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
As a new and ubiquitous trace organic pollutant, endocrine-disrupting compounds (EDCs) can cause endocrine-disrupting effects on organisms even at low levels. However, little information is available on the resource and assessment of EDC risks in the water environment. The study area was selected based on the paucity of information on the pollution status of inland lakes. Wuhan has numerous and diverse types of lakes which receive micropollutants from different pathways. In this study, the spatial distribution, occurrence, quantity and ecological risks of EDCs in 12 lakes were investigated. Five EDCs, including 17-alpha-ethinylestradiol (17α-EE2), estrone (E1), β-estradiol (β-E2), estriol (E3) and bisphenol A (BPA) were detected in surface waters. The distribution of EDC content in the lakes was ordered as follows: exurban zone < suburban area < urban areas. The pollution sources in remote lakes mainly included agricultural and aquaculture wastewater, while those in suburban and urban areas included domestic or industrial wastewater. Areas with higher EDC content were frequently related to agricultural activities, aquaculture water or dense populations. Water quality parameters, including dissolved oxygen, pH and water temperature, were significantly related to the occurrence and distribution of EDCs in the lakes. Risk assessment demonstrated that the occurrence of EDCs posed minimum to medium risk to aquatic organisms in the lakes. The results showed that the lakes faced a threat hormone pollution though it was at lower doses and, thus, the ecological risk of EDCs should be considered in future environmental policies and decisions in China.
Collapse
|
23
|
Zatrochová S, Martínez-Pérez-Cejuela H, Catalá-Icardo M, Simó-Alfonso EF, Lhotská I, Šatínský D, Herrero-Martínez JM. Development of hybrid monoliths incorporating metal–organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples. Mikrochim Acta 2022; 189:92. [PMID: 35132465 PMCID: PMC8821068 DOI: 10.1007/s00604-022-05208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
A novel coating based on hybrid monolith with metal–organic framework (MOF) onto conventional Teflon-coated magnetic stir bars was developed. For this purpose, the external surface of the Teflon stir bar was firstly vinylized in order to immobilize a glycidyl methacrylate (GMA)–based polymer onto the magnet. Then, an amino-modified MOF of type MIL-101 (NH2-MIL-101(Al)) was covalently attached to the GMA-based monolith. After the synthesis process, several parameters affecting extraction of target estrogens by stir bar sorptive extraction (SBSE) including pH, ionic strength, extraction time, stirring rate, desorption solvent, and desorption time were also investigated. The resulting hybrid monolith was evaluated as SBSE sorbent for extraction of three estrogens (estrone, 17β-estradiol, estriol) and synthetic 17β-ethinylestradiol from water and human urine samples followed by HPLC with fluorescence detection (excitation and emission wavelengths, 280 and 310 nm, respectively). Under the optimal experimental conditions, the analytical figures of the method were established, achieving satisfactory limits of detection in the range of 0.015–0.58 µg L−1, recovery results ranging from 70 to 95% with RSD less than 6%, and precision values (intra- and inter-extraction units) below 6%.
Collapse
|
24
|
Goeury K, Vo Duy S, Munoz G, Prévost M, Sauvé S. Assessment of automated off-line solid-phase extraction LC-MS/MS to monitor EPA priority endocrine disruptors in tap water, surface water, and wastewater. Talanta 2022; 241:123216. [PMID: 35042051 DOI: 10.1016/j.talanta.2022.123216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
EPA method 539.1 recently introduced an expanded list of priority endocrine-disrupting compounds (EDCs), some of which were also included in the Unregulated Contaminant Monitoring Rule 3 (UCMR3). Though standardized methods are available for drinking water, analysis of steroid hormones and bisphenol A (BPA) at the ultra-trace level remains challenging. This study set out to evaluate the suitability of automated off-line solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the determination of EPA-priority EDCs in environmental water matrixes (tap water, surface water, and wastewater influents and effluents). The target molecules included 14 steroid hormones (altrenogest, androstenedione, equilenin, equilin, α-estradiol, β-estradiol, estriol, estrone, ethinylestradiol, levonorgestrel, medroxyprogesterone, norethindrone, progesterone, testosterone) and BPA. Factors that may influence the analytical performance were assessed. This involved, for instance, testing combinations of SPE materials from different brands and protocol variations. Several materials presented absolute extraction efficiencies in acceptable ranges. Initial sample pH, nature of reconstitution medium, and mobile phase salt concentration were among the potential factors affecting analyte signal. Storage conditions (different preservative agents) possibly exerted the strongest influence, in agreement with the literature. Limits of detection were in the range of 0.03-0.5 ng/L in drinking water, 0.1-0.5 ng/L in surface water, and 0.16-1 ng/L in wastewater. Method validation also involved testing linearity, accuracy, and precision in reagent water and matrix-matched extracted calibrants. The method was applied to field-collected water samples in Eastern Canada. Summed EDC concentrations remained low in tap water (<LOQ-0.92 ng/L), while higher detection frequencies and contamination levels were reported in riverine surface waters (2.6-37 ng/L) and municipal wastewaters (10-424 ng/L).
Collapse
Affiliation(s)
- Ken Goeury
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada; Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Michèle Prévost
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
25
|
Crini G, Bradu C, Fourmentin M, Cosentino C, Ribeiro ARL, Morin-Crini N. Sorption of 4-n-nonylphenol, 4-n-octylphenol, and 4-tert-octyphenol on cyclodextrin polymers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:171-181. [PMID: 34014475 DOI: 10.1007/s11356-021-14435-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Alkylphenols are industrial pollutants commonly present in wastewater. They are difficult to eliminate by conventional treatment processes, ending up in the sludge of wastewater treatment plants. In this study, we propose to use cross-linked cyclodextrin-based polymers (ECP) as sorbents to treat three alkylphenols, namely, one nonylphenol (4-n-NP) and two octylphenols (4-n-OP and 4-tert-OP), present in aqueous solution by a batch method. The experiments were carried out with five cyclodextrin polymers (α-ECP, β-ECP, γ-ECP, α,β,γ-ECP, and HP-β-ECP). Sorption results showed that all polymers, with the exception of α-ECP, had high sorption capacities between 60 and 100% of the alkylphenols in the concentration range studied (between 25 and 100 μg/L). In all cases, HP-β-ECP has shown the highest removals, regardless of the structure of the molecule. The order obtained was HP-β-ECP >> β-ECP ~ α,β,γ-ECP >> γ-ECP > α-ECP. The 4-tert-OP compound was the best adsorbed, regardless the material and the solution studied. Sorption results also indicated that (i) the sorption efficiency decreased with the increasing of alkylphenol concentration; (ii) sodium chloride had a strong negative effect on the sorption process; and (iii) the performance remained unchanged after five sorption-regeneration cycles. The main sorption mechanism of alkylphenols occurring in ECP was the inclusion within the cyclodextrin cavities. The obtained results proved that cyclodextrin polymers could serve as efficient sorbents for the removal of alkylphenols from real effluents.
Collapse
Affiliation(s)
- Grégorio Crini
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
| | - Corina Bradu
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
- PROTMED Centre, 050663, Bucharest, Romania
| | - Marc Fourmentin
- Laboratoire de Physico-Chimie de l'Atmosphère MREI2, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Cesare Cosentino
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France
- Istituto di Chimica e Biochimica G. Ronzoni, 81 via G. Colombo, 20133, Milan, Italy
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Nadia Morin-Crini
- Chrono-environnement, Université Bourgogne Franche-Comté, UMR 6249, 16 route de Gray, 25000, Besançon, France.
| |
Collapse
|
26
|
Guo J, Mo J, Qi Q, Peng J, Qi G, Kanerva M, Iwata H, Li Q. Prediction of adverse effects of effluents containing phenolic compounds in the Ba River on the ovary of fish (Hemiculter leucisculus) using transcriptomic and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149554. [PMID: 34467927 DOI: 10.1016/j.scitotenv.2021.149554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to evaluate the endocrine disrupting effects on the ovarian development of sharpbelly (Hemiculter leucisculus) caused by effluents containing phenolic compounds. This was achieved using integrated transcriptomic and metabolomic analyses, along with histopathological examinations. Sharpbelly, an indigenous freshwater fish widely distributed in East Asia, were collected by pole fishing from three sampling sites in the Ba River. These sampling sites include a mid-stream site near a wastewater outfall and a reference site located upstream and a far field comparison site located downstream. In sharpbelly collected near the wastewater discharge, the oocyte development was activated, compared to the other two sites. Histopathological alterations in the fish ovaries were likely due to the upregulated steroid hormone biosynthesis process, as suggested by the differentially expressed genes (e.g., hsd3b, hsd17b1) and differentially accumulated metabolites (e.g., pregnenolone). Additionally, under the stress of effluents containing phenolic compounds, genes related to the signaling pathways for oxidative phosphorylation and leukocyte transendothelial migration were dysregulated, suggesting the potential induction of inflammation and several ovarian diseases. Overall, these findings suggest that effluents containing phenolic compounds influence ovary development and reproductive function of female sharpbelly. Whether there is any resulting dysfunction of folliculogenesis, abnormality of ovulation, production of premature eggs and/or potential induction of ovarian cancers remains to be determined by further studies, for a better evaluation on effluents containing phenolic compounds to the fish fertility and the health of their offspring, and even the stability of the wild fish population. Notably, the integration of transcriptomics and metabolomics can complement the routine chemical analysis to comprehensively monitor the effects of wastewater treatment plant effluents on the health of wild fish.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Guizeng Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
27
|
Chang R, Ma C, Yu C, Zhang Q, Li Y, You J, Zhang S. Analysis of estrogens in milk samples using ionic liquid-modified covalent organic framework and stable isotope labeling technique. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Ferreira MF, Lo Nostro FL, Fernández DA, Genovese G. Endocrine disruption in the sub Antarctic fish Patagonotothen tessellata (Perciformes, Notothenidae) from Beagle Channel associated to anthropogenic impact. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105478. [PMID: 34562790 DOI: 10.1016/j.marenvres.2021.105478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Situated in the sub-Antarctic region, Beagle Channel represents a unique marine ecosystem due to the connection between the Pacific and the Atlantic Oceans, and its proximity to the Antarctic Peninsula. Ushuaia city, the biggest settlement on the channel, exerts an increasing anthropogenic pressure by discharges of urban and industrial effluents. In the present work, we use Patagonotothen tessellata, one of the most abundant and widespread species in the channel, as a bioindicator species in order to evidence anthropic impact from Ushuaia Bay and surrounding areas. We first analyzed and characterized real time gene expression of androgen receptor, estrogen receptor and different forms of vitellogenin (VTG), under laboratory conditions. This was achieved by induction with estradiol of P. tessellata males. Then, the selected genes were used as biomarkers for an environmental biomonitoring study. Morphometric indices and circulating sex steroids (estradiol and testosterone) were also quantified in male fish collected from different sites. The qPCR analysis showed that vtgAb form is more inducible than vtgAa or vtgC forms after estrogen induction. The field survey revealed the up-regulation of vtgAb and the androgen receptor in fish from sites with higher anthropogenic influence. Sex steroids followed seasonal variations according to their reproductive cycle, with higher levels of estradiol and testosterone in winter and summer seasons. The use of biomarkers such as gene expression of VTG demonstrates that fish from Ushuaia Bay are likely to be exposed to endocrine disrupting compounds. To our knowledge, this research is the first attempt to assess the endocrine disruption associated to anthropic impact in a widespread fish of the Beagle Channel and contributes to a better understanding of the reproductive physiology of sub Antarctic ichthyofauna.
Collapse
Affiliation(s)
- Maria Florencia Ferreira
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina.
| | - Daniel A Fernández
- Universidad Nacional de Tierra Del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA-UNTDF), Ushuaia, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET), Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Ushuaia, Argentina
| | - Griselda Genovese
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| |
Collapse
|
29
|
Li D, Liang W, Feng X, Ruan T, Jiang G. Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Su C, Song Q, Jiang D, Dong C, Shan X, Chen Z. An electrochemiluminescence aptasensor for diethylstilbestrol assay based on resonance energy transfer between Ag 3PO 4-Cu-MOF(II) and silver nanoparticles. Analyst 2021; 146:4254-4260. [PMID: 34100481 DOI: 10.1039/d1an00599e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel electrochemiluminescence (ECL) aptasensor based on the resonance energy transfer (RET) effect between Ag3PO4-Cu-MOF (ii) and silver nanoparticles (Ag NPs) is proposed. The ECL emission spectra of Ag3PO4-Cu-MOF and the ultraviolet absorption spectra of Ag NPs showed a good spectral overlap. Based on this, we designed an "on-off-on" ECL sensing strategy for the sensitive and specific detection of diethylstilbestrol (DES). Under the optimal conditions, the linear range of the sensor for DES detection was 1.0 × 10-12-1.0 × 10-4 M, with a detection limit of 7.2 × 10-13 M (S/N = 3). The method showed simple and fast operation, high sensitivity and selectivity, a strong anti-interference ability and good stability. More importantly, the developed aptasensor exhibited excellent recognition towards residual DES in actual water samples. The sensor has superior measurement capability and potential application value in the field of environment water quality monitoring.
Collapse
Affiliation(s)
- Chang Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Qingyuan Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Chunping Dong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
31
|
Song Y, Feng XS. Sample Preparation and Analytical Methods for Steroid Hormones in Environmental and Food Samples: An Update Since 2012. Crit Rev Anal Chem 2021; 53:69-87. [PMID: 34152888 DOI: 10.1080/10408347.2021.1936446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Steroid hormones (SHs) have been widely used over the past few decades as both human and veterinary drugs to prevent or treat infectious diseases and anti-inflammatory benefits in clinical. Unfortunately, their residues in foodstuffs and environmental samples can produce adverse effects on human and animal life such as disrupting the endocrine system. For these reasons, sensitive, simple and efficient methods have been developed for the determination of these compounds in various matrices. This critical review summarized the articles published in the period from 2012 to 2019 and can be used to help researchers to understand development of the sample pretreatment protocols and analytical methods used to detect SHs. The developed extraction and purification techniques used for steroids in different samples, such as cloud point extraction, solid phase extraction based on different novel materials, microextraction methods, QuEChERS and other methods are summarized and discussed. Analytical methods used to quantify these compounds, such as different chromatography methods, electrochemical methods, as well as other methods, are illustrated and compared. We focused on the latest advances in SHs pretreatment, and the application of new technologies in SHs analysis.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. WATER 2021. [DOI: 10.3390/w13101347] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting compounds (EDCs) as emerging contaminants have accumulated in the aquatic environment at concentration levels that have been determined to be significant to humans and animals. Several compounds belong to this family, from natural substances (hormones such as estrone, 17-estradiol, and estriol) to synthetic chemicals, especially pesticides, pharmaceuticals, and plastic-derived compounds (phthalates, bisphenol A). In this review, we discuss recent works regarding EDC occurrence in the aquatic compartment, strengths and limitations of current analytical methods used for their detection, treatment technologies for their removal from water, and the health issues that they can trigger in humans. Nowadays, many EDCs have been identified in significant amounts in different water matrices including drinking water, thus increasing the possibility of entering the food chain. Several studies correlate human exposure to high concentrations of EDCs with serious effects such as infertility, thyroid dysfunction, early puberty, endometriosis, diabetes, and obesity. Although our intention is not to explain all disorders related to EDCs exposure, this review aims to guide future research towards a deeper knowledge of EDCs’ contamination and accumulation in water, highlighting their toxicity and exposure risks to humans.
Collapse
|
33
|
Omar TFT, Aris AZ, Yusoff FM. Multiclass analysis of emerging organic contaminants in tropical marine biota using improved QuEChERS extraction followed by LC MS/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Glassy Carbon Electrode Modified with C/Au Nanostructured Materials for Simultaneous Determination of Hydroquinone and Catechol in Water Matrices. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9050088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The simultaneous determination of hydroquinone and catechol was conducted in aqueous and real samples by means of differential pulse voltammetry (DPV) using a glassy carbon electrode modified with Gold Nanoparticles (AuNP) and functionalized multiwalled carbon nanotubes by drop coating. A good response was obtained in the simultaneous determination of both isomers through standard addition to samples prepared with analytical grade water and multivariate calibration by partial least squares (PLS) in winery wastewater fortified with HQ and CT from 4.0 to 150.00 µM. A sensitivity of 0.154 µA µM−1 and 0.107 µA µM−1, and detection limits of 4.3 and 3.9 µM were found for hydroquinone and catechol, respectively. We verified the reliability of the developed method by simultaneously screening analytes in spiked tap water and industrial wastewater, achieving recoveries over 80%. In addition, this paper demonstrates the applicability of chemometric tools for the simultaneous quantification of both isomers in real matrices, obtaining prediction errors of lower than 10% in fortified wastewater.
Collapse
|
35
|
Xu W, Hu Y, Wu M, Miao E, Zhou H, Zhang X, Zhan J. Determination of phenolic compounds in estuary water and sediment by solid-phase isotope dansylation coupled with liquid chromatography-high resolution mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1404-1411. [PMID: 33666211 DOI: 10.1039/d1ay00079a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A method consisting of solid-phase isotope dansylation (derivatization with dansyl chloride) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed for the quantitative analysis of phenolic compounds (phenols) in environmental samples. A magnetic-HLB (hydrophilic lipophilic balanced) material was synthesized and applied as an adsorbent in magnetic solid-phase extraction (MSPE) for the enrichment of the analytical targets. Furthermore, with the solid-phase isotope labeling, the desalting and removal of labeling residuals could be simplified over conventional in-solution labeling. In addition to overcoming the matrix effect by isotope dansylation, the sensitivity for the analysis of phenols by LC-HRMS was remarkably improved by over 100-fold. The method was systematically verified, and good accuracy (86.5-104.9%) and precision (<8.6% and <11.4% for intra- and inter-day, respectively) were achieved for the tested 15 phenols. The limits of detection (LODs) of this method were estimated to be 0.2-5 ng L-1 and 5-100 ng kg-1 in estuary water and sediment samples, respectively. With this method, samples collected from the Daliao River estuary (Panjin, China) were analyzed. It was found that all of the targeted phenols were detected at concentrations ranging from unquantifiable to 485 ng L-1 (the total concentration of analytes found in each sample were in the range 822-957 ng L-1) and unquantifiable to 1368 ng kg-1 (the total concentration of analytes found in each sample were in the range 2251-2992 ng kg-1) in water and sediment, respectively.
Collapse
Affiliation(s)
- Wenxue Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Trujillo-Rodríguez MJ, Gomila RM, Martorell G, Miró M. Microscale extraction versus conventional approaches for handling gastrointestinal extracts in oral bioaccessibility assays of endocrine disrupting compounds from microplastic contaminated beach sand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115992. [PMID: 33246769 DOI: 10.1016/j.envpol.2020.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The unified bioaccessibility method (UBM) was harnessed to assess in vitro oral bioaccessibility pools of dialkyl phthalate congeners (with methyl, -ethyl, -butylbenzyl, -n-butyl, -2-ethylhexyl, and -n-octyl moieties) and bisphenol A at the 17 μg g-1 level in beach sand contaminated with polyethylene microplastics. A variety of sample preparation approaches prior to the analysis of the UBM gastrointestinal extracts, including traditional methods (protein precipitation, liquid-liquid extraction, and solid-phase extraction) and dispersive liquid-liquid microextraction (DLLME) were comprehensively evaluated for clean-up and analyte enrichment. DLLME was chosen among all tested approaches on account of the high extraction efficiency (73-95%, excluding bis(2-ethylhexyl)phthalate and di-n-octyl phthalate), high sample throughput (∼7 min per set of samples), and environmental friendliness as demonstrated by the analytical eco-scale score of 83, and the green analytical procedure index pictogram with green/yellow labeling. The release of the less hydrophobic plastic-laden compounds (dimethyl phthalate, diethyl phthalate and bisphenol A) from the contaminated sample into the body fluids was significant, with bioaccessibility values ranging from 30 to 70%, and from 43 to 74% in gastric and gastrointestinal fluids, respectively, and with relative standard deviation < 17% in all cases. The majority of the compounds were leached during gastric digestion, likely as the combined action of the low pH and the gastric enzymes. The risk exposure analysis revealed that accumulation/concentration in the body fluids is potentially relevant for dimethyl phthalate, diethyl phthalate and bisphenol A, with relative accumulation ratios ranging from 1.1 ± 0.1 to 2.6 ± 0.4. The average daily intake values for the suite of compounds, corrected with the bioaccessibility fraction, ranged from 60 to 430 ng kg of body weight-1·day-1, in all cases, far below the tolerable daily intakes, thus indicating the lack of children health risk by ingestion of microplastic-laden sand with elevated concentrations of plasticizers.
Collapse
Affiliation(s)
- María J Trujillo-Rodríguez
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Rosa M Gomila
- Serveis Cientificotècnics, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E- 07122, Palma de Mallorca, Spain
| | - Gabriel Martorell
- Serveis Cientificotècnics, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E- 07122, Palma de Mallorca, Spain
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122, Palma de Mallorca, Spain.
| |
Collapse
|
37
|
Endocrine Disrupting Compounds Removal Methods from Wastewater in the United Kingdom: A Review. SCI 2021. [DOI: 10.3390/sci3010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) are contaminants with estrogenic or androgenic activity that negatively impact human and animal communities. These compounds have become one of the most significant concerns for wastewater treatment in recent decades. Several studies have evaluated EDC removal methods from wastewater across the globe, including the United Kingdom (UK). Accordingly, the current study reviews EDC removal methods from municipal/domestic wastewater in the United Kingdom (UK) for the period of 2010–2017. The current study analysed original research articles (250), review articles (52), short communication (43), and other associated documents via the ScienceDirect.com database. A total of 25 published articles, which covered EDC removal methods from UK wastewaters, were reviewed rigorously. The research highlights that despite the relative efficacy of existing chemical and physical methods for removing certain EDCs from wastewater, there is emerging evidence supporting the need for more widespread application of nature-based and biological approaches, particularly the use of biofilms. The analysis reveals that there have been relatively few research studies on EDC removal methods carried out in the UK in the 2010–2017 period. Only four papers addressed the removal of specific endocrine disrupting compounds from UK municipal wastewater, and none of the studies addressed EDC removal by using direct biofilms. Finally, this review suggests that more research is needed to remove EDCs, particularly through the application of biofilms, from municipal wastewater in current scenarios.
Collapse
|
38
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
de Oliveira PV, Zanella I, Bulhões LOS, Fagan SB. Adsorption of 17 β- estradiol in graphene oxide through the competing methanol co-solvent: Experimental and computational analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Zhao W, Jing X, Tian Y, Feng C. Magnetic Fe3O4 @ porous activated carbon effervescent tablet-assisted deep eutectic solvent-based dispersive liquid–liquid microextraction of phenolic endocrine disrupting chemicals in environmental water. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Zhang K, Zhang Z, Hu Z, Zeng F, Chen C, Yang X, Li Y. Bacterial community composition and function succession under aerobic and anaerobic conditions impacts the biodegradation of 17β-estradiol and its environmental risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115155. [PMID: 32871481 DOI: 10.1016/j.envpol.2020.115155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The widespread detection of 17β-estradiol (E2) in the environment has become an emerging concern worldwide due to its endocrine disrupting effects. This work focuses on the aerobic and anaerobic biodegradations of E2 in various sedimentary environments with different availabilities of electron acceptors, including O2, NO3-, Fe3+, SO42-, or HCO3-. The highest removal efficiency (98.9%) and shortest degradation half-life of E2 (t1/2 = 5.0 d) were achieved under aerobic condition, followed by nitrate-reducing, ferric-reducing, sulfate-reducing and methanogenic conditions. We propose four different degradation pathways of E2 based on the metabolites identified under various redox conditions. Although most of E2 was effectively removed under aerobic condition, the potential environmental risk still needs to be considered due to the residual estrogenic activity induced by estrone (E1) formation. The endocrine-disrupting activities, as indicated by estradiol equivalent (EEQ) values, were related to E2 degradation rate and metabolite formation. We further analyzed the succession of bacterial community compositions and functions using Illumina HiSeq sequencing and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The findings herein evidenced that bacterial community compositions and metabolic functions associated with different redox conditions impact the biodegradation of E2 and its endocrine-disrupting activity. This knowledge will be useful in predicting the environmental fates of estrogenic hormones in various sedimentary environments and aid in establishing appropriate strategies for eliminating potential environmental risks.
Collapse
Affiliation(s)
- Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Feifan Zeng
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| |
Collapse
|
42
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
43
|
Rodrigues MF, Pereira I, Morais RL, Lobón GS, Gil EDS, Vaz BG. A New Strategy for the Analysis of Steroid Hormones in Industrial Wastewaters by Paper Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2250-2257. [PMID: 32930580 DOI: 10.1021/jasms.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new approach using paper spray ionization mass spectrometry (PSI-MS) for the analysis of steroid hormones in wastewater samples has been demonstrated. Triangular papers containing paraffin barriers as microfluidic channels were used to direct the sample solution to the paper tip, preventing the sample from spreading over the corners of the paper. The method was used to analyze the hormones levonorgestrel and algestone acetophenide in industrial wastewaters. Analytical curves presented a correlation coefficient (R2) above 0.99. Limits of quantification were below 2.3 ppm and limits of detection below 0.7 ppm. Values of precision (coefficient of variation) and accuracy (relative error) were less than 15% for all analyses. Recovery results ranged from 82% to 102%. Levonorgestrel was also analyzed by high-performance liquid chromatography coupled to mass spectrometry in order to compare the analytical performance with PSI-MS. No statistically significant differences were found between both methods. This study demonstrates the usefulness of PSI-MS for rapid analysis of hormones in industrial wastewater samples and also indicates its potential to be employed as a simple and reliable analytical method in environmental sciences.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Ruiter Lima Morais
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Gérman Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| |
Collapse
|
44
|
Cardoso RM, Dallegrave A, Becker RW, Araújo DS, Sirtori C. Economically feasible strategy for confirmation of pharmaceuticals in hospital effluent using screening analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4691-4697. [PMID: 32969417 DOI: 10.1039/d0ay01397h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The contamination of aquatic systems by pharmaceuticals has received considerable attention in recent decades, because these substances are increasingly detected in the environment. This is due to the abundant use of pharmaceuticals by the population and, consequently, their constant introduction into aquatic systems through domestic, industrial, and hospital wastewaters. Hospital effluents have highly complex compositions and present potential toxicity towards the environment. In this work, a screening methodology was developed to evaluate the occurrence of pharmaceutical products in hospital wastewater, using a viable, easy, and economical strategy employing commercial pharmaceutical compounds for screening analysis. Six samplings of hospital wastewater were carried out monthly (from winter until summer). The samples were filtered and pre-concentrated/extracted using solid phase extraction (SPE). The pharmaceuticals screening procedure required the construction of two databases, one for each ionization mode (positive and negative), which contained information that allowed the identification of the presence of these pharmaceuticals in the studied samples. Commercial pharmaceutical compounds were used as analytical standards. Based on this strategy and, using liquid chromatography coupled to high resolution mass spectrometry, it was possible to screen 110 pharmaceuticals and, from these, to confirm the presence of 38 pharmaceuticals in analyzed samples. These results indicate the analytes that should be taken into account in the further development of quantitative methods for pharmaceutical analysis.
Collapse
Affiliation(s)
- Renata M Cardoso
- Instituto de Química, UFRGS, Av. Bento Gonçalves, Porto Alegre, 9500, RS, Brazil.
| | | | | | | | | |
Collapse
|
45
|
Ma C, Zhang S, Wu X, You J. Permanently Positively Charged Stable Isotope Labeling Agents and Its Application in the Accurate Quantitation of Alkylphenols Migrated from Plastics to Edible Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9024-9031. [PMID: 32697581 DOI: 10.1021/acs.jafc.0c03413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new permanently positively charged stable isotope labeling (SIL) agent pair, 4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)-N,N,N-trimethylbenzenaminium iodide(DPTBA) and its deuterated counterpart d3-DPTBA, was designed and synthesized. The SIL agents were applied to the liquid chromatography-tandem mass spectrometry analysis of alkylphenols. Light labeled standards and heavy labeled samples were mixed and analyzed simultaneously. Matrix effect which mainly occurred during the ionization process was minimized because of the identical ionization processes between samples and standards. Meanwhile, derivatization made alkylphenols be positively charged, and thus the sensitivity was enhanced. The limits of detection were in the range of 1.5-1.8 ng/L, and the limits of quantitation were in the range of 4.8-6.1 ng/L. The developed method was applied to analyze alkylphenols migrated from plastics to edible oils. The recoveries for all analytes were in the range of 88.6-95.3%, while the matrix effects for all analytes were in the range of 96.2-99.6%.
Collapse
Affiliation(s)
- Chong Ma
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, PR China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, PR China
| | - Xia Wu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, PR China
| | - Jinmao You
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, PR China
| |
Collapse
|
46
|
Fenske L, Concato AC, Vanin AP, Tamagno WA, de Oliveira Sofiatti JR, Treichel H, da Rosa JGS, Barcellos LJG, Kaizer RR. 17-α-Ethinylestradiol modulates endocrine and behavioral responses to stress in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29341-29351. [PMID: 32440876 DOI: 10.1007/s11356-020-09318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The synthetic estrogen, 17-α-ethinylestradiol (EE2), present in contraceptive pills, is an endocrine-disrupting chemical (EDC) that can be found in the aquatic environment. We examined the impacts of EE2 on zebrafish behavioral and physiological responses through the novel tank test (NTT), which measures anxiety-like behavior; the mirror-induced aggression (MIA) test, which measures aggressiveness; and the social preference test (SPT), which measures social cohesion. The steroid hormone levels were also measured. Here, we show that exposure to EE2 impairs stress responses by regulating the levels of specific hormones and eliciting an anxiolytic response, increasing aggression, and reducing social preference in zebrafish. In nature, these changes in behavior compromise reproduction and anti-predator behaviors, which, in turn, affects species survival. The maintenance of an intact behavioral repertoire in zebrafish is essential for their survival. Thus, our results point to the danger of environmental contamination with EE2 as it may alter the dynamics of the prey-predator relationship.
Collapse
Affiliation(s)
- Lurian Fenske
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Ani Carla Concato
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Ana Paula Vanin
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Wagner Antonio Tamagno
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Jéssica Reis de Oliveira Sofiatti
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Helen Treichel
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | | | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rosilene R Kaizer
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil.
| |
Collapse
|
47
|
Huang Y, Su L, Zhang S, Zhao Q, Zhang X, Li X, Li H, Liu L, Chen J, Wei X. Opposite pH-dependent roles of hydroxyl radicals in ozonation and UV photolysis of genistein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136243. [PMID: 31884282 DOI: 10.1016/j.scitotenv.2019.136243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Phytoestrogens were frequently detected in municipal or industrial wastewater, and raised great attentions due to potential risks to humans or organisms. Until now, transformation mechanisms of phytoestrogens in advanced wastewater treatments were largely unknown. Here, pH influence mechanisms on transformations of phytoestrogens during two typical advanced wastewater treatments (ozonation and photolysis) were investigated, employing genistein (Gs) as a case. Removal efficiencies of Gs decreased significantly with increases of pH during ozonation, while photolytic rates increased by 44 or 200 times from pH 4.9 to 11.6 under irradiations without or with UVC. pH increases caused both dissociation of Gs and formation of hydroxyl radicals (OH) in ozonation or photolysis, however, led to opposite changes to degradation rates. This was because that OH played negatively as a competitor for O3 in ozonation, but acted as an accelerating species inducing self-sensitized photooxidation of Gs under UV light. Ozonation and photolytic products of Gs were similar at pH 4.9 or 8.6, but were totally different at pH 11.6. Most of the transformation products maintained isoflavone structures, and might possess phytoestrogenic effects. This study provided a deep insight into the pH influencing mechanism on typical advanced wastewater treatment processes of phytoestrogens. MAIN FINDING OF THE WORK: Opposite pH-dependent degradation mechanisms caused by hydroxyl radicals (OH) were elucidated for ozonation and UV photolysis of phytoestrogens, taking genistein as a case.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Lihao Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
48
|
Sacdal R, Madriaga J, Espino MP. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. ENVIRONMENTAL RESEARCH 2020; 182:109091. [PMID: 31927242 DOI: 10.1016/j.envres.2019.109091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Hormones are natural and synthetic compounds that are now being detected in the aquatic environment. Many lakes in Asia are important water sources that may be affected by these emerging contaminants. Lakes are drains and reservoirs of watersheds that are altered by changing land use and environmental conditions. While there are several studies on the detection of hormones in lakes, these studies were mostly done in China. Limited information is available on the presence of these contaminants in the lakes in other Asian countries. Hormones in the lake water come from discharge waters in urban areas, farm runoffs, and effluents of wastewater and sewage treatment plants. Hormones contamination in water has been shown to affect the reproduction and growth of certain aquatic organisms. In this review, a background on the chemical nature and physiological functions of hormones is provided and the existing knowledge on the occurrence and ecological impacts of hormones in lakes is described. The available analytical methods for sampling, analyte extraction and instrumental analysis are outlined. This overview provides insights on the current conditions of lakes that may be impacted by hormones contamination. Understanding the levels and possible ecological consequences will address the issues on these emerging contaminants especially in the Asian environment. This will elicit discussions on improving guidelines on wastewater discharges and will drive future research directions.
Collapse
Affiliation(s)
- Rosselle Sacdal
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Jonalyn Madriaga
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
49
|
Sadutto D, Álvarez-Ruiz R, Picó Y. Systematic assessment of extraction of pharmaceuticals and personal care products in water and sediment followed by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2020; 412:113-127. [DOI: 10.1007/s00216-019-02207-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 01/18/2023]
|
50
|
Xue M, Wu H, Liu S, Huang X, Jin Q, Ren R. Simultaneous determination of 44 pharmaceutically active compounds in water samples using solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2019; 412:203-222. [DOI: 10.1007/s00216-019-02229-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/01/2023]
|