1
|
Sharma A, Hossain NI, Thomas A, Sonkusale S. Saliva-Sensing Dental Floss: An Innovative Tool for Assessing Stress via On-Demand Salivary Cortisol Measurement with Molecularly Imprinted Polymer and Thread Microfluidics Integration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25083-25096. [PMID: 40244717 DOI: 10.1021/acsami.5c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
On-demand dental-floss-based point-of-care platform is developed for the noninvasive and real-time quantification of salivary cortisol utilizing redox-molecule embedded molecularly imprinted polymer structures and thread microfluidics. Herein, we explore the high-surface-area graphene-based electrode substrate for electrochemically synthesizing selective cortisol MIPs and integrate it with thread microfluidics to build a highly sensitive cortisol-sensing platform for stress monitoring. This platform uses flossing to collect and transport saliva to a flexible electrochemical sensor via capillary microfluidics, where cortisol, a stress biomarker, is measured. This strategy allowed us to detect cortisol as low as 0.048 pg mL-1 in real-time with a detection range of 0.10-10,000 pg mL-1 (R2 = 0.9916). The saliva-sensing dental floss provides results within 11-12 min. The thread-based microfluidic design minimizes interference and ensures consistent repeatability when testing both artificial and actual human saliva samples, yielding 98.64-102.4% recoveries with a relative standard deviation of 5.01%, demonstrating high accuracy and precision. For the human saliva sample (as part of the stress study), the platform showed a high correlation (r = 0.9910) against conventional ELISA assays. Combined with a wireless readout, this saliva floss offers a convenient way to monitor daily stress levels. It can be extended to detect other critical salivary biomarkers with high sensitivity and selectivity in complex environments.
Collapse
Affiliation(s)
- Atul Sharma
- Sonkusale Research Laboratories (SRLs), Advanced Technology Laboratory, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nafize Ishtiaque Hossain
- Sonkusale Research Laboratories (SRLs), Advanced Technology Laboratory, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ayanna Thomas
- Department of Psychology, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Sonkusale Research Laboratories (SRLs), Advanced Technology Laboratory, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Sunil N, Unnathpadi R, Seenivasagam RK, Abhijith T, Latha R, Sheen S, Pullithadathil B. Development of an AI-derived, non-invasive, label-free 3D-printed microfluidic SERS biosensor platform utilizing Cu@Ag/carbon nanofibers for the detection of salivary biomarkers in mass screening of oral cancer. J Mater Chem B 2025; 13:3405-3419. [PMID: 39935364 DOI: 10.1039/d4tb02766c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Developing a non-invasive and reliable tool for the highly sensitive detection of oral cancer is essential for its mass screening and early diagnosis, and improving treatment efficacy. Herein, we utilized a label-free surface enhanced Raman spectroscopy (SERS)-based biosensor composed of Cu@Ag core-shell nanoparticle anchored carbon nanofibers (Cu@Ag/CNFs) for highly sensitive salivary biomarker detection in oral cancer mass screening. This SERS substrate provided a Raman signal enhancement of up to 107 and a detection limit as low as 10-12 M for rhodamine 6G molecules. Finite-difference time-domain (FDTD) simulation studies on Cu@Ag/CNFs indicated an E-field intensity enhancement factor (|E|2/|E0|2) of 250 at the plasmonic hotspot induced between two adjacent Cu@Ag nanoparticles. The interaction of this strong E-field along with the chemical enhancement effects was responsible for such huge enhancement in the Raman signals. To realize the real capability of the developed biosensor in practical scenarios, it was further utilized for the detection of oral cancer biomarkers such as nitrate, nitrite, thiocyanate, proteins, and amino acids with a micro-molar concentration in saliva samples. The integration of SERS substrates with a 3D-printed 12-channel microfluidic platform significantly enhanced the reproducibility and statistical robustness of the analytical process. Moreover, AI-driven techniques were employed to improve the diagnostic accuracy in differentiating the salivary profiles of oral cancer patients (n1 = 56) from those of healthy controls (n2 = 60). Principal component analysis (PCA) was utilized for dimensionality reduction, followed by classification using a random forest (RF) algorithm, yielding a robust classification accuracy of 87.5%, with a specificity of 92% and sensitivity of 88%. These experimental and theoretical findings emphasize the real-world functionality of the present non-invasive diagnostic tool in paving the way for more accurate and early-stage detection of oral cancer in clinical settings.
Collapse
Affiliation(s)
- Navami Sunil
- Nanosensors and Clean Energy Laboratory, Department of Chemistry & Nanoscience and Technology, PSG Institute of Advanced Studies, Coimbatore-641004, India.
| | - Rajesh Unnathpadi
- Nanosensors and Clean Energy Laboratory, Department of Chemistry & Nanoscience and Technology, PSG Institute of Advanced Studies, Coimbatore-641004, India.
| | | | - T Abhijith
- Nanosensors and Clean Energy Laboratory, Department of Chemistry & Nanoscience and Technology, PSG Institute of Advanced Studies, Coimbatore-641004, India.
| | - R Latha
- Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore-641004, India
| | - Shina Sheen
- Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore-641004, India
| | - Biji Pullithadathil
- Nanosensors and Clean Energy Laboratory, Department of Chemistry & Nanoscience and Technology, PSG Institute of Advanced Studies, Coimbatore-641004, India.
| |
Collapse
|
4
|
Garcia-Junior MA, Andrade BS, Lima AP, Soares IP, Notário AFO, Bernardino SS, Guevara-Vega MF, Honório-Silva G, Munoz RAA, Jardim ACG, Martins MM, Goulart LR, Cunha TM, Carneiro MG, Sabino-Silva R. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. BIOSENSORS 2025; 15:75. [PMID: 39996977 PMCID: PMC11853606 DOI: 10.3390/bios15020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025]
Abstract
Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein's RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3-/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of -250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
Collapse
Affiliation(s)
- Marcelo Augusto Garcia-Junior
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Bruno Silva Andrade
- Department of Biological Sciences, Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia (UESB), Jequié 45205-490, Brazil;
| | - Ana Paula Lima
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Iara Pereira Soares
- Post-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, Brazil; (I.P.S.); (A.F.O.N.)
| | - Ana Flávia Oliveira Notário
- Post-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, Brazil; (I.P.S.); (A.F.O.N.)
| | - Sttephany Silva Bernardino
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Marco Fidel Guevara-Vega
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Ghabriel Honório-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | | | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil;
- Laboratory of Antiviral Research, Department of Microbiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil
| | - Mário Machado Martins
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Luiz Ricardo Goulart
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Thulio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil;
| | | | - Robinson Sabino-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| |
Collapse
|
5
|
Turco A, Primiceri E, Chiriacò MS, La Pesa V, Ferrara F, Riva N, Quattrini A, Romano A, Maruccio G. Advancing amyotrophic lateral sclerosis disease diagnosis: A lab-on-chip electrochemical immunosensor for ultra-sensitive TDP-43 protein detection and monitoring in serum patients'. Talanta 2024; 273:125866. [PMID: 38490025 DOI: 10.1016/j.talanta.2024.125866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
The global increase in population aging has led to a rise in neurodegenerative diseases (NDs), posing significant challenges to public health. Developing selective and specific biomarkers for early diagnosis and drug development is crucial addressing the growing burden of NDs. In this context, the RNA-binding protein TDP-43 has emerged as a promising biomarker for amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and TDP-43-associated proteinopathies. However, existing detection methods suffer from limitations such as cost, complexity, and operator dependence. Here, we present a novel electrochemical biosensor integrated into a lab-on-chip (LoC) platform to detect TDP-43. The sensor utilizes electrosynthesized polypyrrole derivatives with carboxylic groups for transducer functionalization, enabling targeted immobilization of TDP-43 antibodies. Differential pulsed voltammetry (DPV) is used for the indirect detection and quantification of TDP-43. The chip exhibits rapid response, good reproducibility, a linear detection range, and sensitivity from 0.01 ng/mL to 25 ng/mL of TDP-43 protein concentration with a LOD = 10 pg/mL. Furthermore, successful TDP-43 detection in complex matrices like serum of ALS patients and healthy individuals demonstrates its potential as a point-of-care diagnostic device. This electrochemical biosensor integrated into a chip offers good sensitivity, rapid response, and robust performance, providing a promising avenue for advancing neurodegenerative disease diagnostics and therapeutic development.
Collapse
Affiliation(s)
- Antonio Turco
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy; IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology, 20132, Milan, Italy
| | | | | | - Velia La Pesa
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology, 20132, Milan, Italy
| | - Francesco Ferrara
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy
| | - Nilo Riva
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology, 20132, Milan, Italy
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology, 20132, Milan, Italy
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology, 20132, Milan, Italy
| | - Giuseppe Maruccio
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy; Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Monteroni, 73100, Lecce, Italy
| |
Collapse
|
6
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
7
|
Zhao Y, Wang X, Sun T, Shan P, Zhan Z, Zhao Z, Jiang Y, Qu M, Lv Q, Wang Y, Liu P, Chen S. Artificial intelligence-driven electrochemical immunosensing biochips in multi-component detection. BIOMICROFLUIDICS 2023; 17:041301. [PMID: 37614678 PMCID: PMC10444200 DOI: 10.1063/5.0160808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Electrochemical Immunosensing (EI) combines electrochemical analysis and immunology principles and is characterized by its simplicity, rapid detection, high sensitivity, and specificity. EI has become an important approach in various fields, such as clinical diagnosis, disease prevention and treatment, environmental monitoring, and food safety. However, EI multi-component detection still faces two major bottlenecks: first, the lack of cost-effective and portable detection platforms; second, the difficulty in eliminating batch differences and accurately decoupling signals from multiple analytes. With the gradual maturation of biochip technology, high-throughput analysis and portable detection utilizing the advantages of miniaturized chips, high sensitivity, and low cost have become possible. Meanwhile, Artificial Intelligence (AI) enables accurate decoupling of signals and enhances the sensitivity and specificity of multi-component detection. We believe that by evaluating and analyzing the characteristics, benefits, and linkages of EI, biochip, and AI technologies, we may considerably accelerate the development of EI multi-component detection. Therefore, we propose three specific prospects: first, AI can enhance and optimize the performance of the EI biochips, addressing the issue of multi-component detection for portable platforms. Second, the AI-enhanced EI biochips can be widely applied in home care, medical healthcare, and other areas. Third, the cross-fusion and innovation of EI, biochip, and AI technologies will effectively solve key bottlenecks in biochip detection, promoting interdisciplinary development. However, challenges may arise from AI algorithms that are difficult to explain and limited data access. Nevertheless, we believe that with technological advances and further research, there will be more methods and technologies to overcome these challenges.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Xiaoai Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Tingting Sun
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Peng Shan
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Zhikun Zhan
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| |
Collapse
|
8
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
9
|
Liu M, He D, Liu Z, Hu C. Disposable solar microcell array-based addressable photoelectrochemical sensor for high-throughput and multiplexed analysis of salivary metabolites. Biosens Bioelectron 2023; 232:115312. [PMID: 37060863 DOI: 10.1016/j.bios.2023.115312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
The high-throughput detection of multiple metabolites in saliva by electrochemical sensors is usually a challenge, which however is essential to the comprehensive evaluation of health status or screening of diseases. Here, a light-addressable and paper-based hydrogen peroxide (H2O2) photoelectrochemical (PEC) sensor for the high-throughput detection of multiple salivary metabolites is reported. This sensor has a unique solar microcell array structure with a silver nanowires/fullerene-Congo red (AgNWs/C60-CR) disc working electrode (WE) and a single-walled carbon nanotubes/platinum nanowires (SWCNTs/PtNWs) ring reference/counter electrode (RE/CE) in each microcell. Enzymes of different metabolites are immobilized on different separated microcells of a cover slide over the sensor, from which enzymatically produced H2O2 can react with p-hydroxyphenyl boric acid (4-HPBA) on the WE of the sensor to generate hydroquinone (HQ) for photocurrent responses. Based on this strategy, a disposable PEC sensor of saliva was developed, which allows the multiplexed detection of uric acid (UA), glucose (GLU) and lactate (LA) in diluted human saliva with high sensitivity and selectivity. Moreover, the detection throughput and application field of the sensor can be easily extended by connecting a series of sensors in parallel or varying the enzymes. The present work thus establishes a cost-effective approach to the scalable construction of versatile biosensing platforms with tunable throughput and varied analytes.
Collapse
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Danting He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Yang M, Wang Y, Huang L, Jiang Y, Ke Y, Chen W, Yang L, Chen L, Duan Y. A Simple and Sensitive Electrochemical Sandwich‐Like Immunosensor for Interleukin‐8 Utilizing Carbon Black as a Sensing Platform and Silver‐Ferrocene as a Signal Amplifier. ChemistrySelect 2023. [DOI: 10.1002/slct.202203909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Miao Yang
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Yongjie Wang
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Lingling Huang
- Department of Stomatology The First Affiliated Hospital Fujian Medical University Fuzhou 350005 PR China
| | - Yuling Jiang
- Department of Stomatology Xiangyang No.1 People's Hospital Hubei University of Medicine Xiangyang 441053 PR China
| | - Yue Ke
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Wenjie Chen
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Lei Yang
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Lina Chen
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Yanjun Duan
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| |
Collapse
|
11
|
Aydın EB, Aydın M, Sezgintürk MK. Biosensors for saliva biomarkers. Adv Clin Chem 2023; 113:1-41. [PMID: 36858644 DOI: 10.1016/bs.acc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The analysis of salivary biomarkers has gained interest and is advantageous for simple, safe, and non-invasive testing in diagnosis as well as treatment. This chapter explores the importance of saliva biomarkers and summarizes recent advances in biosensor fabrication. The identification of diagnostic, prognostic and therapeutic markers in this matrix enables more rapid and frequent testing when combined with the use of biosensor technology. Challenges and future goals are highlighted and examined.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
12
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
13
|
Dong T, Matos Pires NM, Yang Z, Jiang Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205429. [PMID: 36585368 PMCID: PMC9951322 DOI: 10.1002/advs.202205429] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Indexed: 06/02/2023]
Abstract
The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.
Collapse
Affiliation(s)
- Tao Dong
- Department of Microsystems‐ IMSFaculty of TechnologyNatural Sciences and Maritime SciencesUniversity of South‐Eastern Norway‐USNP.O. Box 235Kongsberg3603Norway
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologyXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
14
|
Tamiya E, Osaki S, Tsuchihashi T, Ushijima H, Tsukinoki K. Point-of-Care Diagnostic Biosensors to Monitor Anti-SARS-CoV-2 Neutralizing IgG/sIgA Antibodies and Antioxidant Activity in Saliva. BIOSENSORS 2023; 13:167. [PMID: 36831933 PMCID: PMC9953869 DOI: 10.3390/bios13020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81-15,000 U/mL, salivary IgG: 3.4-330 U/mL, and salivary IgA: 58-870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.
Collapse
Affiliation(s)
- Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Shuto Osaki
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Hiromi Ushijima
- BioDevice Technology Ltd., 2-3 Asahidai, Nomi 923-1211, Ishikawa, Japan
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-0003, Kanagawa, Japan
| |
Collapse
|
15
|
Jiao S, Ma D, Cheng Z, Meng J. Super-Slippery Poly(Dimethylsiloxane) Brush Surfaces: From Fabrication to Practical Application. Chempluschem 2023; 88:e202200379. [PMID: 36650726 DOI: 10.1002/cplu.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Superwetting surfaces with special slippery performances have been the focus of practical applications and basic research for decades. Compared to superhydrophobic/superoleophobic and slippery liquid-infused porous surfaces (SLIPS), liquid-like covalently attached poly(dimethylsiloxane) (PDMS) brush surfaces have no trouble in constructing the micro/nanostructure and the loss of infused lubricant, meanwhile, it can also provide lots of new advantages, such as smooth, transparent, pressure- and temperature-resistant, and low contact angle hysteresis (CAH) to diverse liquids. This paper focuses on the relationship between the wetting performance and practical functional application of PDMS brush surfaces. Recent progress of the preparation of PDMS brush surfaces and their super-slippery performances, with a special focus on diverse functional applications were summarized. Finally, perspectives on future research directions are also discussed.
Collapse
Affiliation(s)
- Shouzheng Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Deping Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junhui Meng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
16
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Sodnom-Ish B, Eo MY, Myoung H, Lee JH, Kim SM. Next generation sequencing-based salivary biomarkers in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2022; 48:3-12. [PMID: 35221302 PMCID: PMC8890960 DOI: 10.5125/jkaoms.2022.48.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Selection of potential disease-specific biomarkers from saliva or epithelial tissues through next generation sequencing (NGS)-based protein studies has recently become possible. The early diagnosis of oral squamous cell carcinoma (OSCC) has been difficult, if not impossible, until now due to the lack of an effective OSCC biomarker and efficient molecular validation method. The aim of this study was to summarize the advances in the application of NGS in cancer research and to propose potential proteomic and genomic saliva biomarkers for NGS-based study in OSCC screening and diagnosis programs. We have reviewed four categories including definitions and use of NGS, salivary biomarkers and OSCC, current biomarkers using the NGS-based technique, and potential salivary biomarker candidates in OSCC using NGS.
Collapse
Affiliation(s)
- Buyanbileg Sodnom-Ish
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hoon Myoung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Ornelas-González A, Ortiz-Martínez M, González-González M, Rito-Palomares M. Enzymatic Methods for Salivary Biomarkers Detection: Overview and Current Challenges. Molecules 2021; 26:7026. [PMID: 34834116 PMCID: PMC8624596 DOI: 10.3390/molecules26227026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection is a key factor in patient fate. Currently, multiple biomolecules have been recognized as biomarkers. Nevertheless, their identification is only the starting line on the way to their implementation in disease diagnosis. Although blood is the biofluid par excellence for the quantification of biomarkers, its extraction is uncomfortable and painful for many patients. In this sense, there is a gap in which saliva emerges as a non-invasive and valuable source of information, as it contains many of the biomarkers found in blood. Recent technological advances have made it possible to detect and quantify biomarkers in saliva samples. However, there are opportunity areas in terms of cost and complexity, which could be solved using simpler methodologies such as those based on enzymes. Many reviews have focused on presenting the state-of-the-art in identifying biomarkers in saliva samples. However, just a few of them provide critical analysis of technical elements for biomarker quantification in enzymatic methods for large-scale clinical applications. Thus, this review proposes enzymatic assays as a cost-effective alternative to overcome the limitations of current methods for the quantification of biomarkers in saliva, highlighting the technical and operational considerations necessary for sampling, method development, optimization, and validation.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| |
Collapse
|
20
|
Arévalo B, Serafín V, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical immunosensor for the determination of prolactin in saliva and breast milk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Kavetskyy T, Alipour M, Smutok O, Mushynska O, Kiv A, Fink D, Farshchi F, Ahmadian E, Hasanzadeh M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
|
23
|
|
24
|
Yang C, Yang C, Li X, Zhang A, He G, Wu Q, Liu X, Huang S, Huang X, Cui G, Hu N, Xie X, Hang T. Liquid-like Polymer Coating as a Promising Candidate for Reducing Electrode Contamination and Noise in Complex Biofluids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4450-4462. [PMID: 33443399 DOI: 10.1021/acsami.0c18419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biosensors that can automatically and continuously track fluctuations in biomarker levels over time are essential for real-time sensing in biomedical and environmental applications. Although many electrochemical sensors have been developed to quickly and sensitively monitor biomarkers, their sensing stability in complex biofluids is disturbed by unavoidable nonspecific adhesion of proteins or bacteria. Recently, various substrate surface modification techniques have been developed to resist biofouling, yet functionalization of electrodes in sensors to be anti-biofouling is rarely achieved. Here, we report an integrated three-electrode system (ITES) modified with a "liquid-like" polydimethylsiloxane (PDMS) brush that can continuously and stably monitor reactive oxygen species (ROS) in complex fluids. Based on the slippery "liquid-like" coating, the modified ITES surface could prevent the adhesion of various liquids as well as the adhesion of proteins and bacteria. The "liquid-like" coating does not significantly affect the sensitivity of the electrode in detecting ROS, while the sensing performance could remain stable and free of bacterial attack even after 3 days of incubation with bacteria. In addition, the PDMS brush-modified ITES (PMITES) could continuously record ROS levels in bacterial-rich fluids with excellent stability over 24 h due to the reduced bacterial contamination on the electrode surface. This technique offers new opportunities for continuous and real-time monitoring of biomarkers that will facilitate the development of advanced sensors for biomedical and environmental applications.
Collapse
Affiliation(s)
- Chengduan Yang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Yang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangling Li
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Zhang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Gen He
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinshuo Huang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guofeng Cui
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tian Hang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
25
|
Borràs‐Brull M, Blondeau P, Riu J. Characterization and Validation of a Platinum Paper‐based Potentiometric Sensor for Glucose Detection in Saliva. ELECTROANAL 2021. [DOI: 10.1002/elan.202060221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marta Borràs‐Brull
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Jordi Riu
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| |
Collapse
|
26
|
Goldoni R, Farronato M, Connelly ST, Tartaglia GM, Yeo WH. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021; 171:112723. [PMID: 33096432 PMCID: PMC7666013 DOI: 10.1016/j.bios.2020.112723] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
As biosensing research is rapidly advancing due to significant developments in materials, chemistry, and electronics, researchers strive to build cutting-edge biomedical devices capable of detecting health-monitoring biomarkers with high sensitivity and specificity. Biosensors using nanomaterials are highly promising because of the wide detection range, fast response time, system miniaturization, and enhanced sensitivity. In the recent development of biosensors and electronics, graphene has rapidly gained popularity due to its superior electrical, biochemical, and mechanical properties. For biomarker detection, human saliva offers easy access with a large variety of analytes, making it a promising candidate for its use in point-of-care (POC) devices. Here, we report a comprehensive review that summarizes the most recent graphene-based nanobiosensors and oral bioelectronics for salivary biomarker detection. We discuss the details of structural designs of graphene electronics, use cases of salivary biomarkers, the performance of existing sensors, and applications in health monitoring. This review also describes current challenges in materials and systems and future directions of the graphene bioelectronics for clinical POC applications. Collectively, the main contribution of this paper is to deliver an extensive review of the graphene-enabled biosensors and oral electronics and their successful applications in human salivary biomarker detection.
Collapse
Affiliation(s)
- Riccardo Goldoni
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marco Farronato
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Stephen Thaddeus Connelly
- Department of Oral & Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gianluca Martino Tartaglia
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA; Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
27
|
Anastasiadi RM, Berti F, Colomban S, Tavagnacco C, Navarini L, Resmini M. Simultaneous Quantification of Antioxidants Paraxanthine and Caffeine in Human Saliva by Electrochemical Sensing for CYP1A2 Phenotyping. Antioxidants (Basel) 2020; 10:antiox10010010. [PMID: 33374269 PMCID: PMC7823619 DOI: 10.3390/antiox10010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The enzyme CYP1A2 is responsible for the metabolism of numerous antioxidants in the body, including caffeine, which is transformed into paraxanthine, its main primary metabolite. Both molecules are known for their antioxidant and pro-oxidant characteristics, and the paraxanthine-to-caffeine molar ratio is a widely accepted metric for CYP1A2 phenotyping, to optimize dose–response effects in individual patients. We developed a simple, cheap and fast electrochemical based method for the simultaneous quantification of paraxanthine and caffeine in human saliva, by differential pulse voltammetry, using an anodically pretreated glassy carbon electrode. Cyclic voltammetry experiments revealed for the first time that the oxidation of paraxanthine is diffusion controlled with an irreversible peak at ca. +1.24 V (vs. Ag/AgCl) in a 0.1 M H2SO4 solution, and that the mechanism occurs via the transfer of two electrons and two protons. The simultaneous quantification of paraxanthine and caffeine was demonstrated in 0.1 M H2SO4 and spiked human saliva samples. In the latter case, limits of detection of 2.89 μM for paraxanthine and 5.80 μM for caffeine were obtained, respectively. The sensor is reliable, providing a relative standard deviation within 7% (n = 6). Potential applicability of the sensing platform was demonstrated by running a small scale trial on five healthy volunteers, with simultaneous quantification by differential pulse voltammetry (DPV) of paraxanthine and caffeine in saliva samples collected at 1, 3 and 6 h postdose administration. The results were validated by ultra-high pressure liquid chromatography and shown to have a high correlation factor (r = 0.994).
Collapse
Affiliation(s)
- Rozalia-Maria Anastasiadi
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (R.-M.A.); (M.R.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (C.T.)
| | - Silvia Colomban
- Aromalab, illycaffè S.p.A., Area Science Park, Localita’ Padriciano 99, 34149 Trieste, Italy; (S.C.); (L.N.)
| | - Claudio Tavagnacco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (C.T.)
| | - Luciano Navarini
- Aromalab, illycaffè S.p.A., Area Science Park, Localita’ Padriciano 99, 34149 Trieste, Italy; (S.C.); (L.N.)
| | - Marina Resmini
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (R.-M.A.); (M.R.)
| |
Collapse
|
28
|
Hamid H, Khurshid Z, Adanir N, Zafar MS, Zohaib S. COVID-19 Pandemic and Role of Human Saliva as a Testing Biofluid in Point-of-Care Technology. Eur J Dent 2020; 14:S123-S129. [PMID: 32492721 PMCID: PMC7775213 DOI: 10.1055/s-0040-1713020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) outbreak has termed as a controllable pandemic, and the entire world has come to a standstill trying to mitigate the disease with health systems. Health care providers, around the globe, are fighting day and night. Currently, rapid testing is taking place with the help of nasopharyngeal, oropharyngeal swab, bronchoalveolar lavage, sputum, urine, and blood. All these approaches are invasive or embarrassing to the infected person. It is observed that salivary glands are hosting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) because of angiotensin-converting enzyme 2 and the detection of high viral loads in the saliva and is playing a crucial role in virus transmission, especially from individuals showing absolutely no symptoms. Saliva is proving to be a promising noninvasive sample specimen for the diagnosis of COVID-19, thus helping to monitor the infection and prevent it from further spreading by prompt isolation.
Collapse
Affiliation(s)
- Hiba Hamid
- Department of Oral Biology, Liaquat College of Medicine and Dentistry, Karachi, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Muhammad S. Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Medina Munawara, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Sana Zohaib
- Department of Biomedical Engineering, College of Engineering, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
29
|
Falk M, Psotta C, Cirovic S, Shleev S. Non-Invasive Electrochemical Biosensors Operating in Human Physiological Fluids. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6352. [PMID: 33171750 PMCID: PMC7664326 DOI: 10.3390/s20216352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Non-invasive healthcare technologies are an important part of research and development nowadays due to the low cost and convenience offered to both healthcare receivers and providers. This work overviews the recent advances in the field of non-invasive electrochemical biosensors operating in secreted human physiological fluids, viz. tears, sweat, saliva, and urine. Described electrochemical devices are based on different electrochemical techniques, viz. amperometry, coulometry, cyclic voltammetry, and impedance spectroscopy. Challenges that confront researchers in this exciting area and key requirements for biodevices are discussed. It is concluded that the field of non-invasive sensing of biomarkers in bodily fluid is highly convoluted. Nonetheless, if the drawbacks are appropriately addressed, and the pitfalls are adroitly circumvented, the approach will most certainly disrupt current clinical and self-monitoring practices.
Collapse
Affiliation(s)
- Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, and Biofilms—Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden; (M.F.); (C.P.); (S.C.)
| | - Carolin Psotta
- Department of Biomedical Science, Faculty of Health and Society, and Biofilms—Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden; (M.F.); (C.P.); (S.C.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| | - Stefan Cirovic
- Department of Biomedical Science, Faculty of Health and Society, and Biofilms—Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden; (M.F.); (C.P.); (S.C.)
| | - Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society, and Biofilms—Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden; (M.F.); (C.P.); (S.C.)
- Aptusens AB, 293 94 Kyrkhult, Sweden
| |
Collapse
|
30
|
Lee MA, Wang S, Jin X, Bakh NA, Nguyen FT, Dong J, Silmore KS, Gong X, Pham C, Jones KK, Muthupalani S, Bisker G, Son M, Strano MS. Implantable Nanosensors for Human Steroid Hormone Sensing In Vivo Using a Self-Templating Corona Phase Molecular Recognition. Adv Healthc Mater 2020; 9:e2000429. [PMID: 32940022 DOI: 10.1002/adhm.202000429] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Dynamic measurements of steroid hormones in vivo are critical, but steroid sensing is currently limited by the availability of specific molecular recognition elements due to the chemical similarity of these hormones. In this work, a new, self-templating synthetic approach is applied using corona phase molecular recognition (CoPhMoRe) targeting the steroid family of molecules to produce near infrared fluorescent, implantable sensors. A key limitation of CoPhMoRe has been its reliance on library generation for sensor screening. This problem is addressed with a self-templating strategy of polymer design, using the examples of progesterone and cortisol sensing based on a styrene and acrylic acid copolymer library augmented with an acrylated steroid. The pendant steroid attached to the corona backbone is shown to self-template the phase, providing a unique CoPhMoRE design strategy with high efficacy. The resulting sensors exhibit excellent stability and reversibility upon repeated analyte cycling. It is shown that molecular recognition using such constructs is viable even in vivo after sensor implantation into a murine model by employing a poly (ethylene glycol) diacrylate (PEGDA) hydrogel and porous cellulose interface to limit nonspecific absorption. The results demonstrate that CoPhMoRe templating is sufficiently robust to enable a new class of continuous, in vivo biosensors.
Collapse
Affiliation(s)
- Michael A. Lee
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Song Wang
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Xiaojia Jin
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Naveed Ali Bakh
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Freddy T. Nguyen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Juyao Dong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kevin S. Silmore
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Xun Gong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Crystal Pham
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kelvin K. Jones
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Gili Bisker
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Biomedical Engineering Tel‐Aviv University Tel Aviv 6997801 Israel
| | - Manki Son
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Michael S. Strano
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
31
|
Pauliukaite R, Voitechovič E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3551. [PMID: 32585936 PMCID: PMC7349305 DOI: 10.3390/s20123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine. For example, various types of sensors or their arrays are highly suitable for simultaneous monitoring of multiple analytes in complex biological media in order to obtain more information about the health status of a patient or to follow the treatment process. Besides, the development of sustainable sensors based on natural chemicals allows reducing their environmental impact. This review is concerned with the application of such analytical platforms in various areas of medicine: analysis of body fluids, wearable sensors, drug manufacturing and screening. The importance and role of naturally-occurring compounds in the development of electrochemical multisensor systems and arrays are discussed.
Collapse
Affiliation(s)
- Rasa Pauliukaite
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | | |
Collapse
|
32
|
Mauriz E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. BIOSENSORS-BASEL 2020; 10:bios10060063. [PMID: 32531908 PMCID: PMC7345924 DOI: 10.3390/bios10060063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
The monitoring of biomarkers in body fluids provides valuable prognostic information regarding disease onset and progression. Most biosensing approaches use noninvasive screening tools and are conducted in order to improve early clinical diagnosis. However, biofouling of the sensing surface may disturb the quantification of circulating biomarkers in complex biological fluids. Thus, there is a great need for antifouling interfaces to be designed in order to reduce nonspecific adsorption and prevent inactivation of biological receptors and loss of sensitivity. To address these limitations and enable their application in clinical practice, a variety of plasmonic platforms have been recently developed for biomarker analysis in easily accessible biological fluids. This review presents an overview of the latest advances in the design of antifouling strategies for the detection of clinically relevant biomarkers on the basis of the characteristics of biological samples. The impact of nanoplasmonic biosensors as point-of-care devices has been examined for a wide range of biomarkers associated with cancer, inflammatory, infectious and neurodegenerative diseases. Clinical applications in readily obtainable biofluids such as blood, saliva, urine, tears and cerebrospinal and synovial fluids, covering almost the whole range of plasmonic applications, from surface plasmon resonance (SPR) to surface-enhanced Raman scattering (SERS), are also discussed.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain;
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|
33
|
Sánchez-Tirado E, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Electrochemical immunosensor for the determination of the cytokine interferon gamma (IFN-γ) in saliva. Talanta 2020; 211:120761. [PMID: 32070582 DOI: 10.1016/j.talanta.2020.120761] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/18/2022]
Abstract
A simple, fast and sensitive amperometric immunosensing method for the determination of the clinically relevant cytokine interferon gamma (IFN-γ) in saliva complying the requirements demanded for this kind of sample is reported. The target analyte was sandwiched between a specific capture antibody covalently immobilized on a screen-printed electrode functionalized by the diazonium salt grafting of p-aminobenzoic acid, and a biotinylated detector antibody labeled with a streptavidin-horseradish peroxidase conjugate. The amperometric responses measured at - 0.20 V vs Ag pseudo-reference electrode upon addition of hydrogen peroxide in the presence of hydroquinone as the redox mediator allowed a calibration plot with a linear range between 2.5 and 2000 pg mL-1 and a low limit of detection (1.6 pg mL-1) to be obtained. In addition, a good selectivity against other non-target proteins was achieved. The developed method was validated by analyzing a WHO 1st International Standard for IFN-γ. In addition, the immunosensor was used for the determination of the endogenous IFN-γ in saliva with results in excellent agreement with those obtained by a commercial ELISA kit.
Collapse
Affiliation(s)
- E Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
34
|
Gug IT, Tertis M, Hosu O, Cristea C. Salivary biomarkers detection: Analytical and immunological methods overview. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Pushing the limits of electrochemistry toward challenging applications in clinical diagnosis, prognosis, and therapeutic action. Chem Commun (Camb) 2019; 55:2563-2592. [PMID: 30688320 DOI: 10.1039/c8cc08815b] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constant progress in the identification of biomarkers at different molecular levels in samples of different natures, and the need to conduct routine analyses, even in limited-resource settings involving simple and short protocols, are examples of the growing current clinical demands not satisfied by conventional available techniques. In this context, the unique features offered by electrochemical biosensors, including affordability, real-time and reagentless monitoring, simple handling and portability, and versatility, make them especially interesting for adaptation to the increasingly challenging requirements of current clinical and point-of-care (POC) diagnostics. This has allowed the continuous development of strategies with improved performance in the clinical field that were unthinkable just a few years ago. After a brief introduction to the types and characteristics of clinically relevant biomarkers/samples, requirements for their analysis, and currently available methodologies, this review article provides a critical discussion of the most important developments and relevant applications involving electrochemical biosensors reported in the last five years in response to the demands of current diagnostic, prognostic, and therapeutic actions related to high prevalence and high mortality diseases and disorders. Special attention is paid to the rational design of surface chemistry and the use/modification of state-of-the-art nanomaterials to construct electrochemical bioscaffolds with antifouling properties that can be applied to the single or multiplex determination of biomarkers of accepted or emerging clinical relevance in particularly complex clinical samples, such as undiluted liquid biopsies, whole cells, and paraffin-embedded tissues, which have scarcely been explored using conventional techniques or electrochemical biosensing. Key points guiding future development, challenges to be addressed to further push the limits of electrochemical biosensors towards new challenging applications, and their introduction to the market are also discussed.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | | | | |
Collapse
|
36
|
Wearable biosensors for healthcare monitoring. Nat Biotechnol 2019; 37:389-406. [PMID: 30804534 DOI: 10.1038/s41587-019-0045-y] [Citation(s) in RCA: 1371] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Wearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva and interstitial fluid. Recent developments have focused on electrochemical and optical biosensors, together with advances in the noninvasive monitoring of biomarkers including metabolites, bacteria and hormones. A combination of multiplexed biosensing, microfluidic sampling and transport systems have been integrated, miniaturized and combined with flexible materials for improved wearability and ease of operation. Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability. An expanded set of on-body bioaffinity assays and more sensing strategies are needed to make more biomarkers accessible to monitoring. Large-cohort validation studies of wearable biosensor performance will be needed to underpin clinical acceptance. Accurate and reliable real-time sensing of physiological information using wearable biosensor technologies would have a broad impact on our daily lives.
Collapse
|
37
|
Szunerits S, Mishyn V, Grabowska I, Boukherroub R. Electrochemical cardiovascular platforms: Current state of the art and beyond. Biosens Bioelectron 2019; 131:287-298. [PMID: 30851492 DOI: 10.1016/j.bios.2019.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death within industrialized nations as well as an increasing cause of mortality and morbidity in many developing countries. Smoking, alcohol consumption and increased level of blood cholesterol are the main CVD risk factors. Other factors, such as the prevalence of overweight/obesity and diabetes, have increased considerably in recent decades and are indirect causes of CVD. Among CVDs, the acute coronary syndrome (ACS) represents the most common cause of emergency hospital admission. Since the prognosis of ACS is directly associated with timely initiation of revascularization, missed, misdiagnosis or late diagnosis have unfavorable medical implications. Early ACS diagnosis can reduce complications and risk of recurrence, finally decreasing the economic burden posed on the health care system as a whole. To decrease the risk of ACS and related CVDs and to reduce associated costs to healthcare systems, a fast management of patients with chest pain has become crucial and urgent. Despite great efforts, biochemical diagnostic approaches of CVDs remain difficult and controversial medical challenges as cardiac biomarkers should be rapidly released into the blood at the time of ischemia and persistent for a sufficient length of time to allow diagnostics, with tests that should be rapid, easy to perform and relatively inexpensive. Early biomarker assessments have involved testing for the total enzyme activity of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase (CK), which cardiac troponins being the main accepted biomarkers for diagnosing myocardial injury and acute myocardial infarction (AMI). To allow rapid diagnosis, it is necessary to replace the traditional biochemical assays by cardiac biosensor platforms. Among the numerous of possibilities existing today, electrochemical biosensors are important players as they have many of the required characteristics for point-of-care tests. Electrochemical based cardiac biosensors are highly adapted for monitoring the onset and progress of cardiovascular diseases in a fast and accurate manner, while being cheap and scalable devices. This review outlines the state of the art in the development of cardiac electrochemical sensors for the detection of different cardiac biomarkers ranging from troponin to BNP, N-terminal proBNP, and others.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
| | - Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
38
|
Steiger C, Abramson A, Nadeau P, Chandrakasan AP, Langer R, Traverso G. Ingestible electronics for diagnostics and therapy. NATURE REVIEWS MATERIALS 2018; 4:83-98. [DOI: 10.1038/s41578-018-0070-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Ruiz-Valdepeñas Montiel V, Sempionatto JR, Esteban-Fernández de Ávila B, Whitworth A, Campuzano S, Pingarrón JM, Wang J. Delayed Sensor Activation Based on Transient Coatings: Biofouling Protection in Complex Biofluids. J Am Chem Soc 2018; 140:14050-14053. [DOI: 10.1021/jacs.8b08894] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Víctor Ruiz-Valdepeñas Montiel
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Analytical Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Amelia Whitworth
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Susana Campuzano
- Department of Analytical Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
41
|
Serafín V, Martínez-García G, Aznar-Poveda J, Lopez-Pastor JA, Garcia-Sanchez AJ, Garcia-Haro J, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Determination of progesterone in saliva using an electrochemical immunosensor and a COTS-based portable potentiostat. Anal Chim Acta 2018; 1049:65-73. [PMID: 30612658 DOI: 10.1016/j.aca.2018.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 11/19/2022]
Abstract
This paper describes the reliable determination of progesterone (P4) in undiluted saliva making use of a disposable amperometric immunosensors implemented on low-cost and portable device/potentiostat constructed with commercial-off-the-shelf (COTS) components. The immunosensor allows the fast (45 min), selective and sensitive determination (5 pg mL-1 LOD) of P4 using amperometry in stirred solutions. The immunosensor was coupled to the COTS-based potentiostat and amperometry was made into drops of quiescent solutions. No significant differences were apparent between the analytical performance achieved with the immunosensor for P4 using both a conventional and the COST-based potentiostats. The practical applicability of the immunosensor coupled with the COTS-based potentiostat was demonstrated by determining the endogenous P4 content in different undiluted saliva samples with highly variable endogenous contents of the target hormone. The obtained results were in good agreement with those provided by the conventional ELISA methodology and with the contents reported in the literature for samples with similar characteristics. This validated the combined device for the reliable and minimally invasive determination of the target hormone involving a very simple protocol and taking only 45 min.
Collapse
Affiliation(s)
- V Serafín
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - G Martínez-García
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - J Aznar-Poveda
- Department of Information and Communication Technologies (TIC), Technical University of Cartagena, ETSIT, Campus Muralla del Mar, E-30202, Cartagena, Spain
| | - J A Lopez-Pastor
- Department of Information and Communication Technologies (TIC), Technical University of Cartagena, ETSIT, Campus Muralla del Mar, E-30202, Cartagena, Spain
| | - A J Garcia-Sanchez
- Department of Information and Communication Technologies (TIC), Technical University of Cartagena, ETSIT, Campus Muralla del Mar, E-30202, Cartagena, Spain.
| | - J Garcia-Haro
- Department of Information and Communication Technologies (TIC), Technical University of Cartagena, ETSIT, Campus Muralla del Mar, E-30202, Cartagena, Spain
| | - S Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
42
|
Madhurantakam S, Babu KJ, Rayappan JBB, Krishnan UM. Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens Bioelectron 2018; 116:67-80. [DOI: 10.1016/j.bios.2018.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
|
43
|
Magnetic multiwalled carbon nanotubes as nanocarrier tags for sensitive determination of fetuin in saliva. Biosens Bioelectron 2018; 113:88-94. [DOI: 10.1016/j.bios.2018.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022]
|
44
|
Aydın EB, Sezgintürk MK. An impedimetric immunosensor for highly sensitive detection of IL-8 in human serum and saliva samples: A new surface modification method by 6-phosphonohexanoic acid for biosensing applications. Anal Biochem 2018; 554:44-52. [PMID: 29902421 DOI: 10.1016/j.ab.2018.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022]
Abstract
In this study, we fabricated a sensitive and label-free impedimetric immunosensor based on 6-phosphonohexanoic acid (PHA) modified ITO electrode for detection of interleukin-8 (IL-8) in human serum and saliva. PHA was first employed to cancer biomarker sensing platform. Anti-IL-8 antibody was used as a biorecognition element and the detection principle of this immunosensor was based on monitoring specific interaction between anti-IL-8 antibody and IL-8 antigen. The morphological characterization of each electrode modification step was analyzed by scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) while electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. Moreover, the antibody immobilization on the electrode surface was proved Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy. This proposed impedimetric immunosensor exhibited good performances with a wide linear in the range from 0.02 pg/mL to 3 pg/mL as well as a relative low detection limit of 6 fg/mL. The impedimetric immunosensor had a good specificity, stability and reproducibility. This study proved that PHA was a suitable interface material to fabricate an electrochemical biosensor.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
45
|
Baba D, Nugraha AS, Iqbal M, Bo J, Li C, Alshehri AA, You J, Malgras V, Yamachi Y, Asahi T. Nafion®-coated mesoporous Pd film toward remarkably enhanced detection of lactic acid. RSC Adv 2018; 8:10446-10449. [PMID: 35540437 PMCID: PMC9078978 DOI: 10.1039/c7ra13026k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/26/2018] [Indexed: 11/27/2022] Open
Abstract
Mesoporous metal films can detect biomarkers with high sensitivity. Further coating the mesoporous metal with polymers enhances sensing selectivity by favoring specific biomarkers against other interferents. In the present study, we report the fabrication of a Nafion®-coated mesoporous Pd film to filtrate interferents present in sweat during non-invasive biosensing. By using a Nafion®-coated mesoporous Pd film, lactic acid, a metabolite present in sweat, can be successfully detected with high sensitivity.
Collapse
Affiliation(s)
- Daisuke Baba
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Asep Sugih Nugraha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Muhammad Iqbal
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Jiang Bo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | | | - Jungmok You
- Department of Plant & Environmental New Resources, Kyung Hee University 1732 Deogyeong-daero, Giheunggu Yongin-si Gyeonggi-do 446-701 South Korea
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamachi
- Department of Plant & Environmental New Resources, Kyung Hee University 1732 Deogyeong-daero, Giheunggu Yongin-si Gyeonggi-do 446-701 South Korea
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Toru Asahi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
46
|
Carvalho WSP, Wei M, Ikpo N, Gao Y, Serpe MJ. Polymer-Based Technologies for Sensing Applications. Anal Chem 2017; 90:459-479. [DOI: 10.1021/acs.analchem.7b04751] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Menglian Wei
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Nduka Ikpo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yongfeng Gao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J. Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
47
|
Felix FS, Angnes L. Electrochemical immunosensors - A powerful tool for analytical applications. Biosens Bioelectron 2017; 102:470-478. [PMID: 29182930 DOI: 10.1016/j.bios.2017.11.029] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/17/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Immunosensors are biosensors based on interactions between an antibody and antigen on a transducer surface. Either antibody or antigen can be the species immobilized on the transducer to detect antigen or antibody, respectively. Because of the strong binding forces between these biomolecules, immunosensors present high selectivity and very high sensitivity, making them very attractive for many applications in different science fields. Electrochemical immunosensors explore measurements of an electrical signal produced on an electrochemical transductor. This signal can be voltammetric, potentiometric, conductometric or impedimetric. Immunosensors utilizing electrochemical detection have been explored in several analyses since they are specific, simple, portable, and generally disposable and can carry out in situ or automated detection. This review addresses the potential of immunosensors destined for application in food and environmental analysis, and cancer biomarker diagnosis. Emphasis is given to the approaches that have been used for construction of electrochemical immunosensors. Additionally, the fundamentals of immunosensors, technology of transducers and nanomaterials and a general overview of the possible applications of electrochemical immunosensors to the food, environmental and diseases analysis fields are described.
Collapse
Affiliation(s)
- Fabiana S Felix
- Departamento de Química, Universidade Federal de Lavras (UFLA), CP 3037, Lavras CEP 37200-000, MG, Brazil; Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil
| | - Lúcio Angnes
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
48
|
Rapid micromotor-based naked-eye immunoassay. Talanta 2017; 167:651-657. [DOI: 10.1016/j.talanta.2017.02.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 11/23/2022]
|
49
|
Recent Advances in Electrochemical Immunosensors. SENSORS 2017; 17:s17040794. [PMID: 28387718 PMCID: PMC5422067 DOI: 10.3390/s17040794] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Immunosensors have experienced a very significant growth in recent years, driven by the need for fast, sensitive, portable and easy-to-use devices to detect biomarkers for clinical diagnosis or to monitor organic pollutants in natural or industrial environments. Advances in the field of signal amplification using enzymatic reactions, nanomaterials such as carbon nanotubes, graphene and graphene derivatives, metallic nanoparticles (gold, silver, various oxides or metal complexes), or magnetic beads show how it is possible to improve collection, binding or transduction performances and reach the requirements for realistic clinical diagnostic or environmental control. This review presents these most recent advances; it focuses first on classical electrode substrates, then moves to carbon-based nanostructured ones including carbon nanotubes, graphene and other carbon materials, metal or metal-oxide nanoparticles, magnetic nanoparticles, dendrimers and, to finish, explore the use of ionic liquids. Analytical performances are systematically covered and compared, depending on the detection principle, but also from a chronological perspective, from 2012 to 2016 and early 2017.
Collapse
|
50
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers. Diagnostics (Basel) 2016; 7:E2. [PMID: 28035946 PMCID: PMC5373011 DOI: 10.3390/diagnostics7010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022] Open
Abstract
Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selectivity and in a simple and rapid way. The unique advantages offered by electrochemical sensors together with the availability of high affinity and specific bioreceptors and their great capabilities in terms of sensitivity and stability imparted by nanostructuring the electrode surface with different carbon nanomaterials have led to the development of new electrochemical biosensing strategies that have flourished as interesting alternatives to conventional methodologies for clinical diagnostics. This paper briefly reviews the advantages of using carbon nanostructures and their hybrid nanocomposites as electrode modifiers to construct efficient electrochemical sensing platforms for diagnosis. The review provides an updated overview of some selected examples involving attractive amplification and biosensing approaches which have been applied to the determination of relevant genetic and protein diagnostics biomarkers.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|