1
|
Strani L, Benedetti B, Cocchi M, Durante C, Perra G, Pietropaolo M, Pellacani S, Tanzilli D. Optimization of an analytical method based on the use of zwitterionic- phosphorylcholine -HILIC column for the determination of multiple polar emerging contaminants in reclaimed water. J Chromatogr A 2025; 1741:465605. [PMID: 39721400 DOI: 10.1016/j.chroma.2024.465605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The aim of this study was to optimize a Liquid Chromatography Mass Spectrometry (LC-MS) method using a zwitterionic phosphorylcholine HILIC column for the determination of several Persistent and Mobile Organic Contaminants (PMOC) in wastewater samples. An experimental design approach was implemented to both better understand the retention mechanisms of several polar compounds and to find the optimal operating conditions for their detection and quantification. Eleven PMOCs, with logDpH=7 ranging from -5.27 to 0.24, were considered, including pesticides, artificial sweeteners, pharmaceuticals, and central nervous system stimulants. Key chromatographic variables-such as the initial percentage of the organic mobile phase, temperature, flow rate, gradient time, acid percentage, and the type and concentration of two different salts- were studied to assess their influence on peak areas, retention times and separation efficiency. The results indicated buffer type, flow rate, and initial percentage of organic mobile phase as the most influential factors affecting retention, though the effects were closely related to the chemical and physicochemical properties of the analytes. The optimized instrumental method demonstrated acceptable figures of merit, with recoveries ranging from 49 % to 100 % for all analytes (except taurine, which may require a different experimental preprocessing step). The method also showed satisfactory precision (repeatability of the entire experimental procedure), in terms of Relative Standard Deviation (RSD %), which was <10 % for all analytes. The developed method was successfully applied to the analysis of reclaimed water samples collected in six wastewater treatment plants in two regions of northern Italy. All target ECs were detected and quantified, except for clenbuterol, terbutaline, acesulfame K and 2,4-dichlorophenoxyacetic acid, which were below the detection limit.
Collapse
Affiliation(s)
- Lorenzo Strani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, Genoa 16146, Italy
| | - Marina Cocchi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Guido Perra
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Mattia Pietropaolo
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Samuele Pellacani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Daniele Tanzilli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; LASIRE, University of Lille, Cité Scientifique, Villeneuve-d'Ascq, 59650, France
| |
Collapse
|
2
|
Zhang Y, Li J, Jiao S, Li Y, Zhou Y, Zhang X, Maryam B, Liu X. Microfluidic sensors for the detection of emerging contaminants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172734. [PMID: 38663621 DOI: 10.1016/j.scitotenv.2024.172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In recent years, numerous emerging contaminants have been identified in surface water, groundwater, and drinking water. Developing novel sensing methods for detecting diverse emerging pollutants in water is urgently needed, as even at low concentrations, these pollutants can pose a serious threat to human health and environmental safety. Traditional testing methods are based on laboratory equipment, which is highly sensitive but complex to operate, costly, and not suitable for on-site monitoring. Microfluidic sensors offer several benefits, including rapid evaluation, minimal sample usage, accurate liquid manipulation, compact size, automation, and in-situ detection capabilities. They provide promising and efficient analytical tools for high-performance sensing platforms in monitoring emerging contaminants in water. In this paper, recent research advances in microfluidic sensors for the detection of emerging contaminants in water are reviewed. Initially, a concise overview is provided about the various substrate materials, corresponding microfabrication techniques, different driving forces, and commonly used detection techniques for microfluidic devices. Subsequently, a comprehensive analysis is conducted on microfluidic detection methods for endocrine-disrupting chemicals, pharmaceuticals and personal care products, microplastics, and perfluorinated compounds. Finally, the prospects and future challenges of microfluidic sensors in this field are discussed.
Collapse
Affiliation(s)
- Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
3
|
Redón L, Subirats X, Chapel S, Januarius T, Broeckhoven K, Rosés M, Cabooter D, Desmet G. Comprehensive analysis of the effective and intra-particle diffusion of weakly retained compounds in silica hydrophilic interaction liquid chromatography columns. J Chromatogr A 2024; 1713:464529. [PMID: 38029660 DOI: 10.1016/j.chroma.2023.464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
A detailed analysis of intra-particle volumes and layer thicknesses and their effect on the diffusion of solutes in hydrophilic interaction liquid chromatography (HILIC) was made. Pycnometric measurements and the retention volume of deuterated mobile phase constituents (water and acetonitrile) were used to estimate the void volume inside the column, including not only the volume of the mobile phase but also part of the enriched water solvent acting as the stationary phase in HILIC. The mobile phase (hold-up) volume accessible to non-retained components was estimated using a homologous series approach. The joint analysis of the different approaches indicated the formation of enriched water layers on the hydrophobic silica mesopore walls with a thickness varying significantly with mobile phase composition. The maximal thickness of the enriched water layers, which corresponded to the minimum void volume accessible to unretained solutes, marked a transition in the retention behavior of the studied analytes. Discrepancies between deuterated solvent measurements and pycnometry were explained by the existence of an irreplaceable water layer adsorbed on the silica surface. Regarding the diffusion behavior in HILIC, peak parking experiments were used to interpret the influence of the acetonitrile content on the effective diffusion coefficient Deff. A systematic decrease in Deff and molecular diffusion Dm was observed with decreasing acetonitrile concentration, primarily attributed to variations in mobile phase viscosity. Notably, Deff/Dm remained nearly unaffected by variations in mobile phase composition. Finally, the effective medium theory was used to make a comprehensive analysis of Dpart/Dm to study the contribution to band broadening when the solute resides in the mesopores. The obtained data unveiled a curvature with a minimum corresponding to conditions of maximum water-layer thickness and retention. For the weakly retained compounds (k' < 0.5) the Dpart/Dm-values were found to be relatively high (order of 0.35-0.5), which directly reflects the high γsDs/Dm-values that were observed (order 0.35-7).
Collapse
Affiliation(s)
- Lídia Redón
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Xavier Subirats
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Soraya Chapel
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Timothy Januarius
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Ken Broeckhoven
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Martí Rosés
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Deirdre Cabooter
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
4
|
Zhang H, Shen N, Li Y, Hu C, Yuan P. Source, transport, and toxicity of emerging contaminants in aquatic environments: A review on recent studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121420-121437. [PMID: 37999842 DOI: 10.1007/s11356-023-30869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Emerging contaminants (ECs) are gaining global attention owing to their widespread presence and adverse effects on human health. ECs comprise numerous composite types and pose a potential threat to the growth and functional traits of species and ecosystems. Although the occurrence and fate of ECs has been extensively studied, little is known about their long-term biological effects. This review attempts to gain insights into the unhindered connections and overlaps in aquatic ecosystems. Microplastics (MPs), one of the most representative ECs, are carriers of other pollutants because of their strong adsorption capacity. They form a complex of pollutants that can be transmitted to aquatic organisms and humans through the extended food chain, increasing the concentration of pollutants by tens of thousands of times. Adsorption, interaction and transport effects of emerging contaminants in the aquatic environment are also discussed. Furthermore, the current state of knowledge on the ecotoxicity of single- and two-pollutant models is presented. Herein, we discuss how aquatic organisms within complex food networks may be particularly vulnerable to harm from ECs in the presence of perturbations. This review provides an advanced understanding of the interactions and potential toxic effects of ECs on aquatic organisms.
Collapse
Affiliation(s)
- Heran Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nan Shen
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, 100012, China
| | - Yafeng Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Cheng Hu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Peng Yuan
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, 100012, China.
| |
Collapse
|
5
|
Redón L, Safar Beiranvand M, Subirats X, Rosés M. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Anal Chim Acta 2023; 1277:341672. [PMID: 37604624 DOI: 10.1016/j.aca.2023.341672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The Abraham's solvation parameter model, based on linear solvation energy relationships (LSER), allows the accurate characterization of the selectivity of chromatographic systems according to solute-solvent interactions (polarizability, dipolarity, hydrogen bonding, and cavity formation). However, this method, based on multilinear regression analysis, requires the measurement of the retention factors of a considerably high number of compounds, turning it into a time-consuming low throughput method. Simpler methods such as Tanaka's scheme are preferred. In the present work, the Abraham's model is revisited to develop a fast and reliable method, similar to the one proposed by Tanaka, for the characterization of columns employed in reversed-phase liquid chromatography and particularly in hydrophilic interaction liquid chromatography. For this purpose, pairs of compounds are carefully selected in order to have in common all molecular descriptors except for a specific one (for instance, similar molecular volume, dipolarity, polarizability, and hydrogen bonding basicity features, but different hydrogen bonding acidity). Thus, the selectivity factor of a single pair of test compounds can provide information regarding the extent of the dissimilar solute-solvent interactions and their influence on chromatographic retention. The proposed characterization method includes the determination of the column hold-up volume and Abraham's cavity term by means of the injection of four alkyl ketone homologues. Therefore, five chromatographic runs in a reversed-phase column (four pairs of test solutes and a mixture of four homologues) are enough to characterize the selectivity of a chromatographic system. Tanaka's method is also analyzed from the LSER point of view.
Collapse
Affiliation(s)
- Lídia Redón
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Mahmoud Safar Beiranvand
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Xavier Subirats
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Martí Rosés
- Institute of Biomedicine (IBUB) and Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Zhang W, Feng Y, Pan L, Zhang G, Guo Y, Zhao W, Xie Z, Zhang S. Silica microparticles modified with ionic liquid bonded chitosan as hydrophilic moieties for preparation of high-performance liquid chromatographic stationary phases. Mikrochim Acta 2023; 190:176. [PMID: 37022499 DOI: 10.1007/s00604-023-05755-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
Two novel stationary phases, 1-(4-bromobutyl)-3-methylimidazolium bromide bonded chitosan modified silica and 1-(4-bromobutyl)-3-methylimidazolium bromide bonded chitosan derivatized calix[4]arene modified silica stationary phase, were synthesized using 1-(4-bromobutyl)-3-methylimidazolium bromide bonding chitosan as a polarity regulator solving the limitation of the strong hydrophobicity of calixarene in the application of hydrophilic field. The resulting materials were characterized by solid-state nuclear magnetic resonance, Fourier-transform infrared spectra, scanning electron microscopy, elemental analysis, and thermogravimetric analysis. Based on the hydrophilicity endowed by 1-(4-bromobutyl)-3-methylimidazolium bromide bonded chitosan, the retention mode of ILC-Sil and ILCC4-Sil could be effectively switched from the hydrophilic mode to a hydrophilic/hydrophobic mixed mode and could simultaneously provide various interactions with solutes, including hydrophilic, π-π, ion-exchange, inclusion, hydrophobic, and electrostatic interactions. On the basis of these interactions, successful separation and higher shape selectivity were achieved among compounds that vary in polarity under both reverse-phase and hydrophilic interactive liquid chromatography conditions. Moreover, the ILCC4-Sil was successfully applied to the determination of morphine in actual samples using solid-phase extraction and mass spectrometry. The LOD and LOQ were 15 pg/mL and 54 pg/mL, respectively. This work presents an exceptionally flexible adjustment strategy for the retention and selectivity of a silica stationary phase by tuning the modification group.
Collapse
Affiliation(s)
- Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yumin Feng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Long Pan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Guangrui Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
7
|
Murakami H, Iida K, Oda Y, Umemura T, Nakajima H, Esaka Y, Inoue Y, Teshima N. Hydrophilic interaction chromatography-type sorbent prepared by the modification of methacrylate-base resin with polyethyleneimine for solid-phase extraction of polar compounds. ANAL SCI 2023; 39:375-381. [PMID: 36577893 DOI: 10.1007/s44211-022-00250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Hydrophilic interaction chromatography (HILIC)-type sorbents were newly developed for the solid-phase extraction (SPE) of polar compounds. Two methacrylate-base resins with different cross-linking monomers and pore properties were synthesized, and three polyethyleneimines (PEIs) with different molecular weights were modified onto each base resin. In both cases, PEIs with a molecular weight of 10,000 (PEI-10,000) exhibited the highest adsorption properties for polar compounds (uracil, uridine, adenosine, cytidine, and guanosine). To control the water-enriched layer at the surface of the PEI-10,000-modified sorbents, the additive amount of PEI-10,000 in the modified reaction was also optimized. When 10 times the amount of PEI-10,000 to each base resin was added, an improvement in adsorption property was observed. Moreover, the use of a nonaqueous sample solution (100% acetonitrile) during the sample loading process drastically improved adsorption, especially for uracil (about 80%) and adenosine (100%). These results indicate that the formation of a strong water-enriched layer at the surface of sorbents with an effective expression of hydrophilic interaction was an important factor in the adsorption properties of polar compounds in HILIC mode-SPE.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan.
| | - Keisuke Iida
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Yuki Oda
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| |
Collapse
|
8
|
Xin L, Liang Y, Yang S, Jiang F, Yu F, Zhang M, Chang W, Wang W, Yu C, Liu G, Lu Y. Simple and fast determination of tetrodotoxin in human plasma based on hydrophilic-interaction/ion-exchange mixed-mode solid phase extraction combined with liquid chromatography-tandem mass spectroscopy. J Chromatogr A 2022; 1684:463567. [DOI: 10.1016/j.chroma.2022.463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|
9
|
Park TJ, Shin HS, Hur J. Prediction of polarity-dependent environmental behaviors of humic substances (HS) using a HS hydrophobicity index based on hydrophilic interaction chromatography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156993. [PMID: 35772533 DOI: 10.1016/j.scitotenv.2022.156993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
A variety of analytical methods have been applied to describe the properties of aquatic humic substances (HS). However, there are only a few methods available to probe HS hydrophobicity because of the heterogeneous character of HS. In this study, hydrophilic interaction chromatography (HILIC) equipped with a UV detector was employed to describe the heterogeneous distribution of HS with respect to its hydrophobicity and to suggest a representative HS hydrophobicity index. To this end, various mobile phases were explored to achieve the optimal separation capability of HILIC. The highest resolution was obtained with a mobile phase comprising acetonitrile and water at a ratio of 70:30 (v:v). A calibration curve was successfully constructed using eight different HS precursor compounds, which allowed for the successful conversion of the retention time (RT) into the octanol-water partition coefficient (Kow) (log Kow = -2.83 × (RT) + 17.44, R2 = 0.950). Several possible HS hydrophobicity indices were derived from the HILIC chromatogram. Among those, the weight-average log KOW value exhibited the strongest negative correlation with the well-known polarity index, (O + N)/C ratios, of seven reference HS samples. This new HILIC-based index (i.e., average log KOW) also presented a good relationship with the HS binding coefficients with pyrene as well as the extent of HS adsorption onto kaolinite at a given solution chemistry (i.e., at a high ionic strength and a neutral pH), both of which are known to be largely governed by the hydrophobic nature of HS. This study demonstrated that the average KOW value based on HILIC is an intuitive and robust HS hydrophobicity index to fully represent the heterogeneous distribution of hydrophobicity within a bulk HS and could be applied to predict many environmental behaviors related to HS hydrophobicity or HS polarity.
Collapse
Affiliation(s)
- Tae Jun Park
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Hyun-Sang Shin
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
10
|
Li D, Liang W, Feng X, Ruan T, Jiang G. Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Losacco GL, Veuthey JL, Guillarme D. Metamorphosis of supercritical fluid chromatography: A viable tool for the analysis of polar compounds? Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Psoma AK, Rousis NI, Georgantzi EN, Τhomaidis ΝS. An integrated approach to MS-based identification and risk assessment of pharmaceutical biotransformation in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144677. [PMID: 33508673 DOI: 10.1016/j.scitotenv.2020.144677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The omnipresence of pharmaceuticals at relatively high concentrations (μg/L) in environmental compartments indicated their inadequate removal by wastewater treatment plants. As such, batch reactors seeded with activated sludge were set up to assess the biotransformation of metformin, ranitidine, lidocaine and atorvastatin. The main objective was to identify transformation products (TPs) through the establishment of an integrated workflow for suspect and non-target screening based on reversed phase liquid chromatography quadrupole-time-of-flight mass spectrometry. To support the identification, hydrophilic interaction liquid chromatography (HILIC) was used as a complementary tool, in order to enhance the completeness of the developed workflow by identifying the more polar TPs. The structure assignment/elucidation of the candidate TPs was mainly based on interpretation of MS/MS spectra. Twenty-two TPs were identified, with fourteen of them reaching high identification confidence levels (level 1: confirmed structure by reference standards and level 2: probable structure by library spectrum match and diagnostic evidence). Finally, retrospective analysis in influent and effluent wastewater was performed for the TPs for four consecutive years in wastewater sampled in Athens, Greece. The potential toxicological threat of the compounds to the aquatic environment was assessed and atorvastatin with two of its TPs showed a potential risk to the aquatic organisms.
Collapse
Affiliation(s)
- Aikaterini K Psoma
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos I Rousis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleni N Georgantzi
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Νikolaos S Τhomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
13
|
Performance evaluation of silica microspheres functionalized by different amine-ligands for hydrophilic interaction chromatography. J Chromatogr A 2021; 1640:461967. [PMID: 33582513 DOI: 10.1016/j.chroma.2021.461967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
In this work, for the first time five amine-ligands including mono-amine, di-amine, tri-amine, secondary and tertiary amine, were functionalized on mesoporous micro-silicas and developed as stationary phases for hydrophilic interaction liquid chromatography (HILIC). The investigations about the retention mechanisms, effects of different chromatographic conditions and stability were systematically conducted. Three kinds of polar and hydrophilic compounds (saccharides, sulfonamides, nucleosides and nucleobases) were selected as probe molecules to evaluate their separation performances. Among the five stationary phases, only aminopropyl-bonded silica has already gained wide developments and applications. Whereas, there are no related researches about the other four to be utilized as separation media. By a series of chromatographic evaluations, the results revealed the other four mesoporous micro-silica materials functionalized with di-amine, tri-amine, secondary and tertiary amine, had great potential to be explored as novel stationary phases of HILIC. Particularly, the two stationary phases functionalized with di-amine and tri-amine exhibited outstanding separation and retention abilities. This work offered some insights on the understanding of retention in HILIC mode and provided us possibility to explore other amine-based HILIC stationary phases.
Collapse
|
14
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Wawryk NJP, Craven CB, Blackstock LKJ, Li XF. New methods for identification of disinfection byproducts of toxicological relevance: Progress and future directions. J Environ Sci (China) 2021; 99:151-159. [PMID: 33183692 DOI: 10.1016/j.jes.2020.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Disinfection byproducts (DBPs) represent a ubiquitous source of chemical exposure in disinfected water. While over 700 DBPs have been identified, the drivers of toxicity remain poorly understood. Additionally, ever evolving water treatment practices have led to a continually growing list of DBPs. Advancement of analytical technologies have enabled the identification of new classes of DBPs and the quantification of these chemically diverse sets of DBPs. Here we summarize advances in new workflows for DBP analysis, including sample preparation, chromatographic separation with mass spectrometry (MS) detection, and data processing. To aid in the selection of techniques for future studies, we discuss necessary considerations for each step in the strategy. This review focuses on how each step of a workflow can be optimized to capture diverse classes of DBPs within a single method. Additionally, we highlight new MS-based approaches that can be powerful for identifying novel DBPs of toxicological relevance. We discuss current challenges and provide perspectives on future research directions with respect to studying new DBPs of toxicological relevance. As analytical technologies continue to advance, new strategies will be increasingly used to analyze complex DBPs produced in different treatment processes with the aim to identify potential drivers of toxicity.
Collapse
Affiliation(s)
- Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Caley B Craven
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Lindsay K Jmaiff Blackstock
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
16
|
Vaudreuil MA, Vo Duy S, Munoz G, Furtos A, Sauvé S. A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS. Talanta 2020; 220:121407. [DOI: 10.1016/j.talanta.2020.121407] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022]
|
17
|
Sýkora D, Záruba K, Butnariu M, Tatar A, Pham HM, Studenovský M, Řezanka P, Král V. New multimodal stationary phases prepared by Ugi multicomponent approach. J Sep Sci 2020; 43:4178-4190. [PMID: 32951329 DOI: 10.1002/jssc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023]
Abstract
Eight different stationary phases based on two aminopropyl silicas of different brands suitable for multimodal chromatography applications have been prepared by a four-component Ugi reaction. The intention was to synthesize stationary phases significantly differing in their properties hereby demonstrating flexibility of the Ugi synthetic protocol. Diverse functional groups including a nonpolar long aliphatic chain, phenyl moiety, cholic acid scaffold, phenylboronic and monosaccharide units, charged betaine, and arginine moieties were immobilized on a silica surface. The novel sorbents were extensively characterized by elemental analysis, Raman spectroscopy, and chromatography. Considering the anchored chemical structures covalently bonded to the silica surface, reversed-phase, hydrophilic, and ion-exchange separation modes were expected. The chromatographic evaluation was performed directed to map the potential of the individual columns specifically in the mentioned chromatographic modes. The Ugi synthetic protocol has proven to be a simple, feasible, and versatile tool for the synthesis of sorbents of variable properties. The newly prepared stationary phases differed considerably in hydrophobicity and ion-exchange ability. A significant influence of the supporting aminopropyl silica on the final chromatographic behavior was observed. Finally, one practical example confirming applicability of the newly prepared sorbents was demonstrated in separation of cytarabine.
Collapse
Affiliation(s)
- David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Kamil Záruba
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Maria Butnariu
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ameneh Tatar
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Hang Minh Pham
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martin Studenovský
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Řezanka
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Knoll S, Rösch T, Huhn C. Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal Bioanal Chem 2020; 412:6149-6165. [PMID: 32710277 PMCID: PMC7442764 DOI: 10.1007/s00216-020-02811-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
Recent years showed a boost in knowledge about the presence and fate of micropollutants in the environment. Instrumental and methodological developments mainly in liquid chromatography coupled to mass spectrometry hold a large share in this success story. These techniques soon complemented gas chromatography and enabled the analysis of more polar compounds including pesticides but also household chemicals, food additives, and pharmaceuticals often present as traces in surface waters. In parallel, sample preparation techniques evolved to extract and enrich these compounds from biota and water samples. This review article looks at very polar and ionic compounds using the criterion log P ≤ 1. Considering about 240 compounds, we show that (simulated) log D values are often even lower than the corresponding log P values due to ionization of the compounds at our reference pH of 7.4. High polarity and charge are still challenging characteristics in the analysis of micropollutants and these compounds are hardly covered in current monitoring strategies of water samples. The situation is even more challenging in biota analysis given the large number of matrix constituents with similar properties. Currently, a large number of sample preparation and separation approaches are developed to meet the challenges of the analysis of very polar and ionic compounds. In addition to reviewing them, we discuss some trends: for sample preparation, preconcentration and purification efforts by SPE will continue, possibly using upcoming mixed-mode stationary phases and mixed beds in order to increase comprehensiveness in monitoring applications. For biota analysis, miniaturization and parallelization are aspects of future research. For ionic or ionizable compounds, we see electromembrane extraction as a method of choice with a high potential to increase throughput by automation. For separation, predominantly coupled to mass spectrometry, hydrophilic interaction liquid chromatography applications will increase as the polarity range ideally complements reversed phase liquid chromatography, and instrumentation and expertise are available in most laboratories. Two-dimensional applications have not yet reached maturity in liquid-phase separations to be applied in higher throughput. Possibly, the development and commercial availability of mixed-mode stationary phases make 2D applications obsolete in semi-targeted applications. An interesting alternative will enter routine analysis soon: supercritical fluid chromatography demonstrated an impressive analyte coverage but also the possibility to tailor selectivity for targeted approaches. For ionic and ionizable micropollutants, ion chromatography and capillary electrophoresis are amenable but may be used only for specialized applications such as the analysis of halogenated acids when aspects like desalting and preconcentration are solved and the key advantages are fully elaborated by further research. Graphical abstract.
Collapse
Affiliation(s)
- Sarah Knoll
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, Germany
| | - Tobias Rösch
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, Germany.
| |
Collapse
|
19
|
Redón L, Subirats X, Rosés M. HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Anal Chim Acta 2020; 1130:39-48. [DOI: 10.1016/j.aca.2020.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
|
20
|
Murakami H, Omiya M, Miki Y, Umemura T, Esaka Y, Inoue Y, Teshima N. Evaluation of the adsorption properties of nucleobase-modified sorbents for a solid-phase extraction of water-soluble compounds. Talanta 2020; 217:121052. [PMID: 32498914 DOI: 10.1016/j.talanta.2020.121052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
We developed hydrophilic interaction chromatography (HILIC)-type sorbents modified with nucleobases for solid phase extraction (SPE). The synthesized hydrophilic base resins were modified by each nucleobase (adenine, guanine, and cytosine). The measurement of the amount of water content indicated that each nucleobase-modified sorbent had a water layer. To evaluate the adsorption properties in the HILIC mode, we chose two nucleobases (uracil and adenine) and four nucleosides (uridine, adenosine, cytidine, guanosine) as water-soluble analytes, which were loaded into an SPE cartridge packed with the nucleobase-modified sorbent. Firstly, 95% acetonitrile (ACN) solutions were used in the process of conditioning and sample loading of the above polar analytes. High recoveries of the analytes were observed in each nucleobase-modified sorbent, and the Diol-type sorbent (no modification with any of the nucleobases) did not adsorb each water-soluble analyte. On the basis of this result, a 98% ACN solution was used during the process of conditioning and sample loading to decrease the concentration of water in the sample, which potentially inhibited the formation of hydrogen bonding between each analyte and the modified nucleobase. Considerable improvements of recoveries were observed in Adenine- and Cytosine-modified sorbents. These results were possibly attributed to the effective expression of hydrogen bonding by decreasing water concentration in the sample solution. Although a non-aqueous (100% ACN) sample solution can be expected to obtain higher recoveries compared with the 98% ACN solution, a decrease in recoveries was observed in Adenine-modified sorbent. From these results, the highest adsorption property was observed in Adenine-modified sorbent using 98% ACN as a sample condition, and the combination of this sample condition and sorbent is effective for high adsorption under HILIC condition. Moreover, we also revealed that a balance between the thickness of water layer and the modification amount of nucleobase is important for retention in the HILIC-type sorbent.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Miho Omiya
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Yuta Miki
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan.
| |
Collapse
|
21
|
Long F, Zhang M, Yuan J, Du J, Ma A, Pan J. A simple, versatile, and automated pulse-diffusion-focusing strategy for sensitive milliliter-level-injection HILIC-MS/MS analysis of hydrophilic toxins. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122318. [PMID: 32092652 DOI: 10.1016/j.jhazmat.2020.122318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/16/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The measurement of trace hydrophilic toxins in complex aqueous-rich matrices is a daunting challenge. To address this analytical bottleneck, pulse diffusion focusing (PDF), a novel sample injection technique for hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS), was developed. Theoretical and experimental investigations of the mechanism and key parameters revealed that the pulse-injection approach, assisted by solvent diffusion, efficiently solved the volume overload problem. This milliliter-level-injection HILIC-MS/MS technique was reported for the first time herein, and provided a significant enhancement in sensitivity compared to the conventional injection method, in addition to being an efficient approach to address the solvent incompatibility of off-line sample preparation and HILIC. The automated PDF-HILIC-MS/MS system was obtained by slightly modifying a commercial LC-MS/MS instrument in an easy and economical manner. The efficiency of the system was demonstrated through the detection of trace tetrodotoxin contents in plasma and urine samples. Low limits of detection (i.e., 0.65 and 2.2 ng·mL-1) were obtained using the simplified sample preparation method. The recoveries were in the range 91-113.3 % with intra-day and inter-day precisions of ≤9.6 %. Further experimental results proved the method to be versatile for various hydrophilic toxins.
Collapse
Affiliation(s)
- Fei Long
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Mei Zhang
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Jiahao Yuan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Juan Du
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Ande Ma
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Berneschi S, Bettazzi F, Giannetti A, Baldini F, Nunzi Conti G, Pelli S, Palchetti I. Optical whispering gallery mode resonators for label-free detection of water contaminants. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Qiao L, Yu C, Sun R. Preparation and comparison of three zwitterionic stationary phases for hydrophilic interaction liquid chromatography. J Sep Sci 2020; 43:1071-1079. [DOI: 10.1002/jssc.201901087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Lizhen Qiao
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| | - Chunmei Yu
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| | - Ruiting Sun
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| |
Collapse
|
24
|
Subirats X, Abraham MH, Rosés M. Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions. Anal Chim Acta 2019; 1092:132-143. [DOI: 10.1016/j.aca.2019.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
|
25
|
Haddad SP, Bobbitt JM, Taylor RB, Lovin LM, Conkle JL, Chambliss CK, Brooks BW. Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1599:66-74. [PMID: 30961962 DOI: 10.1016/j.chroma.2019.03.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/09/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022]
Abstract
Cyanobacteria can form dense blooms under specific environmental conditions, and some species produce secondary metabolites known as cyanotoxins, which present significant risks to public health and the environment. Identifying toxins produced by cyanobacteria present in surface water and fish is critical to ensuring high quality food and water for consumption, and protectionn of recreational uses. Current analytical screening methods typically focus on one class of cyanotoxins in a single matrix and rarely include saxitoxin. Thus, a cross-class screening method for microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin was developed to examine target analytes in environmental water and fish tissue. This was done, due to the broad range of cyanotoxin physicochemical properties, by pairing two extraction and separation techniques to improve isolation and detection. For the first time a zwitterionic hydrophilic interaction liquid chromatography column was evaluated to separate anatoxin-a, cylindrospermopsin, and saxitoxin, demonstrating greater sensitivity for all three compounds over previous techniques. Further, the method for microcystins, nodularin, anatoxin-a, and cylindrospermopsin were validated using isotopically labeled internal standards, again for the first time, resulting in improved compensation for recovery bias and matrix suppression. Optimized extractions for water and fish tissue can be extended to other congeners in the future. These improved separation and isotope dilution techniques are a launching point for more complex, non-targeted analyses, with preliminary targeted screening.
Collapse
Affiliation(s)
- Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Jonathan M Bobbitt
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Jeremy L Conkle
- Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX, 78412, USA
| | - C Kevin Chambliss
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
26
|
Modulated Preparation of Capillary Monolithic HILIC Column by Target-Analogues of Matrine and Oxymatrine and Applied for Extracted Analysis of Sophorae flavescentis radix. ChemistrySelect 2019. [DOI: 10.1002/slct.201803254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Kalíková K, Voborná M, Tesařová E. Chromatographic behavior of new deazapurine ribonucleosides in hydrophilic interaction liquid chromatography. Electrophoresis 2018; 39:2144-2151. [PMID: 29797591 DOI: 10.1002/elps.201800141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
The chromatographic behavior of new biogenic purine nucleosides in hydrophilic interaction liquid chromatography was examined on three different stationary phases, namely bare silica, and amide- and cyclofructan-based stationary phases. The effects of buffer concentration, pH and acetonitrile-to-aqueous-part ratio in the mobile phase on retention and peak shape were assessed. The retention coefficients and peak symmetry values substantially differed with respect to analytes´ structures, stationary phase properties and mobile phase composition. The bare silica column was unsuitable for these compounds under the chromatographic conditions tested due to very broad and asymmetrical peaks. Furthermore, the cyclofructan-based stationary phase provided almost Gaussian peak shapes of all deazapurine nucleosides under most conditions tested. Therefore, the cyclofructan-based stationary phase is the most suitable choice for the chromatographic analysis of nucleosides.
Collapse
Affiliation(s)
- Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Markéta Voborná
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
28
|
Sentkowska A, Pyrzyńska K. Zwitterionic hydrophilic interaction liquid chromatography coupled to mass spectrometry for analysis of beetroot juice and antioxidant interactions between its bioactive compounds. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Ul’yanovskii NV, Kosyakov DS, Pikovskoi II, Shavrina IS, Shpigun OA. Determination of 1,1-Dimethylhydrazine and its Transformation Products in Soil by Zwitterionic Hydrophilic Interaction Liquid Chromatography/Tandem Mass Spectrometry. Chromatographia 2018. [DOI: 10.1007/s10337-018-3522-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Recent trends in water analysis triggering future monitoring of organic micropollutants. Anal Bioanal Chem 2018; 410:3933-3941. [PMID: 29564501 PMCID: PMC6010479 DOI: 10.1007/s00216-018-1015-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Water analysis has been an important area since the beginning of analytical chemistry. The focus though has shifted substantially: from minerals and the main constituents of water in the time of Carl Remigius Fresenius to a multitude of, in particular, organic compounds at concentrations down to the sub-nanogram per liter level nowadays. This was possible only because of numerous innovations in instrumentation in recent decades, drivers of which are briefly discussed. In addition to the high demands on sensitivity, high throughput by automation and short analysis times are major requirements. In this article, some recent developments in the chemical analysis of organic micropollutants (OMPs) are presented. These include the analysis of priority pollutants in whole water samples, extension of the analytical window, in particular to encompass highly polar compounds, the trend toward more than one separation dimension before mass spectrometric detection, and ways of coping with unknown analytes by suspect and nontarget screening approaches involving high-resolution mass spectrometry. Furthermore, beyond gathering reliable concentration data for many OMPs, the question of the relevance of such data for the aquatic system under scrutiny is becoming ever more important. To that end, effect-based analytics can be used and may become part of future routine monitoring, mostly with a focus on adverse effects of OMPs in specific test systems mimicking environmental impacts. Despite advances in the field of water analysis in recent years, there are still many challenges for further analytical research. Graphical abstract Recent trends in water analysis of organic micropollutants that open new opportunities in future water monitoring. HRMS high-resolution mass spectrometry, PMOC persistent mobile organic compounds.
Collapse
|