1
|
Jiang M, Zhao X, Zhang C, Liu R, Hu J, Lv Y. Thermus thermophilus Argonaute-Mediated Single Particle Counting Platform for Multiplex Cancer-Related Biomarkers Detection. Anal Chem 2025. [PMID: 40400168 DOI: 10.1021/acs.analchem.5c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) system has achieved remarkable success in the field of nucleic acid detection, while its Achilles' heel lies in the difficulties encountered in flexibility regarding the multiplex detection. As a sister system of CRISPR-Cas, prokaryotic Argonautes (pAgos) have precise recognition, multiturnover, and more importantly multiple specific cleavage characteristics, which is a potential candidate for the next generation of multiplex detection. Herein, a single particle counting platform was developed for the simultaneous detection of three colorectal cancer-related miRNAs (miR-141, miR-31, and miR-21) by combining single particle inductively coupled plasma mass spectrometry (SP-ICPMS) with the Thermus thermophilus Argonaute protein (TtAgo), with nanoparticles as signal probes for cleavage. The platform demonstrated high sensitivity (aM level) and specificity due to the dual-cycle mechanism of exponential isothermal amplification (EXPAR) and TtAgo cleavage, as well as the combination of TtAgo's specific cleavage capability and the multiplex detection advantages of metal stable isotope tagging. Additionally, the platform showed good robustness in human serum and cell extracts, indicating significant potential in clinical applications.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610041, China
| | - Chengchao Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Zhang P, Han Y, Xu Y, Gao L. Application of metal stable isotopes labeling and elemental mass spectrometry for biomacromolecule profiling. BIOPHYSICS REPORTS 2025; 11:112-128. [PMID: 40308936 PMCID: PMC12035746 DOI: 10.52601/bpr.2024.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 05/02/2025] Open
Abstract
Biomacromolecules including proteins and nucleic acids are widely recognized for their pivotal and irreplaceable role in maintaining the normal functions of biological systems. By combining metal stable isotope labeling with elemental mass spectrometry, researchers can quantify the amount and track the spatial distribution of specific biomacromolecules in complex biological systems. In this review, the probes classification and metal stable isotope labeling strategies are initially summarized. Secondly, the technical characteristics and working principle of the elemental mass spectrometry techniques including inductively coupled plasma mass spectrometry and secondary ion mass spectrometry are introduced to achieve highly sensitive detection of multiple biomacromolecules at molecular, cellular and tissue levels. Lastly, we underline the advantages and limitations of elemental mass spectrometry combined with metal stable isotope labeling strategies, and propose the perspectives for future developments.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ying Han
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yue Xu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Beyer M, Hladun C, Bou-Abdallah F. Detection of proteins with ascorbic acid-capped gold nanoparticles: a simple and highly sensitive colorimetric assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5391-5398. [PMID: 38978467 DOI: 10.1039/d4ay01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report a simple and highly sensitive colorimetric method for the detection and quantification of proteins, based on the aggregation of ascorbic acid (AA) capped gold nanoparticles (AuNPs) by proteins. The interactions between our AuNPs and nine different proteins of various sizes and shapes (cytochrome C (12 kDa), lysozyme (14.3 kDa), myoglobin (17 kDa), human serum albumin (66 kDa), bovine serum albumin (66.4 kDa), human transferrin (80 kDa), aldolase (160 kDa), catalase (240 kDa), and human H-ferritin (500 kDa)) generated similar AuNPs-protein absorption spectra in a concentration-dependent manner in the range of 1-15 nM. Upon the addition of a protein, the UV-visible spectra of AuNPs-protein conjugates shifted from 524 nm for the AuNps alone to longer wavelength (600-750 nm) due to the presence of one of these proteins. This bathochromic shift is accompanied by a color change from a cherry red, to dark purple, and then light grey or colorless if excess protein has been added, indicating the formation of AuNPs-protein conjugates followed by protein-induced aggregation of the AuNPs. High-resolution transmission electron microscopy images revealed uniformly distributed spherical nanoparticles with an average size of 27.5 ± 15.2 nm, increasing in size to 39.6 ± 12.9 nm upon the addition of a protein, indicating the formation of AuNPs-protein conjugates in solution. A general mechanism for the protein-induced aggregation of our AuNPs is proposed. The consistent behavior observed with the nine proteins tested in our study suggests that our assay can be universally applied for the quantification of pure proteins in a solution, regardless of size, shape, or molecular weight.
Collapse
Affiliation(s)
- Maximilian Beyer
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Colby Hladun
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
5
|
García-Bellido J, Redondo-Velasco M, Freije-Carrelo L, Burnens G, Moldovan M, Bouyssiere B, Giusti P, Encinar JR. Sensitive Detection and Quantification of Oxygenated Compounds in Complex Samples Using GC-Combustion-MS. Anal Chem 2024; 96:10756-10764. [PMID: 38952275 PMCID: PMC11223096 DOI: 10.1021/acs.analchem.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
This work introduces a new element-selective gas chromatography detector for the accurate quantification of traces of volatile oxygen-containing compounds in complex samples without the need for specific standards. The key to this approach is the use of oxygen highly enriched in 18O as the oxidizing gas in a combustion unit (800 °C) that allows us to directly and unambiguously detect the natural oxygen present in the GC-separated compounds through its incorporation into the volatile species formed after their combustion and their subsequent degradation to 16O in the ion source. The unspecific signal due to the low 16O abundance in the oxidizing gas could be compensated by measuring the m/z 12 that comes as well from the CO2 degradation. Equimolarity was proved with several O-containing compounds with different sizes and functionalities. A detection limit of 28 pg of injected O was achieved, which is the lowest ever reported for any GC detector, which barely worsened to 55 and 214 pg of O when the oxygenate partially or completely coeluted with a very abundant matrix compound. Validation was attained by the analysis of a SRM to obtain accurate (99-103%) and precise (1-4% RSD) results. Robustness was tested after spiking a hydrotreated diesel with 10 O-compounds at the ppm level, which could be discriminated from the matrix crowd and quantified (mean recovery of 102 ± 9%) with a single generic standard. Finally, it was also successfully applied to easily spot and quantify the 33 oxygenates naturally present in a complex wood bio-oil sample.
Collapse
Affiliation(s)
- Javier García-Bellido
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| | | | - Laura Freije-Carrelo
- TotalEnergies
One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
| | - Gaëtan Burnens
- TotalEnergies
One Tech Belgium, Zone Industrielle C, 7181 Feluy, Belgium
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
| | - Mariella Moldovan
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| | - Brice Bouyssiere
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
- Universite
de Pau et des Pay de l’Adour, E2S UPPA CNRS, IPREM, Institut
des Sciences Analytiques et de Physico-chimie pour l’Environnement
et les Matériaux UMR5254, 64053 Pau, France
| | - Pierre Giusti
- International
Joint Laboratory−iC2MC: Complex Matrices Molecular Characterization,
TRTG, 76700 Harfleur, France
- TotalEnergies,
TotalEnergies Research & Technology Gonfreville, 76700 Harfleur, France
| | - Jorge Ruiz Encinar
- Department
of Physical and Analytical Chemistry, University
of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
6
|
Zhang Q, Ren T, Cao K, Xu Z. Advances of machine learning-assisted small extracellular vesicles detection strategy. Biosens Bioelectron 2024; 251:116076. [PMID: 38340580 DOI: 10.1016/j.bios.2024.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Detection of extracellular vesicles (EVs), particularly small EVs (sEVs), is of great significance in exploring their physiological characteristics and clinical applications. The heterogeneity of sEVs plays a crucial role in distinguishing different types of cells and diseases. Machine learning, with its exceptional data processing capabilities, offers a solution to overcome the limitations of conventional detection methods for accurately classifying sEV subtypes and sources. Principal component analysis, linear discriminant analysis, partial least squares discriminant analysis, XGBoost, support vector machine, k-nearest neighbor, and deep learning, along with some combined methods such as principal component-linear discriminant analysis, have been successfully applied in the detection and identification of sEVs. This review focuses on machine learning-assisted detection strategies for cell identification and disease prediction via sEVs, and summarizes the integration of these strategies with surface-enhanced Raman scattering, electrochemistry, inductively coupled plasma mass spectrometry and fluorescence. The performance of different machine learning-based detection strategies is compared, and the advantages and limitations of various machine learning models are also evaluated. Finally, we discuss the merits and limitations of the current approaches and briefly outline the perspective of potential research directions in the field of sEV analysis based on machine learning.
Collapse
Affiliation(s)
- Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Tingju Ren
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ke Cao
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
7
|
Farka Z, Vytisková K, Makhneva E, Zikmundová E, Holub D, Buday J, Prochazka D, Novotný K, Skládal P, Pořízka P, Kaiser J. Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles. Anal Chim Acta 2024; 1299:342418. [PMID: 38499415 DOI: 10.1016/j.aca.2024.342418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Karolína Vytisková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Zikmundová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Daniel Holub
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jakub Buday
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - David Prochazka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Karel Novotný
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
8
|
Yang H, Qi L, Zhou J, Li Q, Yuan X, Zhang M, He Y, Huang K, Chen P. Metal ions-regulated chemical vapor generation of Hg 2+:mechanism and application in miniaturized point discharge atomic emission spectrometry assay of oxalate in clinical urolithiasis samples. Anal Chim Acta 2023; 1262:341223. [PMID: 37179054 DOI: 10.1016/j.aca.2023.341223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
It is well known that the coexisting metal ions could significantly influence the atomic spectroscopy (AS) analysis. In this work, a cation-modulated mercury ions (Hg2+) strategy via chemical vapor generation (CVG) was developed for oxalate assay due to the phenomenon that the Ag + can significantly reduce the Hg2+ signal. The regulation effect was studied in depth via experimental investigations. Since Ag + can be reduced to silver nanoparticles (Ag NPs) by reductant SnCl2, the decrease of the Hg2+ signal is attributed to the formation of a silver-mercury (Ag-Hg) amalgam. Due to the oxalate can react with Ag + to generate Ag2C2O4, which can reduce the generation of Ag-Hg amalgam, a portable and low-power point discharge chemical vapor generation atomic emission spectrometry (PD-CVG-AES) system was constructed to quantify the content of oxalate via monitoring the signal of Hg2+. Under optimal conditions, the limit of detection (LOD) was as low as 40 nM in the range of 0.1-10 μM for oxalate assay, while exhibiting good specificity. This method was applied to quantitative oxalate in 50 clinical urine samples of urinary stones patients. The levels of oxalate detected in clinical samples were consistent with clinical imaging results, which is promising for point-of-care testing in clinical diagnosis.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Liping Qi
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jinrong Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Qian Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xin Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Mei Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yong He
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Luo W, Dong F, Wang M, Li T, Wang Y, Dai W, Zhang J, Jiao C, Song Z, Shen J, Ma Y, Ding Y, Yang F, Zhang Z, He X. Particulate Standard Establishment for Absolute Quantification of Nanoparticles by LA-ICP-MS. Anal Chem 2023; 95:6391-6398. [PMID: 37019686 DOI: 10.1021/acs.analchem.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The development of nanotechnology has transformed many cutting-edge studies related to single-molecule analysis into nanoparticle (NP) detection with a single-NP sensitivity and ultrahigh resolution. While laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been successful in quantifying and tracking NPs, its quantitative calibration remains a major challenge due to the lack of suitable standards and the uncertain matrix effects. Herein, we frame a new approach to prepare quantitative standards via precise synthesis of NPs, nanoscale characterization, on-demand NP distribution, and deep learning-assisted NP counting. Gold NP standards were prepared to cover the mass range from sub-femtogram to picogram levels with sufficient accuracy and precision, thus establishing an unambiguous relationship between the sampled NP number in each ablation and the corresponding mass spectral signal. Our strategy facilitated for the first time the study of the factors affecting particulate sample capture and signal transductions in LA-ICP-MS analysis and culminated in the development of an LA-ICP-MS-based method for absolute NP quantification with single-NP sensitivity and single-cell quantification capability. The achievements would herald the emergence of new frontiers cut across a spectrum of toxicological and diagnostic issues related to NP quantification.
Collapse
Affiliation(s)
- Wenhe Luo
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengliang Dong
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Meng Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yun Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqin Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunlei Jiao
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuda Song
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Shen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiyong Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Fuentes-Cervantes A, Ruiz Allica J, Calderón Celis F, Costa-Fernández JM, Ruiz Encinar J. The Potential of ICP-MS as a Complementary Tool in Nanoparticle-Protein Corona Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1132. [PMID: 36986026 PMCID: PMC10058595 DOI: 10.3390/nano13061132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The prolific applicability of nanomaterials has made them a common citizen in biological systems, where they interact with proteins forming a biological corona complex. These complexes drive the interaction of nanomaterials with and within the cells, bringing forward numerous potential applications in nanobiomedicine, but also arising toxicological issues and concerns. Proper characterization of the protein corona complex is a great challenge typically handled with the combination of several techniques. Surprisingly, despite inductively coupled plasma mass spectrometry (ICP-MS) being a powerful quantitative technique whose application in nanomaterials characterization and quantification has been consolidated in the last decade, its application to nanoparticle-protein corona studies is scarce. Furthermore, in the last decades, ICP-MS has experienced a turning point in its capabilities for protein quantification through sulfur detection, hence becoming a generic quantitative detector. In this regard, we would like to introduce the potential of ICP-MS in the nanoparticle protein corona complex characterization and quantification complementary to current methods and protocols.
Collapse
|
11
|
Whitty-Léveillé L, VanAernum ZL, Pavon JA, Murphy C, Neal K, Forest W, Gao X, Zhong W, Richardson DD, Schuessler HA. Determination of ultra-trace metal-protein interactions in co-formulated monoclonal antibody drug product by SEC-ICP-MS. MAbs 2023; 15:2199466. [PMID: 37032437 PMCID: PMC10085571 DOI: 10.1080/19420862.2023.2199466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Transition metals can be introduced in therapeutic protein drugs at various steps of the manufacturing process (e.g. manufacturing raw materials, formulation, storage), and can cause a variety of modifications on the protein. These modifications can potentially influence the efficacy, safety, and stability of the therapeutic protein, especially if critical quality attributes (CQAs) are affected. Therefore, it is meaningful to understand the interactions between proteins and metals that can occur during the manufacturing process, formulation, and storage of biotherapeutics. Here, we describe a novel strategy to differentiate between ultra-trace levels of transition metals (cobalt, chromium, copper, iron, and nickel) interacting with therapeutic proteins and free metal in solution in the drug formulation using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Two monoclonal antibodies (mAbs) were coformulated and stored up to nine days in a scaled down model to mimic metal exposure from manufacturing tanks. The samples containing the mAbs were first analyzed by ICP-MS for bulk metal analysis, then studied using SEC-ICP-MS to measure the extent of metal-protein interactions. The SEC separation was used to differentiate metal associated with the mAbs from free metal in solution. Relative quantitation of metal-protein interaction was then calculated using the relative peak areas of protein-associated metal to free metal in solution and weighting it to the total metal concentration in the mixture as measured by bulk metal analysis by ICP-MS. The SEC-ICP-MS method offers an informative means of measuring metal-protein interactions during drug development.
Collapse
Affiliation(s)
| | | | | | - Christa Murphy
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - Katie Neal
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - William Forest
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - Xinliu Gao
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | - Wendy Zhong
- Analytical Research and Development, Merck & Co, Inc, Rahway, New Jersey
| | | | | |
Collapse
|
12
|
Jiang M, Zhou J, Xie X, Huang Z, Liu R, Lv Y. Single Nanoparticle Counting-Based Liquid Biopsy for Cancer Diagnosis. Anal Chem 2022; 94:15433-15439. [DOI: 10.1021/acs.analchem.2c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Jing Zhou
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| |
Collapse
|
13
|
Pan M, Lu Y, Feng L, Zhou X, Xiong J, Li H. Absolute Quantification of Total Hemoglobin in Whole Blood by High-Performance Liquid Chromatography Isotope Dilution Inductively Coupled Plasma-Mass Spectrometry. Anal Chem 2022; 94:11753-11759. [PMID: 35977378 DOI: 10.1021/acs.analchem.2c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate and traceable measurement of hemoglobin (HGB) is of great importance in clinical testing. Although the HiCN method is the internationally accepted conventional reference method for this biomarker and frequently used in clinical routine diagnostics, the HiCN method cannot be traceable to the International System of Units (SI) and thus does not meet highest metrological demands. In this study, an absolute quantitative approach for total HGB in a whole blood sample is proposed based on the determination of natural Fe and S present in the heme-group of HGB by HPLC isotope dilution ICP-MS. IRMM/IFCC-467 is used for method validation, and then clinical blood samples are measured by the established strategy and HiCN method. The measurable ranges of total HGB were 10.0-240.0 g L-1. Limits of detection via Fe and S were 0.01 and 0.07 g L-1, respectively. The intra-assay imprecision CVs via Fe and S were 0.89-1.35 and 0.99-1.56%, and the interassay CVs were 1.19-2.15 and 1.55-2.55%, respectively. Good agreement was achieved in the method validation. In the comparison with HiCN experiments, the ID-ICP-MS assays via Fe and S showed correlations of r2 = 0.991 and 0.970 against HiCN methods. Moreover, the concentration of transferrin (Tf) was also simultaneously measured. This strategy has potential to serve as a reference measurement procedure for total HGB in whole blood, which could be traceable to SI and does not require toxic derivation reagent.
Collapse
Affiliation(s)
- Mengyun Pan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yanli Lu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.,College of Material Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liuxing Feng
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Xirui Zhou
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jinping Xiong
- College of Material Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
14
|
Chen J, Wang R, Ma M, Gao L, Zhao B, Xu M. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)-based strategies applied for the analysis of metal-binding protein in biological samples: an update on recent advances. Anal Bioanal Chem 2022; 414:7023-7033. [PMID: 35790569 DOI: 10.1007/s00216-022-04185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 06/17/2022] [Indexed: 11/01/2022]
Abstract
New analytical strategies for metal-binding protein facilitate researchers learning about how metals play a significant role in life. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) offers many advantages for the metal analysis of biological samples and shows a promising future in protein analysis, but recent advances in LA-ICP-MS-based strategies for identifying metal-binding proteins via endogenous metals remain less updated yet. To present the current status in this field, the main analytical strategies for metal-binding proteins with LA-ICP-MS are reviewed here, including in situ analysis of biospecimens and ex situ analysis with gel electrophoresis. A critical discussion of challenges and future perspectives is also given. Multifarious laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS)-based strategies have been developed and applied to investigate the metal-binding proteins in biospecimens in situ or through gel electrophoresis ex situ over the past decades, facilitating researchers disclosing how essential metals are implicated in life or what proteins toxic metals will target.
Collapse
Affiliation(s)
- Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Wang C, Song H, Zhao X, Liu R, Lv Y. Multiplex DNA Walking Machines for Lung Cancer-Associated miRNAs. Anal Chem 2022; 94:1787-1794. [PMID: 35018772 DOI: 10.1021/acs.analchem.1c04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomimetic DNA walking machines have gained great success in scrutinizing the microscopic world and sensitive biosensing of disease biomarkers. Despite superb achievements, the research on DNA walking machines for simultaneous detection of multiple analytes is still rare, while the design and realization of multiplexing are considered as an important bottleneck. The multiplex detection of biomarkers can not only improve the specificity of bioassays but also avoid the squander of valuable biological specimens. Herein, we reported multiplex three-dimensional (3D) DNA walking machines based on high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) for lung cancer-associated miRNA detection. In the presence of lung cancer-associated target miRNAs (miR-21, miR-141, and miR-125b), DNA walking machines were stimulated and operated to liberate a large number of lanthanide elements (Tb, Ho, and Tm), and then the signals were collected simultaneously by HR-ICPMS. The recovery test of target miRNAs in human serum and the simultaneous monitoring experiment of three miRNAs in human lung cancer cell line (A549) and normal cell line (HBE) specimens display satisfactory analysis capabilities for complex biological samples. Thanks to the vast potential of lanthanide tags and the modular design, the proposed bioassay might flexibly detect different miRNA combinations with corresponding sets of DNA walking machines to meet the requirements of various tasks.
Collapse
Affiliation(s)
- Chaoqun Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu 7th People's Hospital, Chengdu 610041, Sichuan, P. R. China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.,Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
16
|
Nosti AJ, Barrio LC, Calderón-Celis F, Soldado A, Encinar JR. Absolute quantification of proteins using element mass spectrometry and generic standards. J Proteomics 2022; 256:104499. [DOI: 10.1016/j.jprot.2022.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
17
|
Grønbæk-Thorsen F, Jensen C, Østergaard J, Møller LH, Gammelgaard B. Comparison of external calibration and isotope dilution LC-ICP-MS/MS for quantitation of oxytocin and its selenium analogue in human plasma. Anal Bioanal Chem 2021; 413:6479-6488. [PMID: 34458946 DOI: 10.1007/s00216-021-03611-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
In the present study, a method for quantitation of the pharmaceutical peptide oxytocin (OT) and its diselenide-containing analogue (SeOT) in human plasma was developed using gradient elution LC-ICP-MS/MS. Plasma samples were precipitated with acetonitrile containing 1.0% TFA in a volume ratio of 1+3 (sample+precipitation agent) before analysis. Post-column isotope dilution analysis (IDA) was applied for quantitation and was compared with external calibration. Both calibration methods appeared to be fit for purpose regarding figures of merit including linearity, precision, LOD, LOQ and recovery. Analysis of OT and SeOT showed that selenium-based analysis is considerably more sensitive and selective compared to the sulfur-based analysis. Despite the relatively simpler setup of external calibration, IDA can be advantageous because it compensates for instrument drift and changes in organic solvent concentration. The method was applied for a stability study showing the degradation of OT and SeOT in plasma. The degradation of SeOT was faster than the degradation of OT in plasma. Thus, possible stability effects should be considered before replacing a disulfide bridge with a diselenide bridge or introducing a diselenide label in a potential drug.
Collapse
Affiliation(s)
- Freja Grønbæk-Thorsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Camilla Jensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Laura Hyrup Møller
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Zhang Y, Wei Y, Liu P, Zhang X, Xu Z, Tan X, Chen M, Wang J. ICP-MS and Photothermal Dual-Readout Assay for Ultrasensitive and Point-of-Care Detection of Pancreatic Cancer Exosomes. Anal Chem 2021; 93:11540-11546. [PMID: 34369746 DOI: 10.1021/acs.analchem.1c02004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is known to have a high mortality rate, and its early diagnosis remains challenging due to the occult location of the pancreas. Exosomes derived from pancreatic cancer cells specifically express glypican-1, which may provide a liquid biopsy opportunity for the early diagnosis of pancreatic cancer. Herein, an inductively coupled plasma mass spectrometry (ICP-MS) and photothermal dual-readout platform was proposed for the ultrasensitive and point-of-care analysis of pancreatic cancer exosomes. In our design, exosomes were specifically captured by the sandwich immunoassay, and simultaneously, alkaline phosphatase was introduced in a low-background manner. The alkaline phosphatase triggered the hydrolysis of l-ascorbic acid 2-phosphate to produce ascorbic acid, followed by the etching of Fe3O4@MnO2 nanoflowers. As a result, the Mn2+ generated by etching stripped off the Fe3O4 and was quantified using ICP-MS. Meanwhile, the reduced Fe3O4@MnO2 was applied for the photothermal assay by oxidizing dopamine with MnO2. The protocol exhibits a detection limit down to 19.1 particles mL-1, which is the most sensitive protocol reported so far. To our knowledge, this is the first endeavor for exosome quantification using ICP-MS and photothermal methods. The developed dual-readout platform not only is capable of distinguishing pancreatic cancer patients from healthy people, but also shows excellent discernibility of individual differences at low concentrations of exosomes. This dual-readout assay is a promising platform for the ultrasensitive and point-of-care detection of exosomes in liquid biopsy-based early cancer diagnosis.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Peng Liu
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xiaodong Tan
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
19
|
Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: So far so good, so what? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Abstract
Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| |
Collapse
|
21
|
Pořízka P, Vytisková K, Obořilová R, Pastucha M, Gábriš I, Brandmeier JC, Modlitbová P, Gorris HH, Novotný K, Skládal P, Kaiser J, Farka Z. Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles. Mikrochim Acta 2021; 188:147. [PMID: 33797618 DOI: 10.1007/s00604-021-04816-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/27/2021] [Indexed: 12/16/2022]
Abstract
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.
Collapse
Affiliation(s)
- Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Karolína Vytisková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivo Gábriš
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Julian C Brandmeier
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Pavlína Modlitbová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Karel Novotný
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
22
|
Larraga-Urdaz AL, Sanchez MLF, Encinar JR, Costa-Fernandez JM. Signal amplification strategies for clinical biomarker quantification using elemental mass spectrometry. Anal Bioanal Chem 2021; 414:53-62. [PMID: 33674934 DOI: 10.1007/s00216-021-03251-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
The current trends in modern medicine towards early diagnosis, or even prognosis, of different diseases have brought about the need for the corresponding biomarker detection at ever lower levels in really complex matrices. To do so, it is necessary to use proper extremely sensitive detection techniques such as elemental mass spectrometry. However, target labelling with metals for subsequent sensitive ICP-MS detection falls short nowadays even if resorting to inorganic nanoparticles containing a high number of detectable elements. Thus, new amplification strategies are being proposed to face this analytical challenge that will be critically discussed in this paper. Fundamentals of different novel strategies developed to achieve signal amplification and sensitive elemental mass spectrometry detection are here discussed. Some representative examples of relevant clinical applications are highlighted, along with future prospects and challenges.
Collapse
Affiliation(s)
- Andrea L Larraga-Urdaz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - Maria L Fernandez Sanchez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain.
| | - Jose M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain.
| |
Collapse
|
23
|
Cid-Barrio L, Calderón-Celis F, Costa-Fernández JM, Encinar JR. Assessment of the Potential and Limitations of Elemental Mass Spectrometry in Life Sciences for Absolute Quantification of Biomolecules Using Generic Standards. Anal Chem 2020; 92:13500-13508. [PMID: 32842726 DOI: 10.1021/acs.analchem.0c02942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used in Life Sciences for the absolute quantification of biomolecules without specific standards, assuming the same response for generic compounds including complex biomolecules. However, contradictory results have been published on this regard. We present the first critical statistical comparison of the ICP-MS response factors obtained for 14 different relevant S-containing biomolecules (three peptides, four proteins, one amino acid, two cofactors, three polyethylene glycol (PEG) derivatives, and sulfate standard), covering a wide range of hydrophobicities and molecular sizes. Two regular flow nebulizers and a total consumption nebulizer (TCN) were tested. ICP-MS response factors were determined though calibration curves, and isotope dilution analysis was used to normalize the results. No statistical differences have been found for low-molecular-weight biocompounds, PEGs, and nonhydrophobic peptides using any of the nebulizers tested. Interestingly, while statistical differences were still found negligible (96-104%) for the proteins and hydrophobic peptide using the TCN, significantly lower response factors (87-40%) were obtained using regular flow nebulizers. Such differential behavior seems to be related mostly to hydrophobicity and partially to the molecular weight. Findings were validated using IDA in intact and digested bovine serum albumin solutions using the TCN (98 and 100%, respectively) and the concentric nebulizer (73 and 97%, respectively). Additionally, in the case of a phosphoprotein, results were corroborated using the P trace in parallel to the S trace used along the manuscript. This work seems to suggest that ICP-MS operated with regular nebulizers can offer absolute quantification using generic standards for most biomolecules except proteins and hydrophobic peptides.
Collapse
Affiliation(s)
- Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Av. Julian Clavería 8, 33006 Oviedo, Spain
| | - Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Av. Julian Clavería 8, 33006 Oviedo, Spain
| | - José Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Av. Julian Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Av. Julian Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
24
|
Chang ZM, Zhou H, Yang C, Zhang R, You Q, Yan R, Li L, Ge M, Tang Y, Dong WF, Wang Z. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J Mater Chem B 2020; 8:5019-5025. [PMID: 32393955 DOI: 10.1039/d0tb00403k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immunomagnetic beads are important tools for the isolation and detection of circulating tumor cells (CTCs). However, the current immunomagnetic bead technique provides poor CTC separation purity due to nonspecific binding of background cells. Furthermore, immunomagnetic beads have not been appropriately functionalized for enabling CTC analysis and quantification. In this work, bimetallic magnetic gold nanoparticles were prepared and coated with leukocyte membranes to form leukocyte membrane-camouflaged nanoparticles. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), the biomimetic immunomagnetic gold nanoparticles (CM-Fe3O4@Au-Ab) showed a high specific recognition ability on mock (EpCAM-positive) CTCs and a reduced interaction with leukocytes. We subsequently optimized the conditions for CTC separation, including the concentration of nanoparticles and the incubation time. Under the optimized conditions, CM-Fe3O4@Au-Ab exhibited high CTC capture efficiency with negligible background cell binding in mock clinical blood samples. More importantly, gold probes were tagged on the surface of these separated CTCs. When coupled with ICP-MS analysis, the number of CTCs and gold signals exhibited a good linear relationship, and a low limit of detection was obtained, enabling us to estimate the number of CTCs in blood samples. Hence, we expected that CM-Fe3O4@Au-Ab could provide an opportunity to surmount the limitations of current CTC detection.
Collapse
Affiliation(s)
- Zhi-Min Chang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bianga J, Perez M, Mouvet D, Cajot C, De Raeve P, Delobel A. Development of an ICP-MS/MS approach for absolute quantification and determination of phosphodiester to phosphorothioate ratio in therapeutic oligonucleotides. J Pharm Biomed Anal 2020; 184:113179. [PMID: 32092633 DOI: 10.1016/j.jpba.2020.113179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
A new analytical method based on ICP-MS/MS is proposed for the characterization of synthetic phosphorothioate oligonucleotides. Absolute quantification of oligonucleotides is challenging, as well as the determination of phosphodiester to phosphorothioate ratio for phosphorothioate oligonucleotides. Both are considered as critical quality attributes and should be determined using robust validated methods. The method we developed was designed to be easy to apply, fast, and robust. It allows simultaneous absolute quantification of an oligonucleotide (based on the quantification of phosphorus), determination of the phosphodiester to phosphorothioate ratio (based on the quantification of phosphorus and sulfur) and optionally determination of sodium (or any other metal) as a counter ion. The performance of the method was demonstrated on O,O-diethyl thiophosphate potassium salt, a well characterized model substance that possesses similar composition to phosphorothioate oligonucleotides. Method was also tested on different synthetic phophorothioate oligonucleotides, showing excellent accuracy and precision.
Collapse
Affiliation(s)
- Juliusz Bianga
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Magali Perez
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Damien Mouvet
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Caroline Cajot
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Philippe De Raeve
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium.
| |
Collapse
|
26
|
Solovyev N, Ala A, Schilsky M, Mills C, Willis K, Harrington CF. Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal Chim Acta 2020; 1098:27-36. [DOI: 10.1016/j.aca.2019.11.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
|
27
|
Ren C, Bobst CE, Kaltashov IA. Exploiting His-Tags for Absolute Quantitation of Exogenous Recombinant Proteins in Biological Matrices: Ruthenium as a Protein Tracer. Anal Chem 2019; 91:7189-7198. [PMID: 31083917 DOI: 10.1021/acs.analchem.9b00504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal labeling and ICP MS detection offer an alternative to commonly accepted techniques that are currently used to quantitate exogenous proteins in vivo, but modifying the protein surface with metal-containing groups inevitably changes its biophysical properties and is likely to affect trafficking and biodistribution. The approach explored in this work takes advantage of the presence of hexa-histidine tags in many recombinant proteins, which have high affinity toward a range of metals. While many divalent metals bind to poly histidine sequences reversibly, oxidation of imidazole-bound CoII or RuII is known to result in a dramatic increase of the binding strength. In order to evaluate the feasibility of using imidazole-bound metal oxidation as a means of attaching permanent tags to polyhistidine segments, a synthetic peptide YPDFEDYWMKHHHHHH was used as a model. RuII can be oxidized under ambient (aerobic) conditions, allowing any oxidation damage to the peptide beyond the metal-binding site to be avoided. The resulting peptide-RuIII complex is very stable, with the single hexa-histidine segment capable of accommodating up to three metal ions. Localization of RuIII within the hexa-histidine segment of the peptide was confirmed by tandem mass spectrometry. The RuIII/peptide binding appears to be irreversible, with both low- and high-molecular weight biologically relevant scavengers failing to strip the metal from the peptide. Application of this protocol to labeling a recombinant form of an 80 kDa protein transferrin allowed RuIII to be selectively placed within the His-tag segment. The metal label remained stable in the presence of ubiquitous scavengers and did not interfere with the receptor binding, while allowing the protein to be readily detected in serum at sub-nM concentrations. The results of this work suggest that ruthenium lends itself as an ideal metal tag for selective labeling of His-tag containing recombinant proteins to enable their sensitive detection and quantitation with ICP MS.
Collapse
Affiliation(s)
- Chengfeng Ren
- Department of Chemistry , University of Massachusetts-Amherst , Amherst , Massachusetts 01003 , United States
| | - Cedric E Bobst
- Department of Chemistry , University of Massachusetts-Amherst , Amherst , Massachusetts 01003 , United States
| | - Igor A Kaltashov
- Department of Chemistry , University of Massachusetts-Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
28
|
Gouveia D, Almunia C, Cogne Y, Pible O, Degli-Esposti D, Salvador A, Cristobal S, Sheehan D, Chaumot A, Geffard O, Armengaud J. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. J Proteomics 2019; 198:66-77. [DOI: 10.1016/j.jprot.2018.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
|
29
|
Liu Y, Ding Y, Gao Y, Liu R, Hu X, Lv Y. Enzyme-free amplified DNA assay: five orders of linearity provided by metal stable isotope detection. Chem Commun (Camb) 2019; 54:13782-13785. [PMID: 30393790 DOI: 10.1039/c8cc07036a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the quantification of mutated genes at greatly varied concentrations in body fluids, nucleic acid amplification strategies are often challenged by limited dynamic linear ranges. The proposed metal stable isotope detection strategy demonstrates five orders of linear range and a lower attomol detection limit, showing promising potential in clinical diagnosis.
Collapse
Affiliation(s)
- Yu Liu
- College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | | | | | | | | | | |
Collapse
|
30
|
Calderón-Celis F, Sugiyama N, Yamanaka M, Sakai T, Diez-Fernández S, Calvete JJ, Sanz-Medel A, Encinar JR. Enhanced Universal Quantification of Biomolecules Using Element MS and Generic Standards: Application to Intact Protein and Phosphoprotein Determination. Anal Chem 2018; 91:1105-1112. [DOI: 10.1021/acs.analchem.8b04731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Naoki Sugiyama
- Agilent Technologies International Japan, Ltd., 9-1 Takakura-cho, Hachioji-shi, Tokyo 192-0033, Japan
| | - Michiko Yamanaka
- Agilent Technologies International Japan, Ltd., 9-1 Takakura-cho, Hachioji-shi, Tokyo 192-0033, Japan
| | - Tetsushi Sakai
- Agilent Technologies International Japan, Ltd., 9-1 Takakura-cho, Hachioji-shi, Tokyo 192-0033, Japan
| | - Silvia Diez-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J. Calvete
- Instituto de Biomedicina de Valencia, IBV-CSIC, Jaume Roig 11, 46010 Valencia, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
31
|
Calderón-Celis F, Encinar JR. A reflection on the role of ICP-MS in proteomics: Update and future perspective. J Proteomics 2018; 198:11-17. [PMID: 30445180 DOI: 10.1016/j.jprot.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023]
Abstract
Mass spectrometry is the technique of reference for the identification and quantification of proteins. Whereas ESI and MALDI ionization sources are inherently not quantitative being highly influenced by the chemical nature of the analyte and the matrix, ICP-MS uses a hard ionization source that destroys proteins into its atoms and measures the elemental signal, which is independent of its chemical environment. As a consequence, ICP-MS turns up as an excellent technique for the screening, mapping and quantification of peptides and proteins in a sample through elemental detection (any element but C, H, N, or O) once they have been previously separated by chromatography. In this time, great efforts have been put in developing instrumentation and new methodologies that enable a better, more efficient, and more useful analysis of proteins with ICP-MS. Moreover, quantitative capabilities but lack of molecular information of ICP has led to a synergic relationship both with identifying capabilities of ESI-MS, or the use of protein-specific antibodies carrying an elemental label. JOURNAL SIGNIFICANCE: We are delighted to participate in this special issue and have the chance to congratulate Journal of Proteomics for its 10th Anniversary, and wish for many further successful anniversaries. During this last decade, Journal of Proteomics has been a clear promotor of works integrating ICP-MS for proteomics analysis. In fact, already in 2009, a review was published by invitation of the editor in chief focused on the established and potential role of ICP-MS in different areas of the proteomics analysis at the time: "The emerging role of ICP-MS in proteomics" [1]. Even though ICP-MS is not fully known or acknowledged in the proteomics world yet, its impact was significant as demonstrated by the really high interest in such publication (over 150 citations). Since then, several excellent papers relating to ICP-MS applications in proteomics have been published in this journal. Following the trend, we expect through this personal view of the current standing of ICP-MS in proteomics to enlighten the readers of Journal of Proteomics with a vision of the full present and future potential of ICP-MS in proteomics.
Collapse
Affiliation(s)
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Spain.
| |
Collapse
|
32
|
Quantitative mapping of specific proteins in biological tissues by laser ablation-ICP-MS using exogenous labels: aspects to be considered. Anal Bioanal Chem 2018; 411:549-558. [PMID: 30310944 DOI: 10.1007/s00216-018-1411-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Laser ablation (LA) coupled with inductively coupled plasma mass spectrometry (ICP-MS) is a versatile tool for direct trace elemental and isotopic analysis of solids. The development of new strategies for quantitative elemental mapping of biological tissues is one of the growing research areas in LA-ICP-MS. On the other hand, the latest advances are related to obtaining not only the elemental distribution of heteroatoms but also molecular information. In this vein, mapping of specific proteins in biological tissues can be done with LA-ICP-MS by use of metal-labelled immunoprobes. However, although LA-ICP-MS is, in principle, a quantitative technique, critical requirements should be met for absolute quantification of protein distribution. In this review, progress based on the use of metal-labelled antibodies for LA-ICP-MS mapping of specific proteins is reported. Critical requirements to obtain absolute quantitative mapping of specific proteins by LA-ICP-MS are highlighted. Additionally, illustrative examples of the advances made so far with LA-ICP-MS are provided. Graphical abstract In the proposed critical review, last advances based on the use of metal-labelled antibodies and critical requirements for LA-ICP-MS quantitative mapping of specific proteins are tackled.
Collapse
|
33
|
|