1
|
Neto AM, Valeriano MC, Temperini MLA, Homem-de-Mello P, Mamián-López MB. Improving 5-halouracils SERS detection driven by Watson & Crick pairing recognition. A spectroscopic & DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126091. [PMID: 40147399 DOI: 10.1016/j.saa.2025.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The halogenated C5-substituted uracil derivatives (5-fluor-, 5-chloro, and 5-bromouracil) have drawn attention recently due to their pharmacological uses, properties, and importance as biomarkers and water pollutants. From an analytical point of view, these species are expected to be at very low levels in biological and environmental samples, and the development of methodologies for their determination is a central goal in research. The Raman technique and one of its special effects, Surface-Enhanced Raman Scattering (SERS), is a very suitable approach for detecting and quantifying these compounds. In practice, enhancing Raman scattering requires a nanostructured noble metal surface with the species of interest attached to it. Still, to maximize the effect, a deeper comprehension of the nature of the analyte-metal surface interaction is desirable. The structural information SERS spectra provide can be complemented by theoretical approaches, such as the Density Functional Theory (DFT) calculations. This work studied three 5-halouracils attached to silver nanoparticles (AgNPs) from experimental and theoretical perspectives. The observed patterns in the spectroscopic behavior showed a trend related to the electronegativity at the halogenated moieties, suggesting their direct influence in enhancing CC and CO stretching modes. Then, the formation of base pairs with adenine through hydrogen bonding was studied as a strategy to improve the detectability through SERS, supported by the well-known high affinity of adenine towards metal nanoparticles. We show that adenine favors the orientation of the 5-halouracils, reaching an additional signal enhancement that is very useful for analytical purposes, as demonstrated for 5-FU, reaching a limit of detection (LOD) of 2.36 nmol L-1. Wavenumber shifts and intensification of NH modes observed in the SERS spectra, along with DFT calculations, strongly suggest that forming hydrogen bonding (NH----N) upon the interaction of the base pairs with an Ag20 cluster is key for improving the halouracils LOD through SERS.
Collapse
Affiliation(s)
- Antonio M Neto
- Laboratório de Espectroscopia Molecular e Atômica, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Maycom C Valeriano
- Laboratório de Espectroscopia Molecular e Atômica, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Marcia L A Temperini
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paula Homem-de-Mello
- Grupo de Simulação e Modelagem de Átomos, Moléculas e Matéria Condensada, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Mónica B Mamián-López
- Laboratório de Espectroscopia Molecular e Atômica, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
2
|
Zhang Q, Ma X, Song P, Xia L. Label-free surface-enhanced Raman scattering quantitative analysis of dual electromagnetically enhanced flexible core-shell nanoparticles containing internal standards. Food Chem 2025; 482:144200. [PMID: 40188770 DOI: 10.1016/j.foodchem.2025.144200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025]
Abstract
We designed and synthesized a flexible Au@PB@Ag NPs-CFs surface-enhanced Raman scattering (SERS) substrate with self-calibration functionality. Compared to traditional core-shell structured substrates with internal standards, our proposed substrate, which fully encapsulates a Prussian Blue (PB) layer, exhibits dual electromagnetic enhancement effects on both the PB self-calibration signal and the pesticide signal due to the localized surface plasmon resonance within the silver shell cavity. The results show that after signal calibration, the relative standard deviation decreased from 30.34 % to 11.24 %. The water-dispersible Au@0.8 PB@Ag NPs loaded on chitosan demonstrated extremely high sensitivity for the detection of alcohol-soluble pesticides thiram and thiabendazole, with detection limits as low as 0.015 μM and 0.098 μM, respectively. Additionally, due to the substrate's flexibility and excellent uniformity, it effectively addresses the "coffee ring" effect and enables quantitative detection through direct swabbing, with spiked recovery rates ranging from 81 % to 116.6 %.
Collapse
Affiliation(s)
- Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaodi Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Nekvapil F, Farcău C. The role of focused laser plasmonics in shaping SERS spectra of molecules on nanostructured surfaces. NANOSCALE ADVANCES 2025; 7:3008-3017. [PMID: 40190461 PMCID: PMC11967353 DOI: 10.1039/d4na00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Over fifty years have passed since the groundbreaking discovery of Surface Enhanced Raman Scattering (SERS), yet many aspects of this phenomenon remain elusive. In this study, we unveil novel observations concerning the spatial variation of SERS signal profiles through vertical (Z axis) scans, performed by varying the distance between the laser focus and a solid, planar, nanostructured SERS substrate. The signal strength profile manifests a Lorentzian shape during axial scans along the Z direction, consistently peaking above the actual sample surface. More intriguingly, the intensity ratio of various spectral regions-including SERS bands and background-exhibits significant non-constancy along the Z axis. Finite-Difference Time-Domain (FDTD) simulations suggest that these variations can be attributed to specific plasmonic near-field responses induced by the focused/defocused beam at the SERS substrate. This research highlights the critical need to consider that focus imprecision can alter spectral profiles in SERS analyses on solid nanostructured SERS substrates, particularly when devising quantitative assays based on band intensity ratios.
Collapse
Affiliation(s)
- Fran Nekvapil
- National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca Romania
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| |
Collapse
|
4
|
Hardy M, Chu HOM. Laser wavelength selection in Raman spectroscopy. Analyst 2025; 150:1986-2008. [PMID: 40270311 DOI: 10.1039/d5an00324e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Research in Raman spectroscopy continues to abound in a diverse range of application spaces and concurrently, components of Raman systems have become increasingly sophisticated. Laser wavelength choice is a key question in any Raman spectroscopy experiment, and the wavelength required, or indeed wavelengths, depends on a number of factors. For instance, are trace compounds being interrogated and thus plasmonic enhancement required? Or, are the experiments targeted at a specific molecule, or class of analytes, which are resonant at a specific wavelength range? Safety, resolution, and ease of post-processing spectra, can also be crucial in the decision process. While laser vendors commonly offer guidance in terms of what to consider when picking lasers for Raman studies, advice tends to be succinct. In this article, we discuss these variables more comprehensively, alongside the needs within certain kinds of experiments, to assist the Raman spectroscopist in their laser choice.
Collapse
Affiliation(s)
- Mike Hardy
- Smart Nano NI, Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Hin On Martin Chu
- Advanced Nano-Materials Structures and Applications Laboratories, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
5
|
Hardy M, Chu HOM, Pauly S, Cavanagh KF, Hill B, Wiggins J, Schilling A, Goldberg Oppenheimer P, Grover LM, Winfield RJ, Scott JN, Doherty MD, McCarron R, Hendren WR, Dawson P, Bowman RM. White Light Transmission Spectroscopy for Rapid Quality Control Imperfection Identification in Nanoimprinted Surface-Enhanced Raman Spectroscopy Substrates. ACS MEASUREMENT SCIENCE AU 2025; 5:250-263. [PMID: 40255608 PMCID: PMC12006957 DOI: 10.1021/acsmeasuresciau.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 04/22/2025]
Abstract
Miniaturized biomedical sensor development requires improvements in lithographic processes in terms of cost and scalability. Of particular promise is nanoimprint lithography (NIL), but this can suffer from a lack of high-fidelity pattern reproducibility between master and imprinted substrates. Herein, we present a multidisciplinary investigation into gold- and iron-coated NIL sensors including custom optics and spectroscopy, scanning probe microscopy, and data analysis insights. Polyurethane NIL-made nanodome arrays were interrogated with white light transmission spectroscopy, coupled with principal component analysis (PCA) to investigate potential offsets in the photon-substrate plane interaction angle, an imperfection in NIL substrates. Large-angle mismatches (2-10°) were found to be easily discernible by PCA with statistically significant differences (p = 0.05). Unexpected dips in some spectra are postulated to be due to interacting localized and propagating plasmon polaritons, which is supported with a coupled two-oscillator model. General insights are made regarding the interpretation of PCA loadings, which should be related to physical phenomena, and where maximum variance is not necessarily the most meaningful criterion. Smaller angles (<1°) show no significant differences with overlapping confidence intervals in PCA space. Surface-enhanced Raman spectroscopy (SERS) measurements on gold-coated nanodomes returned relative standard deviations of 6-10% via analysis of gelatin, which is of interest as a nasal lining approximation. Interestingly, nanodomes coated in iron produced small, but useful SERS enhancements, which was subsequently interrogated via scanning thermal probe microscopy showing temperature increases of up to 5 °C over the area of one nanostructure (∼1 μm2). Nanostructures remained intact despite the surprising large local temperature increase relative to a gold-coated comparison sample (∼2 °C). The current study provides a framework for the rapid and accurate quality control assessment of imperfections in NIL-produced nanostructures for sensing applications in SERS and surface plasmon resonance, which may need precisely fabricated nanostructures.
Collapse
Affiliation(s)
- Mike Hardy
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Hin On Martin Chu
- Advanced
Nano-Materials Structures and Applications Laboratories, School of
Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Healthcare
Technologies Institute, Institute of Translational
Medicine, Mindelsohn
Way, Birmingham B15 2TH, United Kingdom
| | - Serene Pauly
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
- Photonic
Integration and Advanced Data Storage CDT, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Katie F. Cavanagh
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
- Yelo Ltd, 20 Meadowbank Rd, Carrickfergus , Co. Antrim BT38 8YF, United Kingdom
| | - Breandán
J.F. Hill
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
- Causeway
Sensors Ltd., 63 University
Rd, Belfast BT7 1NF, United Kingdom
| | - Jason Wiggins
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Alina Schilling
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Pola Goldberg Oppenheimer
- Advanced
Nano-Materials Structures and Applications Laboratories, School of
Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Healthcare
Technologies Institute, Institute of Translational
Medicine, Mindelsohn
Way, Birmingham B15 2TH, United Kingdom
| | - Liam M. Grover
- Healthcare
Technologies Institute, Institute of Translational
Medicine, Mindelsohn
Way, Birmingham B15 2TH, United Kingdom
| | - Richard J. Winfield
- Tyndall Micro
Nano Electronics, Tyndall National Institute, University College Cork, Lee Maltings, Cork T12
R5CP, Ireland
| | - Jade N. Scott
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Matthew D. Doherty
- Centre for
Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Ryan McCarron
- Centre for
Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - William R. Hendren
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Paul Dawson
- Centre for
Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Robert M. Bowman
- Smart Nano
NI, Centre for Quantum Materials and Technologies, School of Mathematics
and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
6
|
Sakib S, Bajaj K, Sen P, Li W, Gu J, Li Y, Soleymani L. Comparative Analysis of Machine Learning Algorithms Used for Translating Aptamer-Antigen Binding Kinetic Profiles to Diagnostic Decisions. ACS Sens 2025; 10:907-920. [PMID: 39869304 DOI: 10.1021/acssensors.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.6 Hz) impedance data during the binding of viral protein targets to trimeric aptamers. The impedance data collected from 172 COVID-19 saliva samples were processed through multiple nonlinear regression models to extract nine key features from the transient signals. These features were then used to train three supervised ML algorithms─support vector machine (SVM), artificial neural network (ANN), and random forest (RF)─using a 75:25 training-testing ratio. Traditional ROC-based classification achieved an accuracy of 83.6%, while ML-based models significantly improved performance, with SVM, ANN, and RF achieving accuracies of 86.0%, 100%, and 100%, respectively. The ANN model demonstrated superior performance in handling complex and high-variance biosensor data, providing a robust and scalable solution for improving diagnostic accuracy in point-of-care settings.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Kulmanak Bajaj
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Payel Sen
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Wantong Li
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Yingfu Li
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Micheal G. DeGroote for Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Micheal G. DeGroote for Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Dmitrieva EV, Kapitanova OO, Lv S, Sinyashin OG, Veselova IA. Coupling of chromatography with surface-enhanced Raman spectroscopy: trends and prospects. Front Chem 2025; 13:1548364. [PMID: 40078566 PMCID: PMC11897286 DOI: 10.3389/fchem.2025.1548364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Surface-enhanced Raman spectroscopy is a powerful analytical technique for the determination of analytes with the advantages of sensitivity, portability, and simplicity, able to provide structural information for the identification of compounds. However, when it comes to the analysis of complex samples, matrix components may interfere with the analyte quantification. To overcome this shortcoming, a number of approaches have been proposed, such as extraction techniques. Among them, the coupling of chromatography with surface-enhanced Raman spectroscopy seems to be promising. It allows combining the advantages of both techniques, i.e., high efficiency of chromatographic separation and high sensitivity of surface enhanced Raman scattering detection, and makes possible simultaneous quantification of multiple analytes. The review summarizes the latest achievements in the combination of these techniques.
Collapse
Affiliation(s)
- Ekaterina V. Dmitrieva
- Faculty of Material Sciences, Shenzhen MSU-BIT University, Shenzhen, China
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Oleg G. Sinyashin
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Irina A. Veselova
- Faculty of Material Sciences, Shenzhen MSU-BIT University, Shenzhen, China
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
9
|
Vo KQ, Huynh TTT, Nguyen TA, Truong TT. Rational side-by-side self-assembly of gold nanorods with short and medium aspect ratios via the self-evaporation method to boost their potential as a surface-enhanced Raman scattering (SERS) substrate. Dalton Trans 2025; 54:2540-2560. [PMID: 39758015 DOI: 10.1039/d4dt03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates. This research presents a novel and facile methodology for fabricating SERS nanosubstrates. This method entails self-assembling gold nanorods (AuNRs) with short and medium aspect ratios (ARs) through natural evaporation. By manipulating the water-to-ethanol ratios, we ascertain the appropriate conditions for the rational alignment of the nanorods in both perpendicular and parallel orientations relative to the silicon substrate. These nanosubstrates have been experimentally evaluated for their ability to improve the Surface-Enhanced Raman Scattering (SERS) performance, presenting a novel perspective in this field. In addition, a computational analysis employing the finite-difference time-domain (FDTD) method was conducted to elucidate the electromagnetic field generated by nanoarrays when subjected to incident light of varying wavelengths, including 532 nm, 638 nm, and 785 nm. Notably, the FDTD simulation outcomes indicated that gold nanorods (AuNRs) possessing an aspect ratio of 3.0 and nanogaps of 2.0 nm exhibited exceptional electromagnetic field characteristics when aligned parallel to the substrate under 532 nm laser illumination. Conversely, when the AuNRs were oriented perpendicular to the substrates, they produced lower EMFs upon interaction with excitation laser light. These findings can potentially contribute to the advancement of SERS nanosubstrate design.
Collapse
Affiliation(s)
- Khuong Quoc Vo
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thanh-Tuyen Thi Huynh
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thu Anh Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tan-Trung Truong
- Faculty of Technology, Dong Nai Technology University, 206 Nguyen Khuyen, Trang Dai Ward, Bien Hoa City, Dong Nai 76000, Vietnam
| |
Collapse
|
10
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
11
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Fornasaro S, Gotts N, Venturotti G, Muelas MW, Roberts I, Sergo V, Goodacre R, Bonifacio A. Detection and quantification of ergothioneine in human serum using surface enhanced Raman scattering (SERS). Analyst 2025; 150:559-566. [PMID: 39807959 PMCID: PMC11731495 DOI: 10.1039/d4an01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Ergothioneine (ERG) is a natural sulfur-containing amino acid found in many organisms, including humans. It accumulates at high concentrations in red blood cells and is distributed to various organs, including the brain. ERG has numerous health benefits and antioxidant capabilities, and it has been linked to various human physiological processes, such as anti-inflammatory, neuroprotective, and anti-aging effects. Accurate, rapid, and cost-effective quantification of ERG levels in human biofluids is crucial for understanding its role in oxidative stress-related diseases. Surface-enhanced Raman scattering (SERS) is an effective approach for measuring compounds at concentrations similar to those at which ERG is present in serum. However, while SERS has been used to characterize or detect ERG, quantification has not yet been achieved due to the variability in the signal enhancement that can arise during sample preparation and analysis. This study introduces a highly efficient and reliable technique for quickly (20 min is typical per sample) measuring ERG levels in human serum using SERS. This employs an internal standard highly specific for ERG which resulted in limit of quantification values of 0.71 μM. To validate this approach, we analysed real human serum with unknown ERG levels as a blind test set and primary reference levels of ERG were produced using a targeted UHPLC-MS/MS reference method.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy.
| | - Nigel Gotts
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Gioia Venturotti
- Department of Engineering and Architecture, University of Trieste, via A. Valerio 6, 34127 Trieste, Italy
| | - Marina Wright Muelas
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ivayla Roberts
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Valter Sergo
- Department of Engineering and Architecture, University of Trieste, via A. Valerio 6, 34127 Trieste, Italy
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Alois Bonifacio
- Department of Engineering and Architecture, University of Trieste, via A. Valerio 6, 34127 Trieste, Italy
| |
Collapse
|
13
|
Xu Y, Aljuhani W, Zhang Y, Ye Z, Li C, Bell SEJ. A practical approach to quantitative analytical surface-enhanced Raman spectroscopy. Chem Soc Rev 2025; 54:62-84. [PMID: 39569575 DOI: 10.1039/d4cs00861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Many of the features of SERS, such as its high sensitivity, molecular specificity and speed of analysis make it attractive as an analytical technique. However, SERS currently remains a specialist technique which has not yet entered the mainstream of analytical chemistry. Therefore, this review draws out the underlying principles for analytical SERS and provides practical tips and tricks for SERS quantitation. The aim is to show the readers how to rationally design their SERS experiments to improve quantitation performance. We begin by introducing the three core components in SERS analysis: (1) the enhancing substrate material, (2) the Raman instrument and (3) the processed data that is used to establish a calibration curve. This is followed by discussion of the analytical figures of merit relevant to SERS. In the following sections each of the three essential components in SERS quantitation and how they affect the quality of the analysis are described in more detail using examples from the literature. Finally, we highlight the current challenges in applying SERS to the analysis of complex real-life samples and briefly introduce the state-of-the-art developments on multifunctional substrates, digital SERS and AI-assisted data processing, which will help SERS rise to the challenge of moving out into routine real-world analysis.
Collapse
Affiliation(s)
- Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China.
| | - Wafaa Aljuhani
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Ziwei Ye
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China.
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, P. R. China.
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| |
Collapse
|
14
|
Hardy M, Kashani Zadeh H, Tzouchas A, Vasefi F, MacKinnon N, Bearman G, Sokolov Y, Haughey SA, Elliott CT. Freshness in Salmon by Hand-Held Devices: Methods in Feature Selection and Data Fusion for Spectroscopy. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:2813-2823. [PMID: 39723219 PMCID: PMC11667728 DOI: 10.1021/acsfoodscitech.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 12/28/2024]
Abstract
Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted K-nearest neighbors, and an ensemble bagged tree method. Dual-mode data fusion returned almost perfect accuracies (mean = 99.5 ± 0.51%), while single-mode ML analyses (fluorescence, visible absorbance, and NIR absorbance) returned lower mean accuracies at greater spread (77.1 ± 10.1%). Single-mode fluorescence accuracy was especially poor; however, via principal component analysis, we found that a truncated fluorescence data set of four variables (wavelengths) could predict "fresh" and "spoilt" salmon fillet based on a subtle peak redshift as the fillet aged, albeit marginally short of statistical significance (95% confidence ellipse). Thus, whether by feature selection of one spectral data set, or the combination of multiple data sets through different modes, this study lays the foundation for better determination of fish freshness within the context of rapid spectroscopic analyses.
Collapse
Affiliation(s)
- Mike Hardy
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| | - Hossein Kashani Zadeh
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
- Biomedical
Engineering Program, University of North
Dakota, Grand Forks, North Dakota 58202, United States
| | - Angelis Tzouchas
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Fartash Vasefi
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Nicholas MacKinnon
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Gregory Bearman
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Yaroslav Sokolov
- SafetySpect
Incorporated, Grand Forks, North Dakota 58202, United States
| | - Simon A. Haughey
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| | - Christopher T. Elliott
- National
Measurement Laboratory: Centre of Excellence in Agriculture and Food
Integrity, Institute for Global Food Security, School of Biological
Sciences, Queen’s University Belfast, Belfast BT9 5DL, U.K.
| |
Collapse
|
15
|
Markina NE, Markin AV. Determination of multiple analytes in urine using label-free SERS coupled with simple sample pretreatments. Anal Chim Acta 2024; 1332:343383. [PMID: 39580184 DOI: 10.1016/j.aca.2024.343383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND A key restriction of label-free surface-enhanced Raman spectroscopy (SERS) in analysis of objects with complex composition (including with several target analytes) is the competition of mixture components for interaction with SERS-active surface. This leads to poor selectivity of the analysis of such mixtures (e.g., body fluids) and the need to use advanced sample pretreatment procedures such as HPLC or TLC. Therefore, this work aims to develop a set of simple and fast pretreatment steps (dilution, pH correction, etc.) to increase the sorption of the target analyte, reduce the sorption of admixtures, and prevent suppression of the target analyte SERS signal. RESULTS We have developed label-free SERS assay suitable for the determination of three analytes (methotrexate, cephalosporin antibiotic, and creatinine) in one real urine sample as a model matrix with complex and deviating composition. The choice of drugs is justified by the need to monitor their concentration in urine during joint drug treatment of cancer patients with concomitant bacterial infection, while monitoring creatinine concentration helps to evaluate kidney function of the patients. Additionally, three cephalosporin representatives were used in the study to maximize versatility of the assay. As a results, the optimized pretreatment steps enable to eliminate the negative influence of excess of interferences (including other analytes) and achieve precise (≤12 % RSD) and accurate (88-111 % recovery) determination of several analytes in the therapeutically relevant ranges: 300-3000 μg mL-1 for creatinine, 20-200 μg mL-1 for methotrexate and cephalosporins. SIGNIFICANCE Therefore, in addition to reporting a new SERS assay for the analysis of body fluids, this study clearly demonstrates the importance of taking into account competitive adsorption processes on the SERS substrate surface. We suggest making this practice mandatory when developing any label-free SERS assay because it enables to maximize the selectivity and accuracy of the analysis as well as to simplify the analysis procedure.
Collapse
Affiliation(s)
- Natalia E Markina
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Alexey V Markin
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.
| |
Collapse
|
16
|
Frank F, Tomasetig D, Nahringbauer P, Ipsmiller W, Mauschitz G, Wieland K, Lendl B. In situ study of the interactions between metal surfaces and cationic surfactant corrosion inhibitors by surface-enhanced Raman spectroscopy coupled with visible spectroscopy. Analyst 2024; 149:5372-5380. [PMID: 39230385 DOI: 10.1039/d4an00861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cationic surfactants are widely used as corrosion inhibitors for industrial tubings and pipelines. They protect the surface of steel pipes through a film-forming mechanism, providing both anodic and cathodic inhibition. To improve the efficiency of the corrosion protection, it is essential to understand the interactions between the surfactants and metal surfaces. To achieve this, surface enhanced Raman spectroscopy (SERS) can serve as a powerful tool due to its surface sensitivity and potential to detect trace amounts of analytes in complex media. In this contribution, we have investigated the behaviour of in situ prepared AgNPs in the presence of benzalkonium chloride as a model corrosion inhibitor using SERS coupled to visible spectroscopy and combined with light scattering methods. By combining these experimental methods, we were able to correlate the aggregation of silver particles with the concentration of added surfactant in the resulting mixture. Using this insight, we also established a SERS method for the detection of benzalkonium chloride traces in water. For this, we utilised the quenching of the SERS response of methylene blue by competitive adsorption of methylene blue and the surfactant on SERS active AgNPs. We believe that our approach can serve a variety of applications to improve the industrial water treatment. For example, the modelling of the interaction of different surfactants with SERS can be used for process intensification, and ultimately, to move towards the digital twinning of corrosion processes for more efficient corrosion inhibition. Furthermore, the ability to adapt our sensing protocol for on-line corrosion inhibitor monitoring allows a fast response to process changes, hence, enabling resource-efficient, continuous process control.
Collapse
Affiliation(s)
- Felix Frank
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria.
| | - Daniela Tomasetig
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria.
| | - Peter Nahringbauer
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria.
| | - Wolfgang Ipsmiller
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Wien, Austria
| | - Gerd Mauschitz
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Wien, Austria
| | - Karin Wieland
- Competence Center CHASE GmbH, Ghegastrasse 3, 1030 Wien, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Wien, Austria.
| |
Collapse
|
17
|
Almehmadi L, Lednev IK. Surface-Enhanced Raman Spectroscopy at the Interface between Drug Discovery and Personalized Medicine. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18135-18143. [PMID: 39502800 PMCID: PMC11533196 DOI: 10.1021/acs.jpcc.4c04006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 11/08/2024]
Abstract
Personalized medicine and drug discovery are different, yet overlapping, fields, and information from each field is exchanged to improve the other. The current methods used for devising personalized therapeutic plans and developing drug discovery applications are costly, time-consuming, and complex; thus, their applicability is limited in both fields. However, surface-enhanced Raman spectroscopy (SERS) offers potential solutions to current challenges. This Mini-Review explores the utility of SERS in drug discovery and personalized medicine. The Mini-Review starts with a brief overview of these fields, including the main challenges and current methods, and then explores examples where SERS has been used to overcome some of the main challenges in both fields. It ends with brief conclusions, perspectives, and current challenges limiting the practical application of SERS.
Collapse
Affiliation(s)
- Lamyaa
M. Almehmadi
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
18
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
19
|
Allegretto JA, Dostalek J. Metal-Organic Frameworks in Surface Enhanced Raman Spectroscopy-Based Analysis of Volatile Organic Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401437. [PMID: 38868917 PMCID: PMC11321619 DOI: 10.1002/advs.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Volatile Organic Compounds (VOC) are a major class of environmental pollutants hazardous to human health, but also highly relevant in other fields including early disease diagnostics and organoleptic perception of aliments. Therefore, accurate analysis of VOC is essential, and a need for new analytical methods is witnessed for rapid on-site detection without complex sample preparation. Surface-Enhanced Raman Spectroscopy (SERS) offers a rapidly developing versatile analytical platform for the portable detection of chemical species. Nonetheless, the need for efficient docking of target analytes at the metallic surface significantly narrows the applicability of SERS. This limitation can be circumvented by interfacing the sensor surface with Metal-Organic Frameworks (MOF). These materials featuring chemical and structural versatility can efficiently pre-concentrate low molecular weight species such as VOC through their ordered porous structure. This review presents recent trends in the development of MOF-based SERS substrates with a focus on elucidating respective design rules for maximizing analytical performance. An overview of the status of the detection of harmful VOC is discussed in the context of industrial and environmental monitoring. In addition, a survey of the analysis of VOC biomarkers for medical diagnosis and emerging applications in aroma and flavor profiling is included.
Collapse
Affiliation(s)
- Juan A. Allegretto
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
| | - Jakub Dostalek
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
- FZU‐Institute of PhysicsCzech Academy of SciencesNa Slovance 2Prague82021Czech Republic
| |
Collapse
|
20
|
Colleran A, Lima C, Xu Y, Millichope A, Murray S, Goodacre R. Using surface-enhanced Raman scattering for simultaneous multiplex detection and quantification of thiols associated to axillary malodour. Analyst 2024; 149:3989-4001. [PMID: 38948950 PMCID: PMC11262063 DOI: 10.1039/d4an00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (Q2 values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.
Collapse
Affiliation(s)
- Amy Colleran
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Allen Millichope
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Stephanie Murray
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
21
|
Schorr HC, Schultz ZD. Digital surface enhanced Raman spectroscopy for quantifiable single molecule detection in flow. Analyst 2024; 149:3711-3715. [PMID: 38895849 PMCID: PMC11229883 DOI: 10.1039/d4an00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Surface enhanced Raman scattering (SERS) provides a label free method of analyzing molecules from diverse and complex signals, potentially with single molecule sensitivity. The chemical specificity inherent in the SERS spectrum can identify molecules; however signal variability arising from the diversity of plasmonic environments can limit quantification, particularly at low concentrations. Here we show that digitizing, or counting SERS events, can decrease the limit of detection in flowing solutions enabling quantification of single molecules. By using multivariate curve resolution and establishing a score threshold, each individual spectrum can be classified as containing an event or not. This binary "yes/no" can then be quantified, and a linear region can be established. This method was shown to lower the limit of detection to the lowest physical limit, and lowered the limit of detection by an order of magnitude from the traditional, intensity based LOD calculations.
Collapse
Affiliation(s)
- Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Liu Z, Ng M, Srivastava S, Li T, Liu J, Phu TA, Mateescu B, Wang YT, Tsai CF, Liu T, Raffai RL, Xie YH. Label-free single-vesicle based surface enhanced Raman spectroscopy: A robust approach for investigating the biomolecular composition of small extracellular vesicles. PLoS One 2024; 19:e0305418. [PMID: 38889139 PMCID: PMC11185487 DOI: 10.1371/journal.pone.0305418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.
Collapse
Affiliation(s)
- Zirui Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Siddharth Srivastava
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tieyi Li
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Bogdan Mateescu
- Brain Research Institute, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Robert L. Raffai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
23
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Ye H, Esfahani EB, Chiu I, Mohseni M, Gao G, Yang T. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134194. [PMID: 38583196 DOI: 10.1016/j.jhazmat.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 μg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver V6T1Z2, Canada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada.
| |
Collapse
|
25
|
Daly R, Narayan T, Diaz F, Shao H, Gutierrez Moreno JJ, Nolan M, O'Riordan A, Lovera P. Electrochemical synthesis of 2D-silver nanodendrites functionalized with cyclodextrin for SERS-based detection of herbicide MCPA. NANOTECHNOLOGY 2024; 35:285704. [PMID: 38522104 DOI: 10.1088/1361-6528/ad373c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful analytical technique that has found application in the trace detection of a wide range of contaminants. In this paper, we report on the fabrication of 2D silver nanodendrites, on silicon chips, synthesized by electrochemical reduction of AgNO3at microelectrodes. The formation of nanodendrites is tentatively explained in terms of electromigration and diffusion of silver ions. Electrochemical characterization suggests that the nanodendrites do not stay electrically connected to the microelectrode. The substrates show SERS activity with an enhancement factor on the order of 106. Density functional theory simulations were carried out to investigate the suitability of the fabricated substrate for pesticide monitoring. These substrates can be functionalized with cyclodextrin macro molecules to help with the detection of molecules with low affinity with silver surfaces. A proof of concept is demonstrated with the detection of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA).
Collapse
Affiliation(s)
- Robert Daly
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Tarun Narayan
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Fernando Diaz
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Han Shao
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Jose Julio Gutierrez Moreno
- Materials Modelling for Devices Group, Tyndall National Institute, Lee Maltings, UCC, T12 R5CP Cork, Ireland
| | - Michael Nolan
- Materials Modelling for Devices Group, Tyndall National Institute, Lee Maltings, UCC, T12 R5CP Cork, Ireland
| | - Alan O'Riordan
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Pierre Lovera
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| |
Collapse
|
26
|
Huang C, Wang YH, Wang YQ, Wang A, Zhou Y, Jin S, Zhang FL. Quantitative Analysis of Trace Analytes with Highly Sensitive SERS Tags on Hydrophobic Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18124-18133. [PMID: 38531041 DOI: 10.1021/acsami.3c18980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) presents a promising avenue for trace matter detection by using plasmonic nanostructures. To tackle the challenges of quantitatively analyzing trace substances in SERS, such as poor enrichment efficiency and signal reproducibility, this study proposes a novel approach using Au@internal standard@Au nanospheres (Au@IS@Au NSs) for realizing the high sensitivity and stability in SERS substrates. To verify the feasibility and stability of the SERS performances, the SERS substrates have exhibited exceptional sensitivity for detecting methyl blue molecules in aqueous solutions within the concentration range from 10-4 M to 10-13 M. Additionally, this strategy also provides a feasible way of quantitative detection of antibiotic in the range of 10-4 M to 10-10 M. Trace antibiotic residue on the surface of shrimp in aquaculture waters was successfully conducted, achieving a remarkably low detection limit of 10-9 M. The innovative approach has great potential for the rapid and quantitative detection of trace substances, which marks a noteworthy step forward in environmental detection and analytical methods by SERS.
Collapse
Affiliation(s)
- Chen Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yan-Hui Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yu-Qing Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - An Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yadong Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
27
|
Le Ru EC, Auguié B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS NANO 2024; 18:9773-9783. [PMID: 38529815 DOI: 10.1021/acsnano.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this Perspective, we provide an overview of the core concepts around surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs), including both theoretical and experimental considerations: EF definitions, the distinction between maximum and average EFs, EF distribution and hot-spot localization, EF measurement and its order of magnitude. We then highlight some of the current challenges in this field, focusing on a selection of topics that we feel are both topical and important: analyte-capture onto a SERS substrate, surface-enhanced resonant Raman scattering, orientation/tensorial effects, and nonradiative effects. We hope this Perspective can provide a platform to reflect on the past 50 years of SERS and its future.
Collapse
Affiliation(s)
- Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Baptiste Auguié
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
28
|
Morder CJ, Schultz ZD. A 3D printed sheath flow interface for surface enhanced Raman spectroscopy (SERS) detection in flow. Analyst 2024; 149:1849-1860. [PMID: 38347805 PMCID: PMC10926779 DOI: 10.1039/d3an02125d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is an effective technique for detecting molecules in aqueous solutions due to its insensitivity to water, which makes it especially useful for biological samples. Utilizing SERS in flow can aid in a variety of applications such as metabolomics, pharmaceuticals, and diagnostics. The ability to 3D print complex objects enables rapid dissemination of prototypes. A 3D printed flow cell for sheath flow SERS detection has been developed that can incorporate a variety of planar substrates. The 3D printed flow cell incorporates hydrodynamic focusing, a sheath flow, that confines the analyte near the SERS substrate. Since the SERS signal obtained relies on the interaction between analyte molecules and nanostructures, sheath flow increases the detection efficiency and eliminates many issues associated with SERS detection in solution. This device was optimized by analyzing both molecules and particles with and without using sheath flow for SERS detection. Our results show that the flow rates can be optimized to increase the SERS signal obtained from a variety of analytes, and that the signal was increased when using sheath flow. This 3D printed flow cell offers a straightforward method to disseminate this technology and to facilitate online SERS detection.
Collapse
Affiliation(s)
- Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Sibug-Torres SM, Grys DB, Kang G, Niihori M, Wyatt E, Spiesshofer N, Ruane A, de Nijs B, Baumberg JJ. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat Commun 2024; 15:2022. [PMID: 38448412 PMCID: PMC10917746 DOI: 10.1038/s41467-024-46097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS. Applying an oxidising potential of +1.5 V (vs Ag/AgCl) for 10 s strips a broad range of adsorbates from the nanogaps and forms a metastable oxide layer of few-monolayer thickness. Subsequent application of a reducing potential of -0.80 V for 5 s in the presence of a nanogap-stabilising molecular scaffold, cucurbit[5]uril, reproducibly regenerates the optimal plasmonic properties with SERS enhancement factors ≈106. The regeneration of the nanogap hotspots allows these SERS substrates to be reused over multiple cycles, demonstrating ≈5% relative standard deviation over at least 30 cycles of analyte detection and regeneration. Such continuous and reliable SERS-based flow analysis accesses diverse applications from environmental monitoring to medical diagnostics.
Collapse
Affiliation(s)
- Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Gyeongwon Kang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Elle Wyatt
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Nicolas Spiesshofer
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ashleigh Ruane
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
30
|
Hardy M, Goldberg Oppenheimer P. 'When is a hotspot a good nanospot' - review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms. NANOSCALE 2024; 16:3293-3323. [PMID: 38273798 PMCID: PMC10868661 DOI: 10.1039/d3nr05332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s-100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS' sensitivity, and in need of investigation via scanning probe techniques.
Collapse
Affiliation(s)
- Mike Hardy
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Birmingham B15 2TH, UK
| |
Collapse
|
31
|
Bi X, Lin L, Chen Z, Ye J. Artificial Intelligence for Surface-Enhanced Raman Spectroscopy. SMALL METHODS 2024; 8:e2301243. [PMID: 37888799 DOI: 10.1002/smtd.202301243] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS), well acknowledged as a fingerprinting and sensitive analytical technique, has exerted high applicational value in a broad range of fields including biomedicine, environmental protection, food safety among the others. In the endless pursuit of ever-sensitive, robust, and comprehensive sensing and imaging, advancements keep emerging in the whole pipeline of SERS, from the design of SERS substrates and reporter molecules, synthetic route planning, instrument refinement, to data preprocessing and analysis methods. Artificial intelligence (AI), which is created to imitate and eventually exceed human behaviors, has exhibited its power in learning high-level representations and recognizing complicated patterns with exceptional automaticity. Therefore, facing up with the intertwining influential factors and explosive data size, AI has been increasingly leveraged in all the above-mentioned aspects in SERS, presenting elite efficiency in accelerating systematic optimization and deepening understanding about the fundamental physics and spectral data, which far transcends human labors and conventional computations. In this review, the recent progresses in SERS are summarized through the integration of AI, and new insights of the challenges and perspectives are provided in aim to better gear SERS toward the fast track.
Collapse
Affiliation(s)
- Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhou Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
32
|
Dey P. Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS. ACS MEASUREMENT SCIENCE AU 2023; 3:434-443. [PMID: 38145020 PMCID: PMC10740126 DOI: 10.1021/acsmeasuresciau.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023]
Abstract
Surface enhanced Raman scattering (SERS), since its discovery in the mid-1970s, has taken on many roles in the world of analytical measurement science. From identifying known and unknown chemicals in mixtures such as pharmaceutical and environmental samples to enabling qualitative and quantitative analysis of biomolecules and biomedical disease markers (or biomarkers), furthermore expanding to tracking nanostructures in vivo for medical diagnosis and therapy. This is because SERS combines the inherent power of Raman scattering capable of molecular species identification, topped with tremendous amplification in the Raman signal intensity when the molecule of interest is positioned near plasmonic nanostructures. The higher the SERS signal amplification, the lower the limit of detection (LOD) that could be achieved for the above applications. Therefore, improving SERS sensing efficiencies is vital. The signal reproducibility and SERS enhancement factor (EF) heavily rely on plasmonic nanostructure design, which has led to tremendous work in the field. But SERS signal and EF reproducibility remain key limitations for its wider market usability. This Review will scrutinize factors, some recognized and some often overlooked, that dictate the SERS signal and are of utmost importance to enable reproducible SERS EFs. Most of the factors pertain to colloidal labeled SERS. Some critically reviewed factors include the nanostructure's surface area as a limiting factor, SERS hot-spots including optimizing the SERS EF within the hot-spot volume and positioning labels, properties of label molecules governing molecule orientation in hot-spots, and resonance effects. A better understanding of these factors will enable improved optimization and control of the experimental SERS, enabling extremely sensitive LODs without overestimating the SERS EFs. These are crucial steps toward identification and reproducible quantification in SERS sensing.
Collapse
Affiliation(s)
- Priyanka Dey
- School of Pharmacy and Biomedical
Sciences, University of Portsmouth, Portsmouth PO1 2UP, U.K.
| |
Collapse
|
33
|
Wei S, Li L, Gou L, Wu L, Hou X. Thiol-ene click derivatization reaction coupled with ratiometric surface-enhanced Raman scattering for reproducible and accurate determination of acrylamide. Food Chem 2023; 429:136991. [PMID: 37523913 DOI: 10.1016/j.foodchem.2023.136991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Acrylamide (AA) is a carcinogen mainly ingested through food and drinking water, making its accurate determination crucial for both food safety and environmental protection. Herein, we proposed a derivatization-based ratiometric surface-enhanced Raman scattering (SERS) method for the quantification of AA. High density Au NPs were anchored to the surface of Cu-TCPP MOF nanosheets (MOFNs) to form the SERS sensor. The abundant Raman "hot spots" at the nanogaps generated by the Au NPs and the internal standard (IS) signal provided by Cu-TCPP MOFNs improved the sensitivity and quantitative accuracy of the method. Following the thiol-ene click derivatization reaction between p-aminothiophenol (PATP) and AA, the Raman peak intensity ratio (I1080/I395) was employed to quantify AA. The linear range was 0.1 nM to 10 μM, and the limit of detection (LOD) was as low as 0.08 nM. Trace amounts of AA in food and water samples were successfully determined using this method.
Collapse
Affiliation(s)
- Siqi Wei
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ling Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China; College of Chemistry and Key Lab of Green Chem & Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
34
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
35
|
Payne TD, Klawa SJ, Jian T, Wang Q, Kim SH, Freeman R, Schultz ZD. From the lab to the field: handheld surface enhanced Raman spectroscopy (SERS) detection of viral proteins. SENSORS & DIAGNOSTICS 2023; 2:1483-1491. [PMID: 38013762 PMCID: PMC10633093 DOI: 10.1039/d3sd00111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 11/29/2023]
Abstract
Translating sensors from the lab benchtop to a readily available point-of-need setting is desirable for many fields, including medicine, agriculture, and industry. However, this transition generally suffers from loss of sensitivity, high background signals, and other issues which can impair reproducibility. Here we adapt a label-free surface-enhanced Raman spectroscopy (SERS) sensor for SARS-CoV-2 antigens from a lab-based assay to a handheld device. Utilizing a peptide capture molecule, which we previously employed for a surface-based assay, we optimize a simpler and more cost-efficient nanoparticle-based assay. This new assay allows for the direct detection of these viral antigens by SERS, now with the advantages of robustness and portability. We highlight considerations for nanoparticle modification conditions and warn against methods which can interfere with accurate detection. The comparison of these two assays will help guide further development of SERS-based sensors into devices that can be easily used in point-of-care settings, such as by emergency room nurses, farmers, or quality control technicians.
Collapse
Affiliation(s)
- Taylor D Payne
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Qunzhao Wang
- Department of Applied Physical Sciences, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Sang Hoon Kim
- Department of Applied Physical Sciences, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina Chapel Hill North Carolina 27599 USA
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
36
|
Wang Y, Liu S, Hu Y, Fu C, Chen W. Ultrasensitive detection of thiram based on surface-enhanced Raman scattering via Au@Ag@Ag core/shell/shell bimetallic nanorods. Analyst 2023; 148:5435-5444. [PMID: 37750326 DOI: 10.1039/d3an00821e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
We developed a highly sensitive and stable SERS-active substrate of Au@Ag@Ag core/shell/shell nanorods, formed by encapsulating Au nanorods (Au NRs) into a bilayer silver shell with Raman reporter molecules (4-mercaptobenzoic acid (4-MBA) and thiram) in the shell-shell gap. The core/shell/shell nanostructures demonstrated a high SERS enhancement and easy assembly. The important role of the bilayer silver shell in boosting the SERS intensity and detection sensitivity was revealed by comparing the performances of the Au@Ag@4-MBA@Ag NRs, Au@Ag@4-MBA NRs, and Au@4-MBA NRs. The obtained Au@Ag@4-MBA@Ag NRs exhibited a significantly promoted SERS intensity, which could reach around 2.6 times and 240 times that of the Au@Ag@4-MBA NRs and Au@4-MBA NRs, where the enhancement factor was found to be strongly correlated with the shell thickness. The controllable plasma properties and SERS effect of the Au@Ag@4-MBA@Ag NRs could be optimized by adjusting the dose of silver nitrate. The SERS substrate comprising core/shell/shell nanorods was highly reproducible and stable (retaining 83% SERS intensity after one month). Moreover, the highly sensitive detection of the pesticide thiram with a detection limit as low as 1.74 × 10-9 M was achieved by taking advantage of the great SERS response of the core/shell/shell nanostructures, which was 1-2 orders of magnitude lower than for other SERS substrates. The developed SERS substrate could be readily extended to embed other target analytes into the core/shell/shell nanostructure for novel and sensitive detection. This study could enable fresh approaches toward next-generation ultrasensitive analyte detection.
Collapse
Affiliation(s)
- Yuqiu Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Shuchang Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China.
| | - Weiqiang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
37
|
Akbali B, Boisdon C, Smith BL, Chaisrikhwun B, Wongravee K, Vilaivan T, Lima C, Huang CH, Chen TY, Goodacre R, Maher S. Focusing ion funnel-assisted ambient electrospray enables high-density and uniform deposition of non-spherical gold nanoparticles for highly sensitive surface-enhanced Raman scattering. Analyst 2023; 148:4677-4687. [PMID: 37697928 DOI: 10.1039/d3an01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of analytes. However, the performance of SERS substrates depends on many variables including the enhancement factor, morphology, consistency, and interaction with target analytes. In this study, we investigated, for the first time, the use of electrospray deposition (ESD) combined with a novel ambient focusing DC ion funnel to deposit a high density of gold nanoparticles (AuNPs) to generate large-area, uniform substrates for highly sensitive SERS analysis. We found that the combination of ambient ion focusing with ESD facilitated high-density and intact deposition of non-spherical NPs. This also allowed us to take advantage of a polydisperse colloidal solution of AuNPs (consisting of nanospheres and nanorods), as confirmed by finite-difference time domain (FDTD) simulations. Our SERS substrate exhibited excellent capture capacity for model analyte molecules, namely 4-aminothiophenol (4-ATP) and Rhodamine 6G (R6G), with detection limits in the region of 10-11 M and a relative standard deviation of <6% over a large area (∼500 × 500 μm2). Additionally, we assessed the quantitative performance of our SERS substrate using the R6G probe molecule. The results demonstrated excellent linearity (R2 > 0.99) over a wide concentration range (10-4 M to 10-10 M) with a detection limit of 80 pM.
Collapse
Affiliation(s)
- Baris Akbali
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Barry L Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Boonphop Chaisrikhwun
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanet Wongravee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Chen-Han Huang
- Department of Biomedical Engineering, National Central University, Zhongli 10608, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| |
Collapse
|
38
|
Dai C, Wang K, Tan M, Hua Z, Xia L, Qin L. A LoC-SERS platform based on triple signal amplification for highly sensitive detection of colorectal cancer miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4194-4203. [PMID: 37584160 DOI: 10.1039/d3ay01006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In this work, based on a dual signal amplification strategy of enzyme-assisted signal amplification (EASA) and catalytic hairpin assembly (CHA), combined with the magnetic attraction effect, a capillary pump-driven surface-enhanced Raman scattering (SERS) microfluidic chip (LoC-SERS) platform was developed for the sensitive detection of colorectal cancer-associated (CRC) microRNA (miRNA). During the detection process, the miRNA first undergoes an EASA reaction with hairpin DNA1 (hpDNA1) under the action of endonuclease, which generates a large amount of DNA2 cyclically. After that, DNA2 triggers the CHA reaction to proceed, which leads to the ligation of the SERS nanoprobes and the capture nanoprobes (hpDNA2-hpDNA3 complexes). Finally, as the reactant solution flows through the collection zone, the end products are magnetically attracted by the micro-magnets, generating many "hot spots" and leading to a triple amplification of the SERS signal. By quantitative analysis, the platform achieved ultra-low detection limits of miR-122 (4.26 aM) and miR-192 (4.71 aM) within a linear range of 10 aM-10 pM. In addition, the platform's results for clinical samples are highly consistent with those measured by qRT-PCR methods. Overall, the proposed LoC-SERS platform is expected to be an important tool for the early screening of CRC.
Collapse
Affiliation(s)
- Chun Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Kun Wang
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Tan
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Zhaolai Hua
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lin Xia
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
39
|
Musile G, Grazioli C, Fornasaro S, Dossi N, De Palo EF, Tagliaro F, Bortolotti F. Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review. BIOSENSORS 2023; 13:743. [PMID: 37504142 PMCID: PMC10377625 DOI: 10.3390/bios13070743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (μPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, µPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma-hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors.
Collapse
Affiliation(s)
- Giacomo Musile
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri 1, 34127 Trieste, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Elio Franco De Palo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
- Laboratory of Pharmacokinetics and Metabolomics Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street, 119991 Moscow, Russia
| | - Federica Bortolotti
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
40
|
Zhang W, Zi X, Bi J, Liu G, Cheng H, Bao K, Qin L, Wang W. Plasmonic Nanomaterials in Dark Field Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2027. [PMID: 37446543 DOI: 10.3390/nano13132027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Plasma nanoparticles offer promise in data storage, biosensing, optical imaging, photoelectric integration, etc. This review highlights the local surface plasmon resonance (LSPR) excitation mechanism of plasmonic nanoprobes and its critical significance in the control of dark-field sensing, as well as three main sensing strategies based on plasmonic nanomaterial dielectric environment modification, electromagnetic coupling, and charge transfer. This review then describes the component materials of plasmonic nanoprobes based on gold, silver, and other noble metals, as well as their applications. According to this summary, researchers raised the LSPR performance of composite plasmonic nanomaterials by combining noble metals with other metals or oxides and using them in process analysis and quantitative detection.
Collapse
Affiliation(s)
- Wenjia Zhang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Xingyu Zi
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Jinqiang Bi
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Guohua Liu
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Hongen Cheng
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Kexin Bao
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Liu Qin
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Wei Wang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| |
Collapse
|
41
|
Dos Santos DP, Sena MM, Almeida MR, Mazali IO, Olivieri AC, Villa JEL. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends. Anal Bioanal Chem 2023; 415:3945-3966. [PMID: 36864313 PMCID: PMC9981450 DOI: 10.1007/s00216-023-04620-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
Collapse
Affiliation(s)
- Diego P Dos Santos
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Marcelo M Sena
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCT Bio), Campinas, SP, 13083-970, Brazil
| | - Mariana R Almeida
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Italo O Mazali
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Alejandro C Olivieri
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
| | - Javier E L Villa
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
42
|
Wu L, Tang X, Wu T, Zeng W, Zhu X, Hu B, Zhang S. A review on current progress of Raman-based techniques in food safety: From normal Raman spectroscopy to SESORS. Food Res Int 2023; 169:112944. [PMID: 37254368 DOI: 10.1016/j.foodres.2023.112944] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Frequently occurrence of food safety incidents has induced global concern over food safety. To ensure food quality and safety, an increasing number of rapid and sensitive analytical methods have been developed for analysis of all kinds of food composition and contaminants. As one of the high-profile analytical techniques, Raman spectroscopy has been widely applied in food analysis with simple, rapid, sensitive, and nondestructive detection performance. Research on Raman techniques is a direction of great interest to many fields, especially in food safety. Hence, it is crucial to gain insight into recent advances on the use of Raman-based techniques in food safety applications. In this review, we introduce Raman techniques from normal Raman spectroscopy to developed ones (e.g., surface enhanced Raman scattering (SERS), spatially offset Raman spectroscopy (SORS), surface-enhanced spatially offset Raman spectroscopy (SESORS)), in view of their history and development, principles, design, and applications. In addition, future challenges and trends of these techniques are discussed regarding to food safety.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China.
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Xiangwei Zhu
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| |
Collapse
|
43
|
Schorr HC, Schultz ZD. Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy. Analyst 2023; 148:2035-2044. [PMID: 36974935 PMCID: PMC10167912 DOI: 10.1039/d2an01762h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sugars play important roles in numerous biological processes, from providing energy to modifying proteins to alter their function. Glycosylation, the attachment of a sugar residue to a protein, is the most common post translational modification. Identifying the glycans on a protein is a useful tool both for pharmaceutical development as well as probing the proteome and glycome further. Sugars, however, are difficult analytes to probe due to their isomeric nature. In this work, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are used to identify different monosaccharide species based on the vibrational modes of these isomeric analytes. The weak scattering of the sugars was overcome through conjugation with phenylboronic acid to provide a larger Raman scattering cross section and induce slight changes in the observed spectra associated with the structure of the monosaccharides. Spontaneous Raman, SERS in flow, and static SERS detection were performed in order to discriminate between arabinose, fructose, galactose, glucose, mannose, and ribose, as well as provide a method for identification and quantification for these sugar conjugates.
Collapse
Affiliation(s)
- Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Zou B, Lou S, Duan J, Zhou S, Wang Y. Design of Raman reporter-embedded magnetic/plasmonic hybrid nanostirrers for reliable microfluidic SERS biosensors. NANOSCALE 2023; 15:8424-8431. [PMID: 37093062 DOI: 10.1039/d3nr00303e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnetic-based microfluidic SERS biosensors hold great potential in various biological analyses due to their integrated advantages including easy manipulation, miniaturization and ultrasensitivity. However, it remains challenging to collect reliable SERS nanoprobe signals for quantitative analysis due to the irregular aggregation of magnetic carriers in a microfluidic chamber. Here, magnetic/plasmonic hybrid nanostirrers embedded with a Raman reporter are developed as capture carriers to improve the reliability of microfluidic SERS biosensors. Experimental results revealed that SERS signals from magnetic hybrid nanostirrers could serve as microenvironment beacons of their irregular aggregation, and a signal filtering method was proposed through exploring the relationship between the intensity range of beacons and the signal reproducibility of SERS nanoprobes using interleukin 6 as a model target analyte. Using the signal filtering method, reliable SERS nanoprobe signals with high reproducibility could be picked out from similar microenvironments according to their beacon intensity, and then the influence of irregular aggregation of magnetic carriers on the SERS nanoprobe could be eliminated. The filtered SERS nanoprobe signals also exhibited excellent repeatability from independent tests, which lay a solid foundation for a reliable working curve and subsequent accurate bioassay. This study provides a simple but promising route for reliable microfluidic SERS biosensors, which will further promote their practical application in biological analysis.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Shiyun Lou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Jie Duan
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Shaomin Zhou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yongqiang Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
45
|
Gozdzialski L, Wallace B, Hore D. Point-of-care community drug checking technologies: an insider look at the scientific principles and practical considerations. Harm Reduct J 2023; 20:39. [PMID: 36966319 PMCID: PMC10039693 DOI: 10.1186/s12954-023-00764-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Drug checking is increasingly being explored outside of festivals and events to be an ongoing service within communities, frequently integrated within responses to illicit drug overdose. The choice of instrumentation is a common question, and the demands on these chemical analytical instruments can be challenging as illicit substances may be more complex and include highly potent ingredients at trace levels. The answer remains nuanced as the instruments themselves are not directly comparable nor are the local demands on the service, meaning implementation factors heavily influence the assessment and effectiveness of instruments. In this perspective, we provide a technical but accessible introduction to the background of a few common drug checking methods aimed at current and potential drug checking service providers. We discuss the following tools that have been used as part of the Vancouver Island Drug Checking Project in Victoria, Canada: immunoassay test strips, attenuated total reflection IR-absorption spectroscopy, Raman spectroscopy from powder samples, surface-enhanced Raman scattering in a solution of colloidal gold nanoparticles, and gas chromatography-mass spectrometry. Using four different drug mixtures received and tested at the service, we illustrate the strengths, limitations, and capabilities of such instruments, and expose the scientific theory to give further insight into their analytical results. Each case study provides a walk-through-style analysis for a practical comparison between data from several different instruments acquired on the same sample. Ideally, a single instrument would be able to achieve all of the objectives of drug checking. However, there is no clear instrument that ticks every box; low cost, portable, rapid, easy-to-use and provides highly sensitive identification and accurate quantification. Multi-instrument approaches to drug checking may be required to effectively respond to increasingly complex and highly potent substances demanding trace level detection and the potential for quantification.
Collapse
Affiliation(s)
- Lea Gozdzialski
- Department of Chemistry, University of Victoria, Victoria, V8W 3V6, Canada
| | - Bruce Wallace
- School of Social Work, University of Victoria, Victoria, V8W 2Y2, Canada
- Canadian Institute for Substance Use Research, University of Victoria, Victoria, V8W 2Y2, Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria, Victoria, V8W 3V6, Canada.
- Canadian Institute for Substance Use Research, University of Victoria, Victoria, V8W 2Y2, Canada.
- Department of Computer Science, University of Victoria, Victoria, V8W 3P6, Canada.
| |
Collapse
|
46
|
AlMasoud N, Alomar TS, Xu Y, Lima C, Goodacre R. Rapid detection and quantification of paracetamol and its major metabolites using surface enhanced Raman scattering. Analyst 2023; 148:1805-1814. [PMID: 36938623 DOI: 10.1039/d3an00249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Paracetamol (also known as acetaminophen) is an over-the-counter (OTC) drug that is commonly used as an analgesic for mild pain, headache, cold and flu. While in the short term it is a safe and effective medicine, it is sometimes used for attempted suicides particularly in young adults. In such circumstances it is important for rapid diagnosis of overdoses as antidotes can be given to limit liver damage from one of its primary metabolites N-acetyl-p-benzoquinone imine (NAPQI). Unfortunately, the demand for rapid and sensitive analytical techniques to accurately monitor the abuse of OTC drugs has significantly risen. Ideally these techniques would be highly specific, sensitive, reproducible, portable and rapid. In addition, an ideal point of care (PoC) test would enable quantitative detection of drugs and their metabolites present in body fluids. While Raman spectroscopy meets these specifications, there is a need for enhancement of the signal because the Raman effect is weak. In this study, we developed a surface-enhanced Raman scattering (SERS) methodology in conjunction with chemometrics to quantify the amount of paracetamol and its main primary metabolites (viz., paracetamol sulfate, p-acetamidophenyl β-D-glucuronide and NAPQI) in water and artificial urine. The enhancement of the SERS signals was achieved by mixing the drug or xenometabolites with a gold nanoparticle followed by aggregation with 0.045 M NaCl. We found that the SERS data could be collected directly, due to immediate analyte association with the Au surface and colloid aggregation. Accurate and precise measurements were generated, with a limit of detection (LoD) of paracetamol in water and artificial urine at 7.18 × 10-6 M and 2.11 × 10-5 M, respectively, which is well below the limit needed for overdose and indeed normal levels of paracetamol in serum after taking 1 g orally. The predictive values obtained from the analysis of paracetamol in water and artificial urine were also excellent, with the coefficient of determination (Q2) being 0.995 and 0.996, respectively (1 suggests a perfect model). It was noteworthy that when artificial urine was spiked with paracetamol, no aggregating agent was required due to the salt rich medium, which led to spontaneous aggregation. Moreover, for the xenometabolites of paracetamol excellent LoDs were obtained and these ranged from 2.6 × 10-4 M to 5 × 10-5 M with paracetamol sulfate and NAPQI having Q2 values of 0.934 and 0.892 and for p-acetamidophenyl β-D-glucuronide this was slightly lower at 0.6437.
Collapse
Affiliation(s)
- Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
47
|
Leventi A, Billimoria K, Bartczak D, Laing S, Goenaga-Infante H, Faulds K, Graham D. New Model for Quantifying the Nanoparticle Concentration Using SERS Supported by Multimodal Mass Spectrometry. Anal Chem 2023; 95:2757-2764. [PMID: 36701560 PMCID: PMC9909670 DOI: 10.1021/acs.analchem.2c03779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely explored for the elucidation of underlying mechanisms behind biological processes. However, the capability of absolute quantitation of the number of nanoparticles from the SERS response remains a challenge. Here, we show for the first time the development of a new 2D quantitation model to allow calibration of the SERS response against the absolute concentration of SERS nanotags, as characterized by single particle inductively coupled plasma mass spectrometry (spICP-MS). A novel printing approach was adopted to prepare gelatin-based calibration standards containing the SERS nanotags, which consisted of gold nanoparticles and the Raman reporter 1,2-bis(4-pyridyl)ethylene. spICP-MS was used to characterize the Au mass concentration and particle number concentration of the SERS nanotags. Results from laser ablation inductively coupled plasma time-of-flight mass spectrometry imaging at a spatial resolution of 5 μm demonstrated a homogeneous distribution of the nanotags (between-line relative standard deviation < 14%) and a linear response of 197Au with increasing nanotag concentration (R2 = 0.99634) in the printed gelatin standards. The calibration standards were analyzed by SERS mapping, and different data processing approaches were evaluated. The reported calibration model was based on an "active-area" approach, classifying the pixels mapped as "active" or "inactive" and calibrating the SERS response against the total Au concentration and the particle number concentration, as characterized by spICP-MS. This novel calibration model demonstrates the potential for quantitative SERS imaging, with the capability of correlating the nanoparticle concentration to biological responses to further understand the underlying mechanisms of disease models.
Collapse
Affiliation(s)
- Aristea
Anna Leventi
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.,National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Kharmen Billimoria
- National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Dorota Bartczak
- National
Measurement Laboratory, LGC, Teddington, MiddlesexTW11 0LY, U.K.
| | - Stacey Laing
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.
| | | | - Karen Faulds
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, GlasgowG1 1RD, U.K.,
| |
Collapse
|
48
|
Son J, Kim GH, Lee Y, Lee C, Cha S, Nam JM. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. J Am Chem Soc 2022; 144:22337-22351. [PMID: 36473154 DOI: 10.1021/jacs.2c05950] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman scattering (SERS) provides significantly enhanced Raman scattering signals from molecules adsorbed on plasmonic nanostructures, as well as the molecules' vibrational fingerprints. Plasmonic nanoparticle systems are particularly powerful for SERS substrates as they provide a wide range of structural features and plasmonic couplings to boost the enhancement, often up to >108-1010. Nevertheless, nanoparticle-based SERS is not widely utilized as a means for reliable quantitative measurement of molecules largely due to limited controllability, uniformity, and scalability of plasmonic nanoparticles, poor molecular modification chemistry, and a lack of widely used analytical protocols for SERS. Furthermore, multiscale issues with plasmonic nanoparticle systems that range from atomic and molecular scales to assembled nanostructure scale are difficult to simultaneously control, analyze, and address. In this perspective, we introduce and discuss the design principles and key issues in preparing SERS nanoparticle substrates and the recent studies on the uniform and controllable synthesis and newly emerging machine learning-based analysis of plasmonic nanoparticle systems for quantitative SERS. Specifically, the multiscale point of view with plasmonic nanoparticle systems toward quantitative SERS is provided throughout this perspective. Furthermore, issues with correctly estimating and comparing SERS enhancement factors are discussed, and newly emerging statistical and artificial intelligence approaches for analyzing complex SERS systems are introduced and scrutinized to address challenges that cannot be fully resolved through synthetic improvements.
Collapse
Affiliation(s)
- Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Gyeong-Hwan Kim
- The Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seungsang Cha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
49
|
Botta R, Limwichean S, Limsuwan N, Moonlek C, Horprathum M, Eiamchai P, Chananonnawathorn C, Patthanasettakul V, Chindaudom P, Nuntawong N, Ngernsutivorakul T. An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121598. [PMID: 35816867 DOI: 10.1016/j.saa.2022.121598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.
Collapse
Affiliation(s)
- Raju Botta
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Saksorn Limwichean
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nutthamon Limsuwan
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chalisa Moonlek
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mati Horprathum
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pitak Eiamchai
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chanunthorn Chananonnawathorn
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Viyapol Patthanasettakul
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pongpan Chindaudom
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thitaphat Ngernsutivorakul
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
50
|
Zoltowski CM, Shoup DN, Schultz ZD. Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14547-14557. [PMID: 37425396 PMCID: PMC10327581 DOI: 10.1021/acs.jpcc.2c03150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The excitation of plasmon resonances on nanoparticles generates locally enhanced electric fields commonly used for sensing applications and energetic charge carriers can drive chemical transformations as photocatalysts. The surface-enhanced Raman scattering (SERS) spectra from mercaptobenzoic acid (MBA) adsorbed to gold nanoparticles (AuNP) and silica encapsulated gold nanoparticles (AuNP@silica) can be used to assess the impact of energetic charge carriers on the observed signal. Measurements were recorded using a traditional point focused Raman spectroscopy and a wide-field spectral imaging approach to assess changes in the spectra of the different particles at increasing power density. The wide-field approach provides an increase in sampling statistics and shows evidence of SERS frequency fluctuations from MBA at low power densities, where it is commonly difficult to record spectra from a point focused spot. The increased spectral resolution of the point spectroscopy measurement provides improved peak identification and the ability to correlate the frequency fluctuations to charged intermediate species. Interestingly, our work suggests that isolated nanoparticles may undergo frequency fluctuations more readily than aggregates.
Collapse
Affiliation(s)
| | | | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|