1
|
Bajgai J, Jun M, Oh JH, Lee JH. A perspective on the potential use of aptamer-based field-effect transistor sensors as biosensors for ovarian cancer biomarkers CA125 and HE4. Talanta 2025; 292:127954. [PMID: 40120511 DOI: 10.1016/j.talanta.2025.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Ovarian cancer (OC) is one of the most fatal gynaecological malignancies, primarily because of its typically asymptomatic early stages, which complicates early detection. Therefore, developing sensitive and appropriate biomarkers for efficient diagnosis of OC is urgently needed. Aptamers, short sequences of single-stranded DNA or RNA molecules, have become crucial in tumor diagnosis because of their high affinity for specific molecules produced by tumors. This ability allows aptamers to accurately detect OC, thus providing better survival rates and a reduced disease burden. Biosensors that combine recognition molecules and nanomaterials are essential in various fields, including disease diagnosis and health management. Molecular-specific field-effect transistor (FET) biosensors are particularly promising due to their rapid response times, ease of miniaturization, and high sensitivity in detecting OC. Aptamers, which are known for their stability and structural tunability, are increasingly being used as biological recognition units in FET biosensors, offering selective and high-affinity binding to target molecules that are ideal for medical diagnostics. This review explores the recent advancements in biosensors for OC detection, including FET biosensors with aptamer-functionalized nanomaterials for CA125 and HE4. Furthermore, this review provides an overview of the structure and sensing principles of these advanced biosensors, preparation methods and functionalization strategies that enhance their performance. Additionally, notable progress and potential of biosensors, including aptamer-functionalized FET biosensors for OC diagnosis have been summarized, emphasising their role and clinical validation in advancing medical diagnostics and improving patient outcomes through enhanced detection capabilities.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Minsang Jun
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine Wonju, Gangwon-do 26426, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.
| |
Collapse
|
2
|
Liu J, Lv L, Leng D, Du Y, Ren X, Ma H, Wu T, Wei Q. Interface self-shelling effect-mediated photoinduced carrier transport and multiplexed signal amplification mechanism in self-powered photoelectrochemical biosensing. Biosens Bioelectron 2025; 284:117577. [PMID: 40367664 DOI: 10.1016/j.bios.2025.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
In the realm of biomedical diagnostics, the development of sensitive and specific detection methods for cancer biomarkers is of paramount importance. Herein, we report on the design and implementation of a self-powered photoelectrochemical (PEC) sensor that harnesses amplified photocathode signals for the deterioration of carbohydrate antigen 125 (CA125) associated with ovarian cancer. This self-powered sensing platform integrates Cu2O/Cu3SnS4 heterojunction and ZnIn2S4 sensitized TiO2 with flower-like structure as photocathode and photoanode. Moreover, the PEC biosensor introduces the interface shedding effect to overcome the limitations of weak or unstable photocathode PEC signals. When MnO2 nanoparticles are used as the quenching source, the cathode photocurrent experiences a reduction to a certain extent owing to the phenomenon of competitive light absorption. To enhance the application for efficient CA125 detection, the interface self-shelling effect is introduced. The effect is implemented through the hydrolysis reaction of Acetylcholinesterase (AChE), producing thiocholine (TCh) as the interface detachment initiator. Which resulting in the detachment of layer modifiers, including MnO2, from the electrode surface and achieving the effect of significant enhancement of the photoelectric signal. Therefore, multiple signal amplification effects synergistically enhanced the photoelectric response. The self-powered PEC biosensing with a wide linear range of 0.001 U/mL-200 U/mL and a low detection limit of 0.32 mU/mL, which shows excellent performance in terms of sensitivity, specificity, and stability, making it a promising candidate for point-of-care diagnostics.
Collapse
Affiliation(s)
- Jinjie Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Luyang Lv
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dongquan Leng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Saripilli R, Sharma DK. Nanotechnology-based drug delivery system for the diagnosis and treatment of ovarian cancer. Discov Oncol 2025; 16:422. [PMID: 40155504 PMCID: PMC11953507 DOI: 10.1007/s12672-025-02062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Current research in nanotechnology is improving or developing novel applications that could improve disease diagnosis or treatment. This study highlights several nanoscale drug delivery technologies, such as nano micelles, nanocapsules, nanoparticles, liposomes, branching dendrimers, and nanostructured lipid formulations for the targeted therapy of ovarian cancer (OC), to overcome the limitations of traditional delivery. Because traditional drug delivery to malignant cells has intrinsic flaws, new nanotechnological-based treatments have been developed to address these conditions. Ovarian cancer is the most common gynecological cancer and has a higher death rate because of its late diagnosis and recurrence. This review emphasizes the discipline of medical nanotechnology, which has made great strides in recent years to solve current issues and enhance the detection and treatment of many diseases, including cancer. This system has the potential to provide real-time monitoring and diagnostics for ovarian cancer treatment, as well as simultaneous delivery of therapeutic agents.
Collapse
Affiliation(s)
- Rajeswari Saripilli
- School of Pharmacy, Centurion University of Technology and Management, Gajapati, Odisha, India
| | - Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
4
|
Abul Rub F, Moursy N, Alhedeithy N, Mohamed J, Ifthikar Z, Elahi MA, Mir TA, Rehman MU, Tariq S, Alabudahash M, Chinnappan R, Yaqinuddin A. Modern Emerging Biosensing Methodologies for the Early Diagnosis and Screening of Ovarian Cancer. BIOSENSORS 2025; 15:203. [PMID: 40277517 PMCID: PMC12024575 DOI: 10.3390/bios15040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Ovarian cancer (OC) is one of the leading causes of gynecological cancer-related death worldwide. Late diagnosis at advanced stages of OC is the reason for a higher mortality rate. Earlier diagnosis and proper treatment are important for improving the prognosis of OC patients. Biosensors offer accurate, low-cost, rapid, and user-friendly devices that can be employed for the detection of OC-specific biomarkers in the early stage. Therefore, it is important to consider the potential biomarkers in the biological fluids to confirm the OC prognosis. Out of many biomarkers, the most commonly tested clinically is cancer antigen 125 (CA-125). However, CA-125 is considered to be a poor biomarker for OC diagnosis. Several biosensing methods were developed for the sensitive and quantitative detection of each biomarker. In abnormal expression in OC patients, nucleic acids, enzymes, cells, and exosomes are used as target biomarkers for the construction of biosensors. This review focuses on the development for the detection of various biomarkers using multiple biosensing methods. Here, we describe the origin and the significance of OC-associated biomarkers, the working principle of biosensors, and the classification of biosensors based on their recognition elements and signal transducers. The modes of detection and sensitivity of the sensors are discussed. Finally, the challenges in the fabrication, obstacles in the clinical application, and future prospects are discussed.
Collapse
Affiliation(s)
- Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Naseel Moursy
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Nouf Alhedeithy
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Juraij Mohamed
- Faculty of Medicine, University of Colombo, Colombo 00800, Sri Lanka;
| | - Zainab Ifthikar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Tanveer Ahmed Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Mati Ur Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan;
| | - Saima Tariq
- Department of Obstetrics and Gynecology, Al Iman General Hospital, Ministry of Health, Riyadh 12684, Saudi Arabia;
| | - Mubark Alabudahash
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Glasgow G4 0RE, UK;
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| |
Collapse
|
5
|
Merzougui C, Yang X, Meng D, Huang Y, Zhao X. Microneedle Array-Based Dermal Interstitial Fluid Biopsy for Cancer Diagnosis: Advances and Challenges. Adv Healthc Mater 2025; 14:e2404420. [PMID: 39887596 DOI: 10.1002/adhm.202404420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Indexed: 02/01/2025]
Abstract
Current early cancer diagnostic technologies, such as imaging, molecular tests, endoscopic techniques, and biopsies, face considerable challenges in low-and middle-income countries (LMICs) due to high costs, procedural complexity, and limited resource access. Microneedle-based liquid biopsy for skin interstitial fluid (ISF) offers a practical and minimally invasive alternative for cancer diagnosis in these settings. This review systematically examines ISF liquid biopsy methods for their effectiveness in capturing cancer biomarkers directly from the skin and assesses their potential to address diagnostic needs in low-resource environments. Recent innovations in microneedle design and ISF underscore their potential in enabling early, accessible cancer detection tailored to LMICs' needs. Additionally, integrating artificial intelligence (AI) for data interpretation is proposed as a way to enhance diagnostic accuracy and enable real-time point-of-care (POC) applications. Collectively, these advances illustrate a flexible, scalable model for accessible cancer diagnostics, with significant implications for improving early detection and healthcare quality in resource-limited environments.
Collapse
Affiliation(s)
- Chaima Merzougui
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Xi Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Dianhuai Meng
- Rehabilitation Medical Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| |
Collapse
|
6
|
Kivrak E, Kara P. Simultaneous detection of ovarian cancer related miRNA biomarkers with carboxylated graphene oxide modified electrochemical biosensor platform. Bioelectrochemistry 2025; 161:108806. [PMID: 39244915 DOI: 10.1016/j.bioelechem.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Ovarian cancer, known as "silent killer", is a gynocological cancer with high mortality that usually diagnosed in the late stages. Gold standard immunoassay technique is evaluation of CA-125 levels which is not merely specific to ovarian cancer. Therefore, there is a need for sensitive determination of more specific biomarkers. miR-200 family is RNA nucleic acids that known to be upregulated in the presence of ovarian cancer. Since diagnosis based on a single biomarker is prone to generate misleading results, it is important to develop point-of-care systems that allow diagnosis of multiple miRNAs. Herein, an electrochemical nanobiosensor platform was developed for the multiplexed and simultaneous detection of miR-200c and miR-141. Biorecognition part was constitutued of methylene blue and ferrocene labeled hairpin DNA probes immobilized onto carboxylated graphene oxide modified pencil graphite electrodes. Their hybridization with miRNAs were examined upon "signal-off" approach using Square Wave Voltammetry. The platform demonstrated a linear detection range of 0.1 pM to 10 nM for both miR-141 and miR-200c, with low detection limits of 0.029 pM and 0.026 pM, respectively. We assume that the developed biosensor platform may pave the way in early diagnosis of the disease and the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Ezgi Kivrak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey; Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Ege University, 35100 Izmir, Bornova, Turkey
| | - Pinar Kara
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey.
| |
Collapse
|
7
|
Shahbazlou SV, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Recent advances in surface plasmon resonance for the detection of ovarian cancer biomarkers: a thorough review. Mikrochim Acta 2024; 191:659. [PMID: 39382786 DOI: 10.1007/s00604-024-06740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Early detection of ovarian cancer (OC) is crucial for effective management and treatment, as well as reducing mortality rates. However, the current diagnostic methods for OC are time-consuming and have low accuracy. Surface plasmon resonance (SPR) biosensors offer a promising alternative to conventional techniques, as they enable rapid and less invasive screening of various circulating indicators. These biosensors are widely used for biomolecular interaction analysis and detecting tumor markers, and they are currently being investigated as a rapid diagnostic tool for early-stage cancer detection. Our main focus is on the fundamental concepts and performance characteristics of SPR biosensors. We also discuss the latest advancements in SPR biosensors that enhance their sensitivity and enable high-throughput quantification of OC biomarkers, including CA125, HE4, CEA, and CA19-9. Finally, we address the future challenges that need to be overcome to advance SPR biosensors from research to clinical applications. The ultimate goal is to facilitate the translation of SPR biosensors into routine clinical practice for the early detection and management of OC.
Collapse
Affiliation(s)
- Shahnam Valizadeh Shahbazlou
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
9
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Anvari K, Avan A. Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics. Curr Pharm Des 2024; 30:2619-2630. [PMID: 39021196 DOI: 10.2174/0113816128317605240628063731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
10
|
Mondal S, Park S, Choi J, Vu TTH, Doan VHM, Vo TT, Lee B, Oh J. Hydroxyapatite: A journey from biomaterials to advanced functional materials. Adv Colloid Interface Sci 2023; 321:103013. [PMID: 37839281 DOI: 10.1016/j.cis.2023.103013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Hydroxyapatite (HAp), a well-known biomaterial, has witnessed a remarkable evolution over the years, transforming from a simple biocompatible substance to an advanced functional material with a wide range of applications. This abstract provides an overview of the significant advancements in the field of HAp and its journey towards becoming a multifunctional material. Initially recognized for its exceptional biocompatibility and bioactivity, HAp gained prominence in the field of bone tissue engineering and dental applications. Its ability to integrate with surrounding tissues, promote cellular adhesion, and facilitate osseointegration made it an ideal candidate for various biomedical implants and coatings. As the understanding of HAp grew, researchers explored its potential beyond traditional biomaterial applications. With advances in material synthesis and engineering, HAp began to exhibit unique properties that extended its utility to other disciplines. Researchers successfully tailored the composition, morphology, and surface characteristics of HAp, leading to enhanced mechanical strength, controlled drug release capabilities, and improved biodegradability. These modifications enabled the utilization of HAp in drug delivery systems, biosensors, tissue engineering scaffolds, and regenerative medicine applications. Moreover, the exceptional biomineralization properties of HAp allowed for the incorporation of functional ions and molecules during synthesis, leading to the development of bioactive coatings and composites with specific therapeutic functionalities. These functionalized HAp materials have demonstrated promising results in antimicrobial coatings, controlled release systems for growth factors and therapeutic agents, and even as catalysts in chemical reactions. In recent years, HAp nanoparticles and nanostructured materials have emerged as a focal point of research due to their unique physicochemical properties and potential for targeted drug delivery, imaging, and theranostic applications. The ability to manipulate the size, shape, and surface chemistry of HAp at the nanoscale has paved the way for innovative approaches in personalized medicine and regenerative therapies. This abstract highlights the exceptional evolution of HAp, from a traditional biomaterial to an advanced functional material. The exploration of novel synthesis methods, surface modifications, and nanoengineering techniques has expanded the horizon of HAp applications, enabling its integration into diverse fields ranging from biomedicine to catalysis. Additionally, this manuscript discusses the emerging prospects of HAp-based materials in photocatalysis, sensing, and energy storage, showcasing its potential as an advanced functional material beyond the realm of biomedical applications. As research in this field progresses, the future holds tremendous potential for HAp-based materials to revolutionize medical treatments and contribute to the advancement of science and technology.
Collapse
Affiliation(s)
- Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thu Ha Vu
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Truong Tien Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Byeongil Lee
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
11
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum. Mikrochim Acta 2023; 190:235. [PMID: 37219635 DOI: 10.1007/s00604-023-05813-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
A sensitive, simple, and reliable immunosensor was constructed to detect the lowest alteration of a fragment of cytokeratin subunit 19 (CYFRA 21-1), a protein lung carcinoma biomarker. The proposed immunosensor was manufactured with a carbon black C45/polythiophene polymer-containing amino terminal groups (C45-PTNH2) conductive nanocomposite, resulting in an excellent, biocompatible, low-cost, and electrically conductive electrode surface. Anti-CYFRA 21-1 biorecognition molecules were attached to the electrode thanks to the amino terminal groups of the used PTNH2 polymer with a relatively simple procedure. All electrode surfaces after modifications were characterized by electrochemical, chemical, and microscopic techniques. Electrochemical impedance spectroscopy (EIS) was also utilized for the evaluation of the analytical feature of the immunosensor. The charge transfer resistance of the immunosensor signal was correlated with the CYFRA 21-1 concentration in the concentration range 0.03 to 90 pg/mL. The limit of detection (LOD) and the limit of quantification (LOQ) of the suggested system were 4.7 fg/mL and 14.1 fg/mL, respectively. The proposed biosensor had favorable repeatability and reproducibility, long storage stability, excellent selectivity, and low cost. Furthermore, it was applied to determine CYFRA 21-1 in commercial serum samples, and satisfactory recovery results (98.63-106.18%) were obtained. Thus, this immunosensor can be offered for clinical purposes as a rapid, stable, low-cost, selective, reproducible, and reusable tool.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
13
|
Wang R, Liu H, Xu T, Zhang Y, Gu C, Jiang T. SERS-based recyclable immunoassay mediated by 1T-2H mixed-phase magnetic molybdenum disulfide probe and 2D graphitic carbon nitride substrate. Biosens Bioelectron 2023; 227:115160. [PMID: 36827796 DOI: 10.1016/j.bios.2023.115160] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Recently, non-metallic SERS-based immunoassay has attracted much attention due to its attractive chemical enhancement (CM), chemical stability, and biocompatibility. Herein, metallic (1T)-semiconductor (2H) mixed-phase magnetic molybdenum disulfide (MoS2) was rationally developed and combined with two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets to realize a SERS-based recyclable immunoassay of CA125. The Fe3O4 core promoted the reliable stacking of MoS2 nanoflakes into a flower-like shape with fully-exposed active surface. Particularly, the existence of 1T phase facilitated a noble-metal-comparable SERS activity due to the high electron density-induced charge transfer process with elevated efficiency. Moreover, a conversion from bulk to 2D nanosheet was swimmingly achieved for g-C3N4 via acid etching, whose large surface area full of active electrons and functional groups triggered an enhancement factor (EF) of 7.8 × 106. Based on a typical sandwich immunostructure, a limit of detection (LOD) as 4.96 × 10-4 IU/mL was demonstrated for CA125 in a recyclable process. Finally, such an immunosensor was employed to analyze clinical samples, indicating its prodigious potentiality in the early recognition and monitoring of cancer.
Collapse
Affiliation(s)
- Rongyan Wang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Huan Liu
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Tao Xu
- Department of Pharmacy, Ningbo City First Hospital, Ningbo, 315010, Zhejiang, PR China
| | - Yongling Zhang
- College of Information &Technology, Jilin Normal University, Siping, 136000, Jilin, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| |
Collapse
|
14
|
Vetrivel C, Sivarasan G, Durairaj K, Ragavendran C, Kamaraj C, Karthika S, Lo HM. MoS 2-ZnO Nanocomposite Mediated Immunosensor for Non-Invasive Electrochemical Detection of IL8 Oral Tumor Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13081464. [PMID: 37189565 DOI: 10.3390/diagnostics13081464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
In order to support biomolecule attachment, an effective electrochemical transducer matrix for biosensing devices needs to have many specialized properties, including quick electron transfer, stability, high surface area, biocompatibility, and the presence of particular functional groups. Enzyme-linked immunosorbent assays, gel electrophoresis, mass spectrometry, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy are common techniques used to assess biomarkers. Even though these techniques provide precise and trustworthy results, they cannot replace clinical applications because of factors such as detection time, sample amount, sensitivity, equipment expense, and the need for highly skilled individuals. For the very sensitive and targeted electrochemical detection of the salivary oral cancer biomarker IL8, we have created a flower-structured molybdenum disulfide-decorated zinc oxide composite on GCE (interleu-kin-8). This immunosensor shows very fast detection; the limit of detection (LOD) for interleukin-8 (IL8) detection in a 0.1 M phosphate buffer solution (PBS) was discovered to be 11.6 fM, while the MoS2/ZnO nanocomposite modified glassy carbon electrode (GCE) demonstrated a high catalytic current linearly from 500 pg to 4500 pg mL-1 interleukin-8 (IL8). Therefore, the proposed biosensor exhibits excellent stability, high accuracy sensitivity, repeatability, and reproducibility and shows the acceptable fabrication of the electrochemical biosensors to detect the ACh in real sample analysis.
Collapse
Affiliation(s)
- Cittrarasu Vetrivel
- Carbon Capture Lab, Department of Chemical Engineering, SSN College of Engineering Kalavakkam, Chennai 603110, Tamil Nadu, India
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Sankar Karthika
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Namakkal 637501, Tamil Nadu, India
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| |
Collapse
|
15
|
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13040713. [PMID: 36832201 PMCID: PMC9955065 DOI: 10.3390/diagnostics13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.
Collapse
|
16
|
Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. BIOSENSORS 2023; 13:99. [PMID: 36671934 PMCID: PMC9856029 DOI: 10.3390/bios13010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. In this review, a diverse range of optical and electrochemical means of detecting CA-125 are reviewed. Furthermore, an applicable comparison of their performance and sensitivity is provided, several commercial detection kits are investigated, and their applications are compared and discussed to determine whether they are applicable and accurate enough.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Xu Y, Zuo F, Wang H, Jing J, He X. The current landscape of predictive and prognostic biomarkers for immune checkpoint blockade in ovarian cancer. Front Immunol 2022; 13:1045957. [PMID: 36389711 PMCID: PMC9647049 DOI: 10.3389/fimmu.2022.1045957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evoked a prominent shift in anticancer therapy. Durable clinical antitumor activity to ICB has been observed in patients with ovarian cancer (OC). However, only a subset of patients derive clinical benefit, and immune-related adverse events (irAEs) caused by ICB therapy can lead to permanent tissue damage and even fatal consequences. It is thus urgent to develop predictive biomarkers to optimize patient outcomes and minimize toxicity risk. Herein, we review current predictive and prognostic biomarkers for checkpoint immunotherapy in OC and highlight emerging biomarkers to guide treatment with ICB. The prevalent biomarkers, such as PD-L1 expression status, tumor-infiltrating lymphocytes, mutational burden, and immune gene signatures, are further discussed. We provide a state-of-the-art survey on prognostic and predictive biomarkers for checkpoint immunotherapy and offer valuable information for guiding precision immunotherapy
Collapse
Affiliation(s)
| | | | | | - Jing Jing
- *Correspondence: Jing Jing, ; Xiujing He,
| | - Xiujing He
- *Correspondence: Jing Jing, ; Xiujing He,
| |
Collapse
|
18
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
19
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
20
|
Opławski M, Średnicka A, Niewiadomska E, Boroń D, Januszyk P, Grabarek BO. Clinical and molecular evaluation of patients with ovarian cancer in the context of drug resistance to chemotherapy. Front Oncol 2022; 12:954008. [PMID: 35992817 PMCID: PMC9389532 DOI: 10.3389/fonc.2022.954008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to evaluate changes in the expression patterns at the gene and protein levels associated with drug resistance. The study group included 48 women who had a histopathologically confirmed diagnosis of stage I-IV ovarian cancer, they were divided into two subgroups (groups A and B). In group A, there were 36 patients in whom surgical treatment was supplemented with first-line chemotherapy according to current standards. Within this patient group, 5 had stage I (14%), 5 had stage II (14%), 25 had stage III (69%), and 1 had stage IV ovarian cancer (3%). Drug resistance was found after the third cycle of chemotherapy in 17 patients (71%) and after the sixth cycle in 7 patients (29%). Group B included 12 women with type I ovarian cancer, including 11 with stage I and 1 patient with stage IV ovarian cancer. The oncological treatment required only surgery. The control group (C) included 50 women in whom the uterus and adnexa were surgically removed for non-oncological reasons. Significantly higher levels of carcinoma antigen 125 CA-125 and human epididymis protein 4 HE4 were observed in group A and in menopausal women. Moreover, drug resistance was associated with significantly higher levels of CA-125 (p < 0.05). The genes UBA2, GLO1, STATH, and TUFT1 were differentiated in test samples from control samples. Moreover, drug resistance was associated with significantly higher expression of GLO1. The results of these assessments indicated the strong link between UBA2 and hsa-miR-133a-3p and hsa-miR-133b; GLO1 and hsa-miR-561-5p; STATH and hsa-miR-137-3p and hsa-miR-580-3p; and TUFT1 and hsa-miR-1233-3p and hsa-miR-2052. Correlation analysis showed a significant correlation between CA-125 and HE4 levels. Moreover, a significant correlation between TUFT1 mRNA and UBA2, GLO1, STATH (negative correlation), and TUFT1 in relation to CA-125 and HE4 (p < 0.05) was noted in all patients. In view of the lack of screening tests for ovarian cancer, the occurrence of the described correlation may be inscribed as an attempt to establish an assay that meets the criteria of a screening test and thus increase the early diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, Kraków, Poland
| | - Agata Średnicka
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Ewa Niewiadomska
- Department of Epidemiology and Biostatistics, School of Health Sciences in Bytom, Medical University of Silesia, Katowice, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academia of Silesia in Katowice, Zabrze, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Technology, Academia of Silesia in Katowice, Zabrze, Poland
| | - Piotr Januszyk
- Department of Biochemistry, Faculty of Medicine, University of Technology, Academia of Silesia in Katowice, Zabrze, Poland
| | - Beniamin Oskar Grabarek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academia of Silesia in Katowice, Zabrze, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Technology, Academia of Silesia in Katowice, Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| |
Collapse
|
21
|
Lei L, Ma B, Xu C, Liu H. Emerging tumor-on-chips with electrochemical biosensors. Trends Analyt Chem 2022; 153:116640. [DOI: 10.1016/j.trac.2022.116640] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Chen Z, Li B, Liu J, Li H, Li C, Xuan X, Li M. A label-free electrochemical immunosensor based on a gold-vertical graphene/TiO 2 nanotube electrode for CA125 detection in oxidation/reduction dual channels. Mikrochim Acta 2022; 189:257. [PMID: 35701556 DOI: 10.1007/s00604-022-05332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
A label-free immunosensor was constructed in oxidation and reduction dual channel mode for the trace detection of cancer antigen 125 (CA125) in serum. The gold-vertical graphene/titanium dioxide (Au-VG/TiO2) electrode was used as the signal-amplification platform, and cytosine and dopamine were used as probes in the oxidation and reduction channels, respectively. VG nanosheets were synthesized on a TiO2 nanotube array via chemical vapor deposition (CVD), and Au nanoparticles were deeply embedded on the surface and in the root of the VG nanosheets via electrodeposition. The CA125 antibody was then directly immobilized onto the electrode surface, benefitting from its natural affinity for Au nanoparticles. In the oxidation and reduction channels the CA125 antibody-Au-VG/TiO2 immune electrode had the same response concentration range (0.01-1000 mU∙mL-1) for the determination of the CA125 antigen. However, the oxidation channel had a higher sensitivity (14.82 μA•(log(mU•mL-1))-1 at a working potential of ~ 1.25 V vs. SCE), lower detection limit (0.0001 mU∙mL-1), higher stability, and lower performance deviation than the reduction channel. This immunosensor was successfully used for CA125 detection in human serum. The recoveries of spiked serum samples ranged from 99.8 ± 0.5 to 100 ± 0.4%. The study on the difference in the sensing performance between oxidation and reduction channels provides a preliminary experimental reference for exploring dual-channel synchronous detection immunosensors and verifying the accuracy of the assay based on dual-channel data, which will promote the development of reliable electrochemical immunosensor technology.
Collapse
Affiliation(s)
- Zehua Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Bingbing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Jinbiao Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
23
|
Saeed R, Feng H, Wang X, Xiaoshuan Z, Zetian F. Fish quality evaluation by sensor and machine learning: A mechanistic review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
25
|
Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Abou-Omar MN, Attia MS, Afify HG, Amin MA, Boukherroub R, Mohamed EH. Novel Optical Biosensor Based on a Nano-Gold Coated by Schiff Base Doped in Sol/Gel Matrix for Sensitive Screening of Oncomarker CA-125. ACS OMEGA 2021; 6:20812-20821. [PMID: 34423189 PMCID: PMC8374908 DOI: 10.1021/acsomega.1c01974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 05/07/2023]
Abstract
The urge for sensitive, facile, minimally invasive, and fast detection method of CA-125, a significant and crucial biomarker in ovarian malignancy, is currently substantial. This paper describes the detailed construction and characterization of a newly designed optical nano-biosensor to detect CA-125 accurately and sensitively. The fabricated sensor consists of a nano-gold thin film doped into a matrix of sol-gel, exhibiting a centered fluorescence band at 423 nm when excited at 340 nm. The quantification of CA-125 relies on its quenching ability of this fluorescence signal. The sensor was challenged to evaluate its sensitivity and specificity in detecting CA-125 present in samples collected from ovarian cancer diagnosed patients and compared to samples from healthy women as a control. Our findings revealed that the developed biosensor had a sensitivity of 97.35% and a specificity of 94.29%. Additionally, a wide linearity range over 2.0-127.0 U mL-1 for CA-125 was achieved with a detection limit of 1.45 U mL-1. Furthermore, the sensor could successfully discriminate samples between healthy and diseased people, which demonstrates its suitability in CA-125 assessment.
Collapse
Affiliation(s)
- Mona N. Abou-Omar
- Department
of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 13013, Egypt
| | - Mohamed S. Attia
- Chemistry
Department, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| | - Hisham G. Afify
- Department
of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 13013, Egypt
| | - Mohammed A. Amin
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Centrale Lille, Univ. Polytechnique
Hauts-de-France, UMR 8520 − IEMN, F-59000 Lille, France
| | - Ekram H. Mohamed
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837 El Sherouk City, Cairo, Egypt
| |
Collapse
|
27
|
Öndeş B, Evli S, Uygun M, Aktaş Uygun D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 2021; 191:113454. [PMID: 34171737 DOI: 10.1016/j.bios.2021.113454] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
In this presented study, a new boron nitride nanosheets modified label-free electrochemical immunosensors were prepared for early detection of cancer antigen 125 (CA125). To aim for, boron nitride (BN) nanosheets were synthesized by conventional sonication-assisted method and then characterized. BN nanosheets were used for the surface modification of the working electrode of the screen-printed electrode (SPE). Anti CA125 antibody was then directly immobilized onto the electrode surface due to its natural affinity towards BN nanosheets. Modified electrodes were blocked with BSA and finally protected with Nafion. The newly synthesized label-free immunosensor demonstrated good detection properties to CA125 with a linear range of 5-100 U and a detection limit of 1.18 U/mL. The developed immunosensor also showed excellent reproducibility, selectivity, and stability profiles. Additionally, this immunosensor was successfully used for the detection of CA125 in artificial human serum samples along with the interfering agents. Also, it is expected that the prepared immunosensor should carry the good potential for point-of-care diagnosis in real cases.
Collapse
Affiliation(s)
- Baha Öndeş
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Sinem Evli
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Murat Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey.
| |
Collapse
|
28
|
Aydın EB, Aydın M, Yuzer A, Ince M, Ocakoğlu K, Sezgintürk MK. Detection of Kallikrein-Related Peptidase 4 with a Label-free Electrochemical Impedance Biosensor Based on a Zinc(II) Phthalocyanine Tetracarboxylic Acid-Functionalized Disposable Indium Tin Oxide Electrode. ACS Biomater Sci Eng 2021; 7:1192-1201. [DOI: 10.1021/acsbiomaterials.0c01602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Abdulcelil Yuzer
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Mine Ince
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Kasim Ocakoğlu
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
29
|
Biswas S, Lan Q, Xie Y, Sun X, Wang Y. Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3295-3302. [PMID: 33400479 DOI: 10.1021/acsami.0c14946] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a nanocomposite of Zr-trimesic acid MOF (MOF-808) with carbon nanotube (CNT) was synthesized through an in situ formation of MOF-808 on the activated CNT. The synthesized materials were characterized by powder X-ray diffraction, transmission electron microscopy, X-ray photoluminescence spectroscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, and Raman spectroscopy. The protein compatible nature with high surface area and electrocatalytic ability of MOF-808 was utilized to construct an immunosensor for ultra low-level detection of the ovarian cancer biomarker, carbohydrate antigen 125 (CA 125). The mutual benefit of each constituent of the MOF-808/CNT composite was capable of producing highly enhanced electrochemical properties. A glassy carbon electrode modified with MOF-808/CNT was used as a platform to fabricate a label-free electrochemical immunosensor. The antibody binding sites of MOF-808/CNT were enriched by functionalization with streptavidin. The immunosensor exhibited two linear determination ranges of 0.001-0.1 and 0.1-30 ng·mL-1, and the calculated limit of detection was 0.5 pg·mL-1 (S/N 3). The immunosensor showed excellent reproducibility and selectivity. The patient serum sample analysis was cross-verified with the electrochemiluminescence method with a relative error of 105-110%.
Collapse
Affiliation(s)
- Sudip Biswas
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qingchun Lan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yao Xie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xin Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yang Wang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
30
|
Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2020; 266:118914. [PMID: 33340527 DOI: 10.1016/j.lfs.2020.118914] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
To overcome the drawbacks of conventional delivery, this review spotlights a number of nanoscale drug delivery systems, including nanoparticles, liposomes, nano micelles, branched dendrimers, nanocapsules, and nanostructured lipid formulations for the targeted therapy of ovarian cancer. These nanoformulations offer numerous advantages to promote therapeutic drug delivery such as nontoxicity, biocompatibility, good biodegradability, increased therapeutic impact than free drugs, and non-inflammatory effects. Importantly, the development of specific ligands functionalized nanoformulations enable preferential targeting of ovarian tumors and eventually amplify the therapeutic potential compared to nonfunctionalized counterparts. Ovarian cancer is typically identified by biomarker assessment such as CA125, HE4, Mucin 1, and prostatic. There is, nevertheless, a tremendous demand for less costly, faster, and compact medical tools, both for timely detection and ovarian cancer control. This paper explored multiple types of tumor marker-based on nanomaterial biosensors. Initially, we mention different forms of ovarian cancer biomarkers involving CA125, human epididymis protein 4 (HE4), mucin 1 (MUC1), and prostate. It is accompanied by a brief description of new nanotechnology methods for diagnosis. Nanobiosensors for evaluating ovarian cancer biomarkers can be categorized based on electrochemical, optical, paper-based, giant magnetoresistive, and lab-on-a-chip devices.
Collapse
|
31
|
Huang J, Huang C, Zhong W, Lin Y. A magneto-controlled microfluidic device for voltammetric immunoassay of carbohydrate antigen-125 with silver-polypyrrole nanotags. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4211-4219. [PMID: 39825512 DOI: 10.1039/d0ay01225d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids. Compared to silver nanoparticles (AgNPs) alone, improved analytical properties were acquired with Ag-PPy nanohybrids. Under the optimal conditions, the currents depended on the concentrations of target CA-125, and exhibited a linear relationship within the ranges of 0.001-300 U mL-1 at a detection limit of 7.6 mU mL-1. For the determination of CA-125, the magnetic immunoassay had acceptable reproducibility, high specificity against other biomarkers and long-term storage stability. Moreover, good accuracy was obtained for the CA-125 detection in human serum samples with the developed voltammetric immunoassay relative to commercial enzyme-linked immunosorbent assay (ELISA). Importantly, the magneto-controlled immunosensing interface could be repeatedly used via detaching/attaching the external magnet.
Collapse
Affiliation(s)
- Jiyi Huang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou 350000, Fujian, China.
- The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
| | - Chaoqun Huang
- The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
| | - Weimin Zhong
- The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
| |
Collapse
|
32
|
Akpe V, Shiddiky MJA, Kim TH, Brown CL, Yamauchi Y, Cock IE. Cancer biomarker profiling using nanozyme containing iron oxide loaded with gold particles. J R Soc Interface 2020; 17:20200180. [PMID: 32574540 DOI: 10.1098/rsif.2020.0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanozymes are nanomaterials with intrinsic magnetism and superparamagnetic properties. In the presence of an external magnet, nanozyme particles aggregate and redisperse without a foreign attraction. We evaluated the performances of nanozyme by changing the biosensing platforms and substituting other biological variants for a complete cancer assay detection. We investigated the expression of morphological variants in the transmission of signals using an electrochemical method. The signal responses, including signal enhancement with the nanozyme (Au-Fe2O3), showed a wide capturing range (greater than 80%, from 102 to 105 cells ml-1 in phosphate-buffered saline buffer, pH 7.4). The platform showed a fast response time within a dynamic range of 10-105 cells ml-1 for the investigated T47D cancer cell line. We also obtained higher responses for anti-HER2 (human epidermal receptor 2)/streptavidin interface as the biosensing electrode in the presence of T47D cancer cells. The positive assay produced a sixfold increase in current output compared to the negative target or negative biological variant. We calculated the limit of detection at 0.4 U ml-1, and of quantitation at 4 U ml-1 (units per millilitre). However, blood volume amounts in clinical settings may constrain diagnosis and increase detection limit value significantly.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia.,Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia.,Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia.,Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia.,Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ian E Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia.,Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
33
|
Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. J Pharm Biomed Anal 2020; 186:113265. [PMID: 32283481 DOI: 10.1016/j.jpba.2020.113265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Drug resistance is worldwide health care crisis which decrease drug efficacy and developing toxicities. Effective resistance detection techniques could alleviate treatment cost and mortality associated with this crisis. In this review, the conventional and modern analysis methods for monitoring of drug resistance are presented. Also, various types of emerging rapid and sensitive techniques including electrochemical, electrical, optical and nano-based methods for the screening of drug resistance were discussed. Applications of various methods for the sensitive and rapid detection of drug resistance are investigated. The review outlines existing key issues in the determination which must be overcome before any of these techniques becomes a feasible method for the rapid detection of drug resistance. In this review, the roles of nanomaterials on development of novel methods for the monitoring of drug resistance were presented. Also, limitations and challenges of conventional and modern methods were discussed.
Collapse
|
34
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
35
|
Sha R, Badhulika S. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Mikrochim Acta 2020; 187:181. [PMID: 32076837 DOI: 10.1007/s00604-020-4152-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is commonly diagnosed via determination of biomarkers like CA125, Mucin 1, HE4, and prostasin that can be present in the blood. However, there is a substantial need for less expensive, simpler, and portable diagnostic tools, both for timely diagnosis and management of ovarian cancer. This review (with 101 refs.) discusses various kinds of nanomaterial-based biosensors for tumor markers. Following an introduction into the field, a first section covers different kinds of biomarkers for ovarian cancer including CA125 (MUC16), mucin 1 (MUC1), human epididymis protein 4 (HE4), and prostasin. This is followed by a short overview on conventional diagnostic approaches. A large section is then presented on biosensors for determination of ovarian cancer, with subsections on optical biosensors (fluorimetric, colorimetric, surface plasmon resonance, chemiluminescence, electrochemiluminescence), on electrochemical sensors, molecularly imprinted sensors, paper-based biosensors, microfluidic (lab-on-a-chip) assays, chemiresistive and field effect transistor-based sensors, and giant magnetoresistive sensors. Tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical abstract Schematic representation of the review covering the advancements in the fabrication of various nanomaterial based biosensors for diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Rinky Sha
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
36
|
Xie S, Li B, Lyu P, Kwok HF, Ge L, Wu Q. A new voltammetric immunosensing platform for prostate-specific antigen based on the Cu(ii)-pyrophosphate ion chelation reaction. NEW J CHEM 2020. [DOI: 10.1039/c9nj05514b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical immunoassay was designed to detect prostate-specific antigenviapyrophosphatase-hydrolysed Cu(ii)-coordinated pyrophosphate ion with the capture of the releasing Cu(ii) ion.
Collapse
Affiliation(s)
- Shuping Xie
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing
- P. R. China
| | - Bin Li
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing
- P. R. China
| | - Peng Lyu
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou
- P. R. China
| | - Hang Fai Kwok
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Taipa
- Macau SAR
| | - Lilin Ge
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing
- P. R. China
| | - Qinan Wu
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing
- P. R. China
| |
Collapse
|
37
|
Mobed A, Hasanzadeh M, Ahmadalipour A, Fakhari A. Recent advances in the biosensing of neurotransmitters: material and method overviews towards the biomedical analysis of psychiatric disorders. ANALYTICAL METHODS 2020; 12:557-575. [DOI: 10.1039/c9ay02390a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Neurotransmitters are the most important messengers of the nervous system, and any changes in their balances and activities can cause serious neurological, psychiatric and cognitive disorders such as schizophrenia, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ahmad Mobed
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| |
Collapse
|
38
|
Wang J, Zhang S, Dai H, Zheng H, Hong Z, Lin Y. Dual-readout immunosensor constructed based on brilliant photoelectrochemical and photothermal effect of polymer dots for sensitive detection of sialic acid. Biosens Bioelectron 2019; 142:111567. [DOI: 10.1016/j.bios.2019.111567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023]
|
39
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
A biosensor for determination of the circulating biomarker CA125/MUC16 by Surface Plasmon Resonance Imaging. Talanta 2019; 206:120187. [PMID: 31514860 DOI: 10.1016/j.talanta.2019.120187] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022]
Abstract
CA125/MUC16 is an ovarian tumor cell marker widely used as a biomarker in epithelial ovarian carcinoma. CA125/MUC16 is also used for evaluation of the ROMA (Risk of Ovarian Malignancy Algorithm) value. In this work, a Surface Plasmon Resonance Imaging (SPRI) biosensor for circulating CA125/MUC16 has been developed. The anti-MUC16 antibody was attached to a gold chip via a cysteamine linker. The EDS/NHS protocol was used for the covalent attachment of the antibody. The developed biosensor is specific for CA125/MUC16, and exhibits good recovery and acceptable precision. Its linear response range (2.2-150 U/ml) is well suited to determination of the marker in the blood serum of a healthy control group and, after appropriate dilution, of patients with ovarian cancer. CA125/MUC16 was determined in two series of real samples: blood serum from patients with ovarian cancer and endometrial cysts. The method was validated by parallel determination of the samples using the chemiluminescent Architect i2000 method.
Collapse
|
42
|
Wang M, Hu M, Li Z, He L, Song Y, Jia Q, Zhang Z, Du M. Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens Bioelectron 2019; 142:111536. [PMID: 31362204 DOI: 10.1016/j.bios.2019.111536] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
Abstract
Combining different metal-organic frameworks (MOFs) into a conjugate material can integrate the properties of each MOF component and further lead to emergent properties from the synergistic heterostructured units. In this work, two kinds of bimetallic TbFe-MOFs have been designed by MOF-on-MOF strategy and utilized as a platform for anchoring carbohydrate antigen 125 (CA125) aptamer to detect CA125 and living michigan cancer foundation-7 (MCF-7) cells. Although the integrated MOF-on-MOF architectures show similar chemical and structural features to that of the top layer, the Fe-MOF-on-Tb-MOF and Tb-MOF-on-Fe-MOF have different surface nanostructures to their parent MOFs. The developed aptasensor based on Tb-MOF-on-Fe-MOF displays higher stability of the formed G-quadruplex between aptamer and CA125 than that based on Fe-MOF-on-Tb-MOF, owing to stronger immobilization behavior of the aptamer for the Tb-MOF-on-Fe-MOF composite. The developed aptasensor provides an extremely low detection limit of 58 μU·mL-1 towards CA125 within a wide linear range from 100 μU·mL-1 to 200 U·mL-1, which is significantly lower than those of all reported sensors. This aptasensor also has high selectivity, good stability, acceptable reproducibility, and excellent applicability in human serum. Moreover, the Tb-MOF-on-Fe-MOF nanoarchitecture demonstrates superior biocompatibility and good endocytosis. As a result, the developed aptasensor illustrates high sensitivity for detection of MCF-7 cells with an extremely low detection limit of 19 cell·mL-1. Therefore, the proposed aptasensor based on Tb-MOF-on-Fe-MOF exhibits great potentials for early diagnosis of tumors.
Collapse
Affiliation(s)
- Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Zhenzhen Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| | - Miao Du
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| |
Collapse
|
43
|
Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol 2019; 138:744-754. [PMID: 31326512 DOI: 10.1016/j.ijbiomac.2019.07.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is the first and most important cause of malignancy death in women. Mucin 16 or MUC16 protein also known as carcinoma antigen 125 (CA 125) is the most commonly used glycoprotein for early stage diagnosis of ovarian cancer. In this work, a novel paper-based bio-device through hand writing of Ag/RGO (silver nanoparticles/reduced graphene oxide) nano-ink on the flexible paper substrate using pen-on-paper technology was developed. The prepared interface was used to the recognition of CA 125 protein in human biofluid. For this purpose, Ag/rGO nano-ink was synthesized by deposition of Ag nanoparticles onto graphene oxide sheets and the reduction of graphene oxide to rGO simultaneously. Conductivity and resistance of conductive lines were studied after drawing on photographic paper. Subsequently, to prepare a new and unique immuno-device, paper electrode modified by cysteamine caped gold nanoparticles (CysA/Au NPs) using electrochemical techniques. CysA is bonded by sulfur atoms with Au (CysA/Au NPs), and from the amine group with hydroxyl and carboxyl groups of Ag/RGO nano-ink deposited on the surface of paper-based electrodes (CysA/Au NPs/Ag-rGO). Then, anti-CA 125 antibody was immobilized on the electrode surface through Au NPs and CA 125 positively charged amine groups interaction. Atomic force microscopy, Transmission electron microscopy, Field emission scanning electron microscopy, and dynamic light scattering, were performed to identify the engineered immunosensor. Using chronoamperometry technique and under the optimized conditions, the low limit of quantitation (LLOQ) for the proposed immunoassay was recorded as 0.78 U/ml, which this evaluation was performed at highly linear range of 0.78-400 U/ml. The high sensitivity of the electrochemical immunosensor device is indicative of the ability of this immuno-device to detect early stages ovarian cancer.
Collapse
Affiliation(s)
- Farnas Bahavarnia
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Hassanpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Shadjou
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| | - Ahmad Hassanzadeh
- Department of Processing, Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Str. 40, 09599 Freiberg, Germany
| |
Collapse
|
44
|
Sawhney MA, Conlan RS. POISED-5, a portable on-board electrochemical impedance spectroscopy biomarker analysis device. Biomed Microdevices 2019; 21:70. [PMID: 31273464 PMCID: PMC6609592 DOI: 10.1007/s10544-019-0406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Point-of-care medical devices offer the potential for rapid biomarker detection and reporting of medical conditions, thereby bypassing the requirements for offline clinical laboratory facilities in many cases. Label-free electrochemical techniques are suitable for use in handheld diagnostic devices due the inherent electronic detection modality and low requirement for processing reagents. While electrochemical impedance sensing is widely used in tissue analysis such as body composition measurement, its use in point-of-care patient testing is yet to be widely adopted. Here we have considered a number of issues currently limiting the translation of electrochemical impedance sensing into clinical biosensor devices. Specifically, we have addressed the current requirement for these sensors to be connected to an external processor by applying a minimum number of frequencies required for optimized biomarker detection, and subsequently delivering analytics within the measurement device. The POISED-5 device was evaluated using a sensor for the ovarian cancer biomarker cancer antigen 125 (CA125), demonstrating performance comparable to standard laboratory equipment, with direct interpretation of response signal amplitude substituting traditional impedance component calculation and model fitting.
Collapse
Affiliation(s)
- M. Anne Sawhney
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP UK
- Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - R. S. Conlan
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP UK
- Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| |
Collapse
|
45
|
Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Immunosensing of breast cancer tumor protein CA 15-3 (carbohydrate antigen 15.3) using a novel nano-bioink: A new platform for screening of proteins in human biofluids by pen-on-paper technology. Int J Biol Macromol 2019; 132:748-758. [DOI: 10.1016/j.ijbiomac.2019.03.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
46
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
47
|
Jafari M, Hasanzadeh M, Solhi E, Hassanpour S, Shadjou N, Mokhtarzadeh A, Jouyban A, Mahboob S. Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian cancer and efficient management. Int J Biol Macromol 2019; 126:1255-1265. [DOI: 10.1016/j.ijbiomac.2019.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 01/12/2023]
|
48
|
Employing AgNPs doped amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers for target induced strand displacement-based electrochemical aptasensing of CA125 in ovarian cancer patients. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:679-687. [PMID: 30678956 DOI: 10.1016/j.msec.2018.12.108] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 11/30/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
Abstract
In this study, a high-performance biosensing nanoplatform based on amidoxime-modified polyacrylonitrile nanofibers decorated with Ag nanoparticles (AgNPs-PAN-oxime NFs) is described. The AgNPs-PAN-oxime NFs were prepared by the combination of electrospinning technique and chemical modification of nitrile group in the PAN. The proposed signal amplifiying nanoplatform was applied in the fabrication of an electrochemical aptasensor for the sensitive detection of CA 125 based on aptamer-cDNA duplex and target induced strand displacement recognition mechanism. The aptasensing interface offers high sensitivity and selectivity for detection of tumor marker due to inherent advantages such as high specific surface area of NFs, good conductivity by doping AgNPs into the polymer NFs and especially the ideal selectivity of anti CA 125 aptamer to its target. The electrochemical aptasensor revealed a wide dynamic linear range (DLR) from 0.01 to 350 U mL-1 with a correlation coefficient of 0.991 and limit of detection (LOD) of 0.0042 U mL-1. Additionally, the designed aptasensor showed acceptable selectivity, reproducibility, repeatability and stability. The satisfactory results for determination of CA 125 in serum samples compared to ELISA method (p-value > 0.05) indicated the potential application of aptasensor in clinical monitoring of tumor biomarker for early diagnosis and management of ovarian cancer.
Collapse
|
49
|
Hasanzadeh M, Mohammadzadeh A, Jafari M, Habibi B. Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB‑chitosan) doped with silver nanoparticles. Int J Biol Macromol 2018; 120:2048-2064. [DOI: 10.1016/j.ijbiomac.2018.09.208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
|
50
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|