1
|
Tang J, Zhuo D, Chen J, Xiao J, Zeng R, Tan C, Xiong X, Zou Z. Heating and ultraviolet irradiation: Gas pressure meter-based analytical system for on-site and rapid monitoring of permanganate index (COD Mn). WATER RESEARCH 2024; 268:122758. [PMID: 39531796 DOI: 10.1016/j.watres.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Permanganate index (CODMn) is one of the important indicators of surface water quality measurement. Herein, a portable analytical system was developed for on-site and rapid analysis of CODMn, organic substances in water were oxidized and transformed into gases, so that CODMn concentration was converted into a change of gas pressure signal, the pressure signal change was further detected by a gas pressure meter. Heating method and ultraviolet (UV) irradiation method were used as assisting technologies for oxidization of organic substances by acidic KMnO4, a linear range of 2-150 mg l-1 and a detectable limit of 2 mg l-1 were obtained. Those methods were further applied to the detection of CODMn in various water samples (lake waters and domestic sewage) and certified reference water samples (BWZ 6974-2016C and BWZ 7617-2016), with recoveries of 89-111 %. Among them, a portable analytical system based on UV irradiation gas pressure meter was further established and used for the analysis of CODMn in field. It is a promising analytical system/device for CODMn monitoring in field, offering advantages of low-cost, easy-operation, portability and rapidness.
Collapse
Affiliation(s)
- Jiayuan Tang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Dali Zhuo
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jihong Chen
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jing Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Ronghua Zeng
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Zhirong Zou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China.
| |
Collapse
|
2
|
Chen J, Yao Q, Dong X, Tang J, Zhang S, Ji Y, Zou Z. Pb-based metal organic framework as substrate: Chemical vapor generation-visual/smartphone colorimetric analytical system for sensitive and selective detection of sulfide ion in water and beers. Food Chem X 2024; 23:101767. [PMID: 39280216 PMCID: PMC11402409 DOI: 10.1016/j.fochx.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
A visual/smartphone colorimetric system was developed for the sensitive and selective detection of sulfide ion (S2-) using chemical vapor generation (CVG) as a gaseous sampling technique. S2- in samples were converted into H2S after the addition of H2SO4, which separated from the solution during CVG process, ensuring high efficiency of vapor generation (sensitivity) and eliminated interferences (selectivity). The H2S was subsequently reacted with Pb-BTC and PbS was thus formed, causing the test paper turned to black. It was utilized for the detection of S2- by visual/smartphone colorimetric system. Detectable limits of 0.05 μg/mL and 0.2 μg/mL were obtained under smartphone mode and visual mode, respectively. Furthermore, this colorimetric system was successfully used for the analysis of S2- in several beer samples and water samples, with recoveries ranging 97 %-111 %. This system represents a potential miniaturized, easy used and high-effective method for rapid and on-site detection of S2-.
Collapse
Affiliation(s)
- Jihong Chen
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Qian Yao
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-cost Rural Environmental Treatment Technology, Special Polymer Materials for Automobile Key Laboratory of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou, Sichuan 635000, China
| | - Xiaoyu Dong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jiayuan Tang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Shu Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yuyao Ji
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zhirong Zou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-cost Rural Environmental Treatment Technology, Special Polymer Materials for Automobile Key Laboratory of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou, Sichuan 635000, China
| |
Collapse
|
3
|
de Brito JKS, Campos VM, Oliveira AHB, Lopes GS. Development of a green and low-cost method to determine mercury content in sediments affected by oil spill on the Brazilian coast. MARINE POLLUTION BULLETIN 2024; 202:116346. [PMID: 38604078 DOI: 10.1016/j.marpolbul.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Tons of crude oil were found on the Brazilian coast in 2019, and studies assessing its chemical composition are still scarce. This study aimed to develop a new and simple technique of cold vapor generation using infrared irradiation coupled with atomic absorption spectrometry to determine mercury content in sediments contaminated by crude oil. Experimental conditions were evaluated, including formic acid concentration, reactor temperature, and carrier gas flow rate. The accuracy of the method was validated by comparison with mercury contents in a certified reference material (PACS-2). The detection limit was found to be 0.44 μg kg-1. The developed method was applied to determine the total mercury content in marine sediment samples collected from beaches in Ceará State. Mercury concentrations ranged from 0.41 to 0.95 mg kg-1. The proposed method is efficient, simple, low-cost, and adequate for its purpose.
Collapse
Affiliation(s)
- Jane Kelly Sousa de Brito
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - Victor Marques Campos
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - André Henrique Barbosa Oliveira
- Laboratório de Estudos Ambientais (LEA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - Gisele Simone Lopes
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Xu F, Lin T, Luo J, Hou X. Selenium in Photochemical Vapor Generation: Mechanism Study and Potential Nonchromatographic Speciation Analysis. Anal Chem 2024; 96:325-330. [PMID: 38154143 DOI: 10.1021/acs.analchem.3c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The mechanism of selenium in the UV photochemical vapor generation (PVG) process was investigated by the use of multiple analytical methods. It was found that the UV-induced photooxidation trapping of the generated volatile SeH2 should be responsible for the previous opinion of relative inertness of Se(VI) in PVG with formic acid. Furthermore, the formation of Se(IV) was found during the PVG process, and the comproportionation of Se(IV) with SeH2 and the photooxidation of Se(IV) into Se(VI) were investigated. Then, a preliminary model was proposed for the PVG process of Se(VI) and Se(IV) with low-molecular-weight organic acids. Then, a novel, simple, and green photocontrolled method without any photocatalyst was thus proposed for the nonchromatographic speciation analysis of Se(IV) and Se(VI), with a limit of detection of 0.2 and 5 ng/mL, respectively.
Collapse
Affiliation(s)
- Fujian Xu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Tao Lin
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jin Luo
- Analytical & Service Center of Sichuan Province, Chengdu, Sichuan 610023, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Green Chemistry & Technology of MOE and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
5
|
He Y, Hu J, Zou W, Chen H, Jiang X, Hou X. Chemical vapor generation of tungsten for atomic spectrometric determination: Homogeneous sensitizer and mechanism study. Anal Chim Acta 2023; 1278:341746. [PMID: 37709475 DOI: 10.1016/j.aca.2023.341746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Inductively coupled plasma-mass spectrometry (ICP-MS) is one of the most powerful instrumental techniques for the determination of tungsten for its low detection limit and wide linear range, while it remains challenging since the analytical performance can be affected by complicated sample matrix. Chemical vapor generation (CVG) harbors the potential to be an alternative to conventional solution nebulization for sample introduction to reduce matrix effect. However, the CVG of tungsten was low in efficiency. It is clear that green and homogeneous enhancement for CVG of tungsten is desired and the mechanism is worth in-depth investigation. RESULTS Two green and homogeneous enhancement systems for CVG of tungsten were studied, including photochemical vapor generation (PVG) and hydride generation (HG) with sensitizers, Fe3+ and DDTC, respectively. Under optimal conditions, the limits of detection (LODs) were 0.02 μg L-1 for the PVG and 0.003 μg L-1 for the HG, respectively. For PVG, the Fe3+/Fe2+ cycling, free radical species, gaseous product, and the chemical speciation evolution of W in the PVG process were studied in detail. Photo-Fenton effect, generated reductive radical ·CO2-, gaseous product Fe(CO)5, and the mixed valence of W5+/W6+ in the PVG process were found to be crucial for the enhancement. As for HG, the complexation between W(VI) and DDTC might be conducive to the enhanced HG efficiency. SIGNIFICANCE This work not only in-depth expands the element scope of CVG, but also investigates the enhancement mechanisms experimentally, which might render a deep insight into the CVG processes and foreshadow new guidelines for screening green and efficient homogeneous sensitizers for CVGs of more elements in the future.
Collapse
Affiliation(s)
- Yujing He
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jing Hu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Wei Zou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hanjiao Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoming Jiang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
6
|
Dong L, Wang W, Ning Y, Deng X, Gao Y. Detection of trace antimony by vanadium (IV) ion assisted photochemical vapor generation with inductively coupled plasma mass spectrometry measurement. Anal Chim Acta 2023; 1251:341006. [PMID: 36925311 DOI: 10.1016/j.aca.2023.341006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
In this work, a method for sensitive detection of trace antimony (Sb) was developed by inductively coupled plasma mass spectrometry (ICP MS) coupled with photochemical vapor generation (PVG). V(IV) ions were used as new "sensitizers" for improving the PVG efficiency of Sb. Factors influenced the PVG and the detection of Sb by ICP MS were investigated, including the type and concentration of low molecular weight organic acids, the UV irradiation time, the concentration of V(IV) ions, the air-liquid interface, the flow rate of Ar carrier gas, and interferences from co-existing ions. It was found that efficient reduction of Sb was obtained in the medium of 10% (v/v) formic acid (FA), 10% (v/v) acetic acid (AA), and 80 mg L-1 of V(IV) with 100 s UV irradiation. Under the selected conditions, there was no significant difference in analytical sensitivity between Sb(III) and Sb(V). The limit of detection (LOD, 3σ) was 4.7 ng L-1 for Sb with ICP MS measurement. Compared to traditional direct solution nebulization, the analytical sensitivity obtained in this work was enhanced about 19-fold. Relative standard deviations (RSDs, n = 7) were 1.9% and 2.3% for replicate measurement of 0.5 μg L-1 Sb(III) and Sb(V) standard solutions, respectively. The proposed method was applied for the determination of trace Sb in water samples and two certified reference materials (CRMs) of sediments with satisfactory results. Moreover, the generated volatile species of Sb in this work was found to be (CH3)3Sb.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Weigao Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yongyan Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Xiuqin Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Ying Gao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
7
|
Solidified floating organic drop microextraction in tandem with syringe membrane miro-solid phase extraction for sequential detection of thallium (III) and thallium (I) by graphite furnace atomic absorption spectrometry. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Yu Y, Hu J, Zhao X, Liu J, Gao Y. Photochemical vapor generation for germanium: synergistic effect from cobalt/chloride ions and air-liquid interfaces. Anal Bioanal Chem 2022; 414:5709-5717. [PMID: 35604423 DOI: 10.1007/s00216-022-04126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Photochemical vapor generation (PVG) of germanium (Ge) was first reported in this work. The synergistic effect from cobalt/chloride ions and air-liquid interfaces was found for the PVG of Ge. No obvious signal response was observed from the standard solution of Ge in 10% (v/v) formic acids (FAs) under UV irradiation. The addition of 300 mg L-1 of Co2+ and 30 mmol L-1 of Cl- resulted in enhanced photochemical reduction for Ge, and the introduction of air-liquid interfaces proceeding and succeeding the sample solution caused another 4.6 folds of enhancement in signal response of Ge. Under the selected condition, the limit of detection (LOD, 3σ, n = 11) was obtained to be 0.008 ng mL-1 with inductively coupled plasma mass spectrometry (ICP MS) measurement. A good precision, expressed as a relative standard deviation (RSD, n = 7) of 2.0%, was found from replicated measurements of 2 ng mL-1 of Ge. The generation efficiency was found to be no better than 9 ± 2%. The PVG mechanism of Ge was investigated in this work. The new finding is useful for understanding the principle of PVG, and further exploring the analytical and environmental application of PVG.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jiaju Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Xinyi Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jiangchuan Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Ying Gao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
9
|
Hu J, Li C, Zhen Y, Chen H, He J, Hou X. Current advances of chemical vapor generation in non-tetrahydroborate media for analytical atomic spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Ultrasensitive determination of mercury by ICP-OES coupled with a vapor generation approach based on solution cathode glow discharge. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Ferreira SL, Cerda V, Portugal LA, Gonçalves LB, Santos Neto JH, Pereira Junior JB, Palacio E. State of the art of the methods proposed for selenium speciation analysis by CVG-AFS. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Jeníková E, Nováková E, Hraníček J, Musil S. Ultra-sensitive speciation analysis of tellurium by manganese and iron assisted photochemical vapor generation coupled to ICP-MS/MS. Anal Chim Acta 2022; 1201:339634. [DOI: 10.1016/j.aca.2022.339634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
13
|
Dong L, Chen H, Ning Y, He Y, Yu Y, Gao Y. Vanadium Species-Assisted Photochemical Vapor Generation for Direct Detection of Trace Tellurium with Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2022; 94:4770-4778. [PMID: 35274934 DOI: 10.1021/acs.analchem.1c05525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical vapor generation (PVG) is emerging as an alternative sample introduction method in the field of atomic spectrometry. The addition of transition metals can largely improve the PVG yields of elements with the enhancement of 1.4 to 30 000-fold, based on previous reports. In this work, the use of vanadium species as novel "sensitizers" in PVG was first reported, tellurium (Te) was selected as the target. The efficient photochemical reduction of Te was observed in the presence of 9% (v/v) formic acid (FA), 20%(v/v) acetic acid (AA), and 40 mg L-1 of V(V) (existing as VO3-) with the conversion efficiency of 87 ± 3%. Under the selected conditions, there was no significant difference in analytical sensitivity between Te(IV) and Te(VI), making the direct detection of total Te possible. The limit of detection (LOD, 3σ) was 2.9 ng L-1 for Te with inductively coupled plasma mass spectrometry (ICP MS) measurement. Good precisions of 2.3% and 2.2% (relative standard deviations, RSD) for seven times replicate measurement of 0.5 μg L-1 Te(IV) and Te(VI) standard solutions were obtained. The sensitivity was enhanced about 55-fold compared to that using traditional direct solution nebulization. The method was applied for the determination of trace Te in three water samples and two certified reference materials of sediment with satisfactory results. The possible mechanism was investigated. The generation of volatile vanadium along with (CH3)2Te was found in PVG for the first time. The new findings in this work will be helpful for exploration of efficient "sensitizers" in PVG and further expanding the scope of elements amenable to PVG as well.
Collapse
Affiliation(s)
- Liang Dong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hanjiao Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yongyan Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yaowen He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ying Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ying Gao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| |
Collapse
|
14
|
Luo J, Hu Z, Xu F, Geng D, Tang X. MIL-125-NH2 catalyzed photochemical vapor generation coupled with HPLC-ICPMS for speciation analysis of selenium. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zeng W, Hu Z, Luo J, Hou X, Jiang X. Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS. Anal Chim Acta 2022; 1191:339361. [PMID: 35033238 DOI: 10.1016/j.aca.2021.339361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
A method for highly sensitive determination of trace antimony was proposed by using cobalt ion enhanced photochemical vapor generation (PCVG) for sample introduction into atomic fluorescence spectrometry (AFS) or inductively coupled plasma-mass spectrometry (ICP-MS) for elemental detection. During the PCVG process, the sample introduction efficiency of Sb could be significantly improved by addition of 5 mg L-1 Co2+ in the mixed acid medium of 10% (v/v) formic acid and 20% (v/v) acetic acid, with a final 12-fold and 133-fold enhancement of AFS and ICP-MS intensity, respectively. The experimental conditions including enhancement ions, acid medium, UV irradiation, working gas as well as potential interference were investigated in detail. Under the optimal experimental conditions, the limit of detection (LOD) for Sb was 0.05 and 0.001 μg L-1 by using AFS and ICP-MS determination, respectively. The method was successfully used for analysis of real water samples, with satisfactory recoveries of 92-94%.
Collapse
Affiliation(s)
- Wen Zeng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zenghui Hu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jin Luo
- Analytical & Service Center of Sichuan Province, Chengdu, Sichuan, 610023, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoming Jiang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
16
|
Borowska M, Jankowski K. Photochemical vapor generation combined with headspace solid phase microextraction for determining mercury species by microwave-induced plasma optical emission spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Musil S, Vyhnanovský J, Sturgeon RE. Ultrasensitive Detection of Ruthenium by Coupling Cobalt and Cadmium Ion-Assisted Photochemical Vapor Generation to Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2021; 93:16543-16551. [PMID: 34846841 DOI: 10.1021/acs.analchem.1c03739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An extremely sensitive methodology for the determination of Ru was developed by coupling photochemical vapor generation (PVG) analyte introduction with inductively coupled plasma mass spectrometry (ICPMS). PVG was undertaken with a thin-film flow-through photoreactor in a medium comprising 8 M formic acid in the presence of 10 mg L-1 Co2+ and 25 mg L-1 Cd2+. The volatile product (presumably ruthenium pentacarbonyl) was generated in a flow injection mode, yielding an overall efficiency of 29% at a sample flow rate of 1.4 mL min-1. The presence of both Co2+ and Cd2+ sensitizers enhanced PVG efficiency by 3,200-fold, permitting a 31 s irradiation time. Although enhanced efficiency (≈40%) could be obtained with increased Co2+ concentration, this was not suitable for routine use due to co-generation of cobalt carbonyl. Excellent repeatability (<2.5%) and reproducibility (4%) were achieved for 200 ng L-1 Ru3+. Limits of detection ranged from 20 to 42 pg L-1 (10-21 fg absolute) depending on the measured isotope and operational mode of the ICPMS reaction/collision cell. Interferences from inorganic acids and their anions, several transition metals, and metalloids were investigated. Practical application of the methodology was demonstrated by the analysis of seven water samples of various matrix complexities (well water, spring water, contaminated water, and seawater).
Collapse
Affiliation(s)
- Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Jaromír Vyhnanovský
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.,Faculty of Science, Department of Analytical Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Ralph E Sturgeon
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
18
|
Ultrasensitive determination and non-chromatographic speciation of inorganic arsenic in foods and water by photochemical vapor generation-ICPMS using CdS/MIL-100(Fe) as adsorbent and photocatalyst. Food Chem 2021; 375:131841. [PMID: 34923400 DOI: 10.1016/j.foodchem.2021.131841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/20/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
The determination of inorganic arsenic species in real samples can be particularly challenging due to their trace levels and the interferences arising from sample matrix. Normally, the speciation analysis necessitates chromatographic separation. Herein, we report a novel method for the ultrasensitive detection and non-chromatographic speciation of inorganic arsenic by inductively coupled plasma mass spectrometry (ICP-MS), utilizing CdS/MIL-100(Fe) composites as an adsorbent and photocatalyst. The synthesized CdS/MIL-100(Fe) could completely adsorb As(V) and As(III) within 5 and 105 min, respectively. Following filtration and re-suspension in formic acid, the adsorbed As(III)/As(V) were reduced to arsine (AsH3) under UV irradiation and swept to ICP-MS for detection. The limits of detection were found to be 1.7 ng L-1 (without preconcentration) and 0.11 ng L-1 (after 20-fold preconcentration). The method was successfully applied to the determination of trace inorganic arsenic in various food and water samples.
Collapse
|
19
|
Bao H, Peng X, Song Z, Ning Y, Yu Y, Gao Y. Natural mineral assisted photochemical vapor generation for determination of trace inorganic arsenic by inductively coupled plasma mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Liu Y, Zou J, Luo B, Yu H, Zhao Z, Xia H. Ivy extract-assisted photochemical vapor generation for sensitive determination of mercury by atomic fluorescence spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
An accurate analytical method for the determination of antimony in tea and tap water samples: photochemical vapor generation-atom trapping prior to FAAS measurement. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Büyükpınar Ç, San N, Komesli OT, Bakırdere S. Combination of an Efficient Photochemical Vapor Generation System and Flame Atomic Absorption Spectrophotometry for Trace Nickel Determination in Wastewater Samples. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1805749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Çağdaş Büyükpınar
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Nevim San
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Okan T. Komesli
- Department of Environmental Engineering, Atatürk University, Erzurum, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara, Turkey
| |
Collapse
|
23
|
Vyhnanovský J, Yildiz D, Štádlerová B, Musil S. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Liu S, Xue XX, Yu YL, Wang JH. "Insert-and-Go" Activated Carbon Electrode Tip for Heavy Metal Capture and In Situ Analysis by Microplasma Optical Emission Spectrometry. Anal Chem 2021; 93:6262-6269. [PMID: 33825451 DOI: 10.1021/acs.analchem.1c00819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The miniaturized optical emission spectrometry (OES) devices based on various microplasma excitation sources provide reliable tools for on-site analysis of heavy metal pollution, while the development of convenient and efficient sample introduction approaches is essential to improve their performances for field analysis. Herein, a small activated carbon electrode tip is employed as solid support to preconcentrate heavy metals in water and subsequently served as an inner electrode of the coaxial dielectric barrier discharge (DBD) to generate microplasma. In this case, heavy metal analytes in water are first adsorbed on the surface of the activated carbon electrode tip via a simple liquid-solid phase transformation during the sample loading process, and then, fast released to produce OES during the DBD microplasma excitation process. The corresponding OES signals are synchronously recorded by a charge-coupled device (CCD) spectrometer for quantitative analysis. This activated carbon electrode tip provides a new tool for sample introduction into the DBD microplasma and facilitates "insert-and-go" in subsequent DBD-OES analysis. With a multiplexed activated carbon electrode tip array, a batch of water samples (50 mL) can be loaded in parallel within 5 min. After drying the activated carbon electrode tips for 5 min, the DBD-OES analysis is maintained at a rate of 6 s per sample. Under the optimized conditions, the detection limits of 0.03 and 0.6 μg L-1 are obtained for Cd and Pb, respectively. The accuracy and practicability of the present DBD-OES system have been verified by measuring several certified reference materials and real water samples. This analytical strategy not only simplifies the sample pretreatment steps but also significantly improves the sensitivity of the DBD-OES system for heavy metal detection. By virtue of the advantages of high sensitivity, fast analysis speed, simple operation, low cost, and favorable portability, the upgraded DBD-OES system provides a more powerful tool for on-site analysis of heavy metal pollution.
Collapse
Affiliation(s)
- Shuang Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Xin-Xin Xue
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| |
Collapse
|
25
|
Yu Y, Chen H, Zhao Q, Mou Q, Dong L, Wang R, Shi Z, Gao Y. Impact of Gas-Liquid Interface on Photochemical Vapor Generation. Anal Chem 2021; 93:3343-3352. [PMID: 33566589 DOI: 10.1021/acs.analchem.9b05634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interfacial effect has attracted increasing interest as the inherent asymmetric environment of a gas-liquid interface leads to different chemical and physical properties between this region and the bulk phase, resulting in enhanced chemical processes, specific reactions, and mass transfer at the interface. Photochemical vapor generation (PVG) is regarded as a simple and green sample introduction method in atomic spectrometry. However, the photochemical behavior of elements with the interface is not known. Herein, we report the PVG of elements at the gas-liquid interface along with a possible mechanism investigated for the first time. Enhancement and/or suppression effects from the gas-liquid interface were observed on the PVG of 17 elements, which was correlated with the properties of analytes and the generated intermediate substances/products of PVG and the applied conditions. Enhancement from 1.1- to 7.3-fold in analytical sensitivity was found for 12 elements in the system with gas-liquid interface(s) compared to the results obtained in previous reports of PVG using traditional flow injection with inductively coupled plasma mass spectrometry measurement. The introduction of gas-liquid interface(s) and the resultant elevated temperature inside the PVG reactor likely facilitated the generation of radicals, the subsequent radical-based reactions, and the separation/transport/detection of volatile species of elements. In contrast, intermediate substances/products generated in PVG with poor thermostability will readily decompose at elevated temperatures, leading to a decreased signal response of analytes. The finding is helpful to understand the transport of elements under UV irradiation in the environment and has potential for analysis of trace elements in environmental and biological samples.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hanjiao Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qian Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Qing Mou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Liang Dong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ruilin Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Zeming Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ying Gao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| |
Collapse
|
26
|
Li M, Luo Y, Zou Z, Xu F, Jiang X, Hou X. A miniaturized UV-LED array chip-based photochemical vapor generator coupled with a point discharge optical emission spectrometer for the determination of trace selenium. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2021. [DOI: 10.1039/d1ja00290b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet light emitting diode array chip-based photochemical vapor generation was combined with hollow electrode point discharge to establish a miniaturized optical emission spectrometer for efficient vapor generation and excitation of selenium.
Collapse
Affiliation(s)
- Mengtian Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Yi Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhirong Zou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fujian Xu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoming Jiang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
27
|
Li K, Yang H, Yuan X, Zhang M. Recent developments of heavy metals detection in traditional Chinese medicine by atomic spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Büyükpınar Ç, Bodur S, San N, Komesli OT, Bakırdere S. Photochemical Vapor Generation Based Accurate Determination of Cadmium in Wastewater Using Novel Photoreactor and Gas-Liquid Separators Using Flame Atomic Absorption Spectrometry with Matrix Matching Calibration. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1858308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Çağdaş Büyükpınar
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Nevim San
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
| | - Okan Tarık Komesli
- Department of Environmental Engineering, Atatürk University, Erzurum, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, Istanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
29
|
Ultrasonic assisted glass bead loaded gas liquid separator-photochemical vapor generation-T-shaped slotted quartz tube-flame atomic absorption spectrophotometry system for antimony determination in tap water and wastewater samples. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Li Z, Li H, Deng D, Liu R, Lv Y. Mass Spectrometric Assay of Alpha-Fetoprotein Isoforms for Accurate Serological Evaluation. Anal Chem 2020; 92:4807-4813. [DOI: 10.1021/acs.analchem.9b03995] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongmei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Dongyan Deng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
31
|
Zhen Y, Yu Y, Zhang A, Gao Y. Matrix-assisted photochemical vapor generation for determination of trace bismuth in Fe Ni based alloy samples by inductively coupled plasma mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Vyhnanovský J, Sturgeon RE, Musil S. Cadmium Assisted Photochemical Vapor Generation of Tungsten for Detection by Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2019; 91:13306-13312. [PMID: 31537056 DOI: 10.1021/acs.analchem.9b04241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Efficient photochemical vapor generation (PVG) of tungsten has been achieved for the first time using a 19 W thin film flow-through photoreactor. The volatile product (most probably tungsten hexacarbonyl) was generated using a flow injection mode and 40% (v/v) formic acid as the reaction medium. An inductively coupled plasma mass spectrometer was utilized for ultrasensitive detection. The addition of Cd2+ as a sensitizer was critical, enhancing the overall PVG efficiency some 30 000-fold. At an optimal irradiation time of 19 s, a 6.1-fold enhancement factor and an overall PVG efficiency of 43% were determined from a comparison of the response to direct solution nebulization when using a sample flow rate of 2 mL min-1 and 500 mg L-1 Cd2+ as a sensitizer. A limit of detection of 0.9 ng L-1 and repeatability (RSD) of 2% at 100 ng L-1 were achieved. Interference from inorganic acids (HNO3, HCl, H2SO4, and HF) was investigated with respect to analytical application to real samples. The accuracy and practical feasibility of this ultrasensitive methodology was successfully verified by analysis of Certified Reference Material CTA-FFA-1 (Fine Fly Ash) and six natural water samples with low W concentrations.
Collapse
Affiliation(s)
- Jaromír Vyhnanovský
- Institute of Analytical Chemistry of the Czech Academy of Sciences , Veveří 97 , 602 00 Brno , Czech Republic.,Charles University , Faculty of Science, Department of Analytical Chemistry , Hlavova 8 , 128 43 Prague , Czech Republic
| | - Ralph E Sturgeon
- National Research Council of Canada , 1200 Montreal Road, Ottawa , Ontario K1A 0R6 , Canada
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences , Veveří 97 , 602 00 Brno , Czech Republic
| |
Collapse
|
33
|
Xu T, Hu J, Chen H. Transition metal ion Co(II)-assisted photochemical vapor generation of thallium for its sensitive determination by inductively coupled plasma mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
|