1
|
Su X, Yusuf ML, Guo X, Liu J, Fan S, Li S, Li H, Xia F. Recent Advances of Nucleic Acids-Based Nanopipette: From Fundamental to Applications. Anal Chem 2025; 97:10503-10520. [PMID: 40354240 DOI: 10.1021/acs.analchem.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Affiliation(s)
- Xujie Su
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Martins Lateef Yusuf
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xinyue Guo
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jiamei Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shiming Fan
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Chen Z, He R, Yu X, Chen R, Xu B, Gao Y. Mechanical Flexibility Improves Thermal Conduction of Confined Liquid in Nanofluidics. J Phys Chem Lett 2025; 16:4765-4772. [PMID: 40331690 DOI: 10.1021/acs.jpclett.5c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Nanofluidics systems demonstrate the potential to address the thermal management challenge in nanoelectronics devices with extraordinary transport properties. However, the phonon features in different substrates have led to contradictory thermal transport properties of the confined liquid. Understanding the correlation between the thermal transport of nanoconfined liquid and substrate vibration is of critical importance. Herein, we demonstrate that the phonon resonance between the substrates and the confined water molecules can significantly enhance the thermal conductivity of the water. Detailed analyses reveal that the phonon resonance shortens the lifetime of hydrogen bonds, promotes the mobility of the water molecules, and enhances the thermal conductivity. Moreover, the effect of phonon resonance is more pronounced with a reduced channel size owing to stronger solid-liquid interactions. These results and findings offer a fundamental understanding of the thermal transport of the nanoconfined liquid and provide theoretical guidance for developing nanofluidics-based cooling strategies.
Collapse
Affiliation(s)
- Ziqiao Chen
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Renjie He
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaotong Yu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Chen
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yuan Gao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Kang X, Yu M, Xu Y, Cao Z, Balme S, Ma T. Nanochannel functionalization using POFs: Progress and prospects. Adv Colloid Interface Sci 2025; 342:103533. [PMID: 40318384 DOI: 10.1016/j.cis.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Biomimetic nanochannels, inspired by natural ion channels found in living organisms, are synthetic systems designed to replicate the highly selective and efficient ion/molecule transport processes essential for various biological functions. These artificial channels mimic the structural and functional properties of their biological counterparts, offering precise control over ion and molecular transport. Porous organic framework materials (POFs), including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have emerged as promising materials for functionalizing nanochannels due to their unique structures and exceptional properties. This functionalization strategy not only enhances the performance of synthetic nanochannels but also broadens their application potential across various fields. This review comprehensively examines the recent progress in the preparation and application of POFs stereoscopic-functionalized solid nanochannels. Special emphasis is placed on their practical applications, including proton conduction, ion-selective membranes, photo-responsive materials, sensing and detection, chiral separation, and catalysis. Finally, the future development prospects and challenges in this research area are discussed, highlighting opportunities for advancing the design and application of biomimetic nanochannels.
Collapse
Affiliation(s)
- Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingyi Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
4
|
Wang G, Xu S, Feng Y, Huang L, Wang Y, Liu N. Dual-Functionalized Glass Micropipette Sensor for Simultaneous High Sensitivity Detection of Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20717-20725. [PMID: 40135971 DOI: 10.1021/acsami.4c22311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Early cancer detection is crucial for improving patient survival rates. However, current single-biomarker detection methods often face challenges, such as insufficient sensitivity, poor accuracy, and false positives. To address these issues, we report a dual-functionalized glass micropipet sensor (DFMS) capable of simultaneously detecting two cancer biomarkers, nucleic acids and proteins. The inner surface of the sensor is functionalized with amino-modified silicon nanowires (SiNWs) to capture disease-related miRNAs, enabling ionic-current-based detection, while the outer surface is decorated with gold nanoparticles to anchor specific protein aptamers for Raman-based detection. This dual-functionalization significantly enhances the sensitivity and selectivity by combining ionic current amplification with plasmonic Raman signal enhancement. The sensor achieves detection limits of 1 aM for miRNAs and 0.001 ng/mL for proteins, with minimal mutual interference between the two detection modes, ensuring accurate and independent detection. Validation with prostate cancer biomarkers miRNA-1246 and PSA, as well as gastric cancer biomarkers miRNA-106a and CD44, demonstrates its outstanding sensitivity, selectivity, stability, and broad applicability, providing a novel approach for early cancer detection with significant clinical implications.
Collapse
Affiliation(s)
- Guofeng Wang
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Shiwei Xu
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yueyue Feng
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Liying Huang
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yajun Wang
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Nannan Liu
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| |
Collapse
|
5
|
Zhao J, Xiao Y, Yang M, Luo X, Shang Z, Chu W, Liang H, Yi X, Lin M, Xia F. Agarose Gel-Coated Nanochannel Biosensor for Detection of Prostate-Specific Antigen in Unprocessed Whole Blood Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409966. [PMID: 39995386 DOI: 10.1002/smll.202409966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Solid-state nanopore/nanochannel biosensors have rapidly advanced due to their high sensitivity, label-free detection, and fast response. However, detecting biomarkers directly in complex biological environments, particularly whole blood, remains challenging because of nonspecific protein adsorption and nanopore/nanochannel clogging. Here, a DNA aptamer functionalized nanochannel biosensor is developed with excellent antifouling properties, achieved by coating the nanochannel surface with agarose gel. This gel coating effectively mitigates fouling in diverse biological environments while maintaining comparable sensitivity to uncoated nanochannels for detecting prostate-specific antigen (PSA) in buffer solutions within 20 min. The biosensor exhibits a detection limit of 1 ng mL-1 for PSA in human serum, matching the performance of commercial enzyme-linked immunosorbent assay (ELISA) kits. Importantly, it successfully differentiates whole blood samples from prostate cancer patients and healthy individuals. The superior antifouling behavior is attributed to the electrically neutral, highly hydrophilic nature, and porous structure of the agarose gel, which prevents the adsorption of large biomolecules while facilitating the diffusion of PSA for aptamer-based capture. This DNA aptamer functionalized nanochannel biosensor with agarose gel coating offers reliable protein detection in complex biological environments, showing great promise in biomedical applications.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yuling Xiao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Mengyu Yang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xueqin Luo
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhiwei Shang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Wenjing Chu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan, 430022, P. R. China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ganzhou, 341000, P. R. China
| | - Meihua Lin
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Hu JJ, Lin N, Yuan L, Lou X, Xia F. Detection of Analytes with the Outer Surface of Solid-State Nanochannels: From pm to μm. Acc Chem Res 2025; 58:834-846. [PMID: 40053894 DOI: 10.1021/acs.accounts.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Accurately simulating or sensitively monitoring specific substances, such as ions, molecules, and proteins in the life process, is essential for gaining a fundamental comprehension of the underlying biological mechanism, which has been a trending topic for many years. Solid-state nanochannels, inspired by biological ion channels, have been developed for decades and have achieved significant success, representing the forefront of the interdisciplinary fields of bioanalytical chemistry and nanotechnology. Typically, solid-state nanochannels with a pore size of less than 100 nm are selected to construct nanochannel-based biosensors, which can be an excellent platform to analyze small analytes, such as ions and small molecules, in a restricted space and simulate the intricate process of ion transport in living organisms. Furthermore, by integrating functional components that are termed probes into artificial devices, the nanochannel system has emerged as a remarkable tool for label-free and highly sensitive detection in practical applications. Nonetheless, the detection of large substances (more than nanoscale in size) has consistently posed a significant challenge, since previous research on solid-state nanochannels has mainly concentrated on the contribution of probes at the inner wall, which requires the biotargets to enter the nanochannel for successful detection. Moreover, the lack of testing techniques for the chemical and physical properties of probes anchored deep inside confined nanochannels results in an unclear working mechanism, which is another issue that cannot be ignored. The requirement for a more efficient and extensive detection platform has spurred an in-depth study of nanochannels, which provides innovative insight concentrating on the less restricted space on the outer surface (OS) of nanochannels and the probes at the OS (POS).In this Account, several approaches to constructing the OS and modifying POS are briefly summarized. Subsequently, ultrasensitive detection of analytes across a range of sizes, encompassing not only the ions and small molecules from ∼100 pm to ∼2 nm but also the large substances from ∼2 nm to ∼20 μm through the use of POS in the last five years, is introduced. Through the characterization of OS and the precise control of POS, the sensing mechanism, including surface charge and wettability, with POS is discussed unambiguously. Additionally, an intelligent model using dual-signal responses such as electrical and optical to enhance the responsiveness and accuracy of quantitative analysis is discussed, which can distinguish the conformation of an analyte by the exposed single cysteine thiol group. We expect that this timely Account will offer instructive insights into the development of a nanochannel-based platform to facilitate the analysis of biomolecules of varying sizes.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Niya Lin
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lizhen Yuan
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Jiang D, Feng Z, Jiang H, Xiang X, Wang L. Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection. Biosens Bioelectron 2025; 271:117103. [PMID: 39736243 DOI: 10.1016/j.bios.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/01/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro. Furthermore, gold nanoparticle-modified anodized aluminum oxide sieves macromolecular substances and facilitates sensor nano-analysis. Composites of cerium-based organometallic framework, MnO2, and gold nanoparticles significantly enhanced the sensitivity of the screen-printed carbon electrode. Under optimal experimental conditions, the detection limit for OVA was 0.042 μg/mL, with a linear range of 0.1-10.0 μg/mL. The fabricated sensor demonstrated high sensitivity, reliability, and simplicity, showcasing its broad potential for allergen detection applications.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Zeng Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, 211198, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu, 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
8
|
Lin S, Liu Y, Hu J, Xia F, Lou X. Towards effective functionalization of nanopores/nanochannels: the role of amidation reactions. Chem Commun (Camb) 2025; 61:1978-1988. [PMID: 39751830 DOI: 10.1039/d4cc06316c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection. To explore the modification of different probes on nanopores/nanochannels, this review emphasizes the functionalization of nanopores/nanochannels using small molecules, peptides, nucleic acids, composite molecules and proteins through amidation reactions. In addition, we also present perspectives on the developmental prospects of nanopores, with the goal of enhancing our understanding of nanopore sensing technologies and their functionalization strategies. We have noted that this covalent reaction strategy provides an efficient, versatile and stable modification method for biological and solid-state nanopores/nanochannels.
Collapse
Affiliation(s)
- Shijun Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yiheng Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jingjing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Liu L, Liu Z, Xu X, Wang J, Tong Z. Solid-state nanochannels based on electro-optical dual signals for detection of analytes. Talanta 2024; 279:126615. [PMID: 39096787 DOI: 10.1016/j.talanta.2024.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
The sensitive detection of analytes of different sizes is crucial significance for environmental protection, food safety and medical diagnostics. The confined space of nanochannels provides a location closest to the molecular reaction behaviors in real systems, thereby opening new opportunities for the precise detection of analytes. However, due to the susceptibility to external interference on the confined space of nanochannels, the high sensitivity nature of the current signals through the nanochannels is more troubling for the detection reliability. Combining highly sensitive optical signals with the sensitive current signals of solid-state nanochannels establishes a nanochannel detection platform based on electro-optical dual signals, potentially offering more sensitive, specific, and accuracy detection of analytes. This review summarizes the last five years of applications of solid-state nanochannels based on electro-optical dual signals in analytes detection. Firstly, the detection principles of solid-state nanochannels and the construction strategies of nanochannel electro-optical sensing platforms are discussed. Subsequently, the review comprehensively outlines the applications involving nanochannels with electrical signals combined with fluorescence signals, electrical signals combined with surface-enhanced Raman spectroscopy signals, and electrical signals combined with other optical signals in analyte detection. Additionally, the perspectives and difficulties of nanochannels are investigated on the basis of electro-optical dual signals.
Collapse
Affiliation(s)
- Lingxiao Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xinrui Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
10
|
Laucirica G, Toimil-Molares ME, Marmisollé WA, Azzaroni O. Unlocking Nanoprecipitation: A Pathway to High Reversibility in Nanofluidic Memristors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58818-58826. [PMID: 39423295 DOI: 10.1021/acsami.4c11522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Solid-state nanochannels have emerged as a promising platform for the development of ionic circuit components with analog properties to their traditional electronic counterparts. In the last years, nanofluidic devices with memristive properties have attracted special interest due to their applicability in, for example, the construction of brain-like computing systems. In this work, an asymmetric track-etched nanofluidic channel with memory-enhanced ion transport is reported. The results illustrate that the formation of nanoprecipitates on the channel walls induces memory effects in ion transport, leading to characteristic hysteresis loops in the current-voltage curves, a hallmark of memristive behavior. Notably, these memristive properties are achievable with a straightforward experimental setup that combines an aqueous solvent and a relatively low-soluble inorganic salt. The various conductance states can be rapidly and reversibly tuned over prolonged time scales. Furthermore, under appropriate measurement conditions, the nanofluidic device can alternate between different iontronic regimes and states, encompassing ion current rectification, ON-OFF states, and memristor-like behavior. These findings provide insights into the design and optimization of nanofluidic devices for bioinspired ionic circuit components.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, 30107 Murcia, Spain
| | - María Eugenia Toimil-Molares
- Materials Research Department, GSI Helmholtz Centre for Heavy Ion Research, 64291, Darmstadt, Germany
- Department of Materials- and Geosciences, Technical University Darmstadt, 64283, Darmstadt, Germany
| | - Waldemar Alejandro Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina
| |
Collapse
|
11
|
Allegretto JA, Laucirica G, Huamani AL, Wagner MF, Albesa AG, Toimil-Molares ME, Rafti M, Marmisollé W, Azzaroni O. Manipulating Ion Transport Regimes in Nanomembranes via a "Pore-in-Pore" Approach Enabled by the Synergy of Metal-Organic Frameworks and Solid-State Nanochannels. ACS NANO 2024; 18:18572-18583. [PMID: 38941562 DOI: 10.1021/acsnano.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel. Herein, we study the effects of confined synthesis of Zr-based UiO-66 MOF on the ion transport properties of single bullet-shaped poly(ethylene terephthalate) (PET) nanochannels. We have found that emerging textural properties from the MOF phase play a determinant role in controlling ionic transport through the nanochannel. We demonstrate that a transition from ion current saturation regimes to diode-like regimes can be obtained by employing different synthetic approaches, namely, counterdiffusion synthesis, where MOF precursors are kept separate and forced to diffuse through the nanochannel, and one-pot synthesis, where both precursors are placed at both ends of the channel. Also, by considering the dependence of the charge state of the UiO-66 MOF on the protonation degree, pH changes offered a mechanism to tune the iontronic output (and selectivity) among different regimes, including anion-driven rectification, cation-driven rectification, ion current saturation, and ohmic behavior. Furthermore, Poisson-Nernst-Planck (PNP) simulations were employed to rationalize the different iontronic outputs observed experimentally for membranes modified by different methods. Our results demonstrate a straightforward tool to synthesize MOF-based SSN membranes with tunable ion transport regimes.
Collapse
Affiliation(s)
- Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, 30107 Murcia, Spain
| | - Angel L Huamani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- 3IA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de Mayo y Francia, San Martín CP1650, Buenos Aires, Argentina
| | - Michael F Wagner
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Maria Eugenia Toimil-Molares
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Department of Materials and Geosciences, Technical University of Darmstadt, 64291 Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| |
Collapse
|
12
|
Laucirica G, Hernández Parra LM, Huamani AL, Wagner MF, Albesa AG, Toimil-Molares ME, Marmisollé W, Azzaroni O. Insight into the transport of ions from salts of moderated solubility through nanochannels: negative incremental resistance assisted by geometry. NANOSCALE 2024; 16:12599-12610. [PMID: 38869491 DOI: 10.1039/d3nr06212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, the transport of salt with moderate solubility through bioinspired solid-state nanochannels was comprehensively investigated. For this purpose, bullet-shaped channels were fabricated and exposed to KClO4, a monovalent salt with moderate solubility. These channels displayed the typical rectifying behavior characteristic of asymmetrical channels but with one remarkable difference, the iontronic output exhibited a negative incremental resistance phenomenon of high gating efficiency when the transmembrane voltage in the open state was increased enough, giving rise to an inactivated state characterized by a low and stable ion current. The behavior is attributed to salt precipitation inside the channel and remarkably, it is not observed in other geometries such as cylindrical or cigar-shaped channels. Considering the central role of the surface in precipitation formation, the influence of several parameters such as electrolyte concentration, pH, and channel size was studied. Under optimized conditions, this system can alternate among three different conductance states (closed, open, and inactivated) and exhibits gating ratios higher than 20. Beyond its potential application in fields related to electronics or sensing, this study provides valuable insight into the fundamental principles behind ion rectifying behavior in solid-state channels and highlights the implications of surface phenomena at the nanoscale.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - L Miguel Hernández Parra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Angel L Huamani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - María Eugenia Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| |
Collapse
|
13
|
Mi Z, Chen X, Zhao X, Tang H, Wang W, Shan X, Lu X. High-precision high-speed nanopore ping-pong control system based on field programmable gate array. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:073202. [PMID: 39016698 DOI: 10.1063/5.0213543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
"Molecular ping-pong," emerging as a control strategy in solid-state nanopore technology, presents a highly promising approach for repetitive measurements of single biomolecules, such as DNA. This paper introduces a high-precision, high-speed nanopore molecular ping-pong control system consisting of a home-built trans-impedance amplifier (TIA), a control system based on a Field Programmable Gate Array (FPGA), and a LabVIEW program operating on the host personal computer. Through feedback compensation and post-stage boosting, the TIA achieves a high bandwidth of about 200 kHz with a gain of 100 MΩ, along with low input-referred current noise of 1.6 × 10-4 pA2/Hz at 1 kHz and 1.1 × 10-3 pA2/Hz at 100 kHz. The FPGA-based control system demonstrates a minimum overall response time (tdelay) of 6.5 μs from the analog input current signal trigger to the subsequent reversal of the analog output drive voltage signal, with a control precision of 1 μs. Additionally, a LabVIEW program has been developed to facilitate rapid data exchange and communication with the FPGA program, enabling real-time signal monitoring, parameter adjustment, and data storage. Successful recapture of individual DNA molecules at various tdelay, resulting in an improvement in capture rate by up to 2 orders of magnitude, has been demonstrated. With unprecedented control precision and capture efficiency, this system provides robust technical support and opens novel research avenues for nanopore single-molecule sensing and manipulation.
Collapse
Affiliation(s)
- Zhuang Mi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haitao Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyu Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
14
|
Wang J, Zhou H, Liang R, Qin W. Chronopotentiometric Nanopore Sensor Based on a Stimulus-Responsive Molecularly Imprinted Polymer for Label-Free Dual-Biomarker Detection. Anal Chem 2024; 96:9370-9378. [PMID: 38683892 DOI: 10.1021/acs.analchem.3c05817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The development of sensors for detection of biomarkers exhibits an exciting potential in diagnosis of diseases. Herein, we propose a novel electrochemical sensing strategy for label-free dual-biomarker detection, which is based on the combination of stimulus-responsive molecularly imprinted polymer (MIP)-modified nanopores and a polymeric membrane chronopotentiometric sensor. The ion fluxes galvanostatically imposed on the sensing membrane surface can be blocked by the recognition reaction between the target biomarker in the sample solution and the stimulus-responsive MIP receptor in the nanopores, thus causing a potential change. By using two external stimuli (i.e., pH and temperature), the recognition abilities of the stimulus-responsive MIP receptor can be effectively modulated so that dual-biomarker label-free chronopotentiometric detection can be achieved. Using alpha fetoprotein (AFP) and prostate-specific antigen (PSA) as model biomarkers, the proposed sensor offers detection limits of 0.17 and 0.42 ng/mL for AFP and PSA, respectively.
Collapse
Affiliation(s)
- Junhao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Zhou
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264099, China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
15
|
Yu J, Yu C, Li Y, Yu C, Wang Y, Wu R, Li B. The single strand template shortening strategy improves the sensitivity and specificity of solid-state nanopore detection. Chem Commun (Camb) 2024; 60:4723-4726. [PMID: 38597243 DOI: 10.1039/d4cc00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Through controlling the ssDNA product length of rolling circle amplification with AcyNTP, here we develop a nanopore signal enhancement strategy (STSS), which can successfully transfer the short oligonucleotide targets into long ssDNAs with appropriate lengths that can generate significant translocation currents. By labelling the RCA product with tags such as tetrahedral structures and isothermal amplicons, the resolution, signal specificity, and target range of the STSS can be further extended.
Collapse
Affiliation(s)
- Jin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunxu Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Ruiping Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
16
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
17
|
Liu R, Liu Z, Li J, Qiu Y. Low-cost and convenient fabrication of polymer micro/nanopores with the needle punching process and their applications in nanofluidic sensing. BIOMICROFLUIDICS 2024; 18:024103. [PMID: 38571910 PMCID: PMC10987195 DOI: 10.1063/5.0203512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yinghua Qiu
- Author to whom correspondence should be addressed:
| |
Collapse
|
18
|
Ma Q, Chu W, Nong X, Zhao J, Liu H, Du Q, Sun J, Shen J, Lu SM, Lin M, Huang Y, Xia F. Local Electric Potential-Driven Nanofluidic Ion Transport for Ultrasensitive Biochemical Sensing. ACS NANO 2024; 18:6570-6578. [PMID: 38349220 DOI: 10.1021/acsnano.3c12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Nanofluidic biosensors have been widely used for detection of analytes based on the change of system resistance before and after target-probe interactions. However, their sensitivity is limited when system resistance barely changes toward low-concentration targets. Here, we proposed a strategy to address this issue by means of target-induced change of local membrane potential under relatively unchanged system resistance. The local membrane potential originated from the directional diffusion of photogenerated carriers across nanofluidic biosensors and gated photoinduced ionic current signal before and after target-probe interactions. The sensitivity of such biosensors for the detection of biomolecules such as circulating tumor DNA (ctDNA) and lysozyme exceeds that of applying a traditional strategy by more than 3 orders of magnitude under unchanged system resistance. Such biosensors can specifically detect the small molecule biomarker in the blood sample between prostate cancer patients and healthy humans. The key advantages of such nanofluidic biosensors are therefore complementary to traditional nanofluidic biosensors, with potential applications in a point-of-care analytical tool.
Collapse
Affiliation(s)
- Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
19
|
Li P, Yang X, Chen F, Wang D, Hao D, Xu Z, Qiu M, He S, Xia F, Tian Y. Confined Water Dominates Ion/Molecule Transport in Hydrogel Nanochannels. NANO LETTERS 2024; 24:897-904. [PMID: 38193898 DOI: 10.1021/acs.nanolett.3c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Current artificial nanochannels rely more on charge interactions for intelligent mass transport. Nevertheless, popular charged nanochannels would lose their advantages in long-term applications. Confined water, an indispensable transport medium in biological nanochannels, dominating the transport process in the uncharged nanochannels perfectly provides a new perspective. Herein, we achieve confined-water-dominated mass transport in hydrogel nanochannels (HNCs) constructed by in situ photopolymerization of acrylic acid (PAA) hydrogel in anodic alumina (AAO) nanochannels. HNCs show selectivity to Na+ transport and a high transport rate of molecules after introducing Na+/Li+, compared with other alkali metal ions like Cs+/K+. The mechanism given by ATR-FTIR shows that the hydrogen-bonding structure of confined water in HNCs is destabilized by Na+/Li+, which facilitates mass transport, but is constrained by Cs+/K+, resulting in transport inhibition. This work elucidates the relationship between confined water and mass transport in uncharged nanochannels while also presenting a strategy for designing functional nanochannel devices.
Collapse
Affiliation(s)
- Peijia Li
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaotao Yang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Dianyu Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dezhao Hao
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhe Xu
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Qiu
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shaofan He
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, People's Republic of China
| | - Ye Tian
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| |
Collapse
|
20
|
Zhang X, Dou H, Chen X, Lin M, Dai Y, Xia F. Solid-State Nanopore Sensors with Enhanced Sensitivity through Nucleic Acid Amplification. Anal Chem 2023; 95:17153-17161. [PMID: 37966312 DOI: 10.1021/acs.analchem.3c03806] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Solid-state nanopores have wide applications in DNA sequencing, energy conversion and storage, seawater desalination, sensors, and reactors due to their high stability, controllable geometry, and a variety of pore-forming materials. Solid-state nanopore sensors can be used for qualitative and quantitative analyses of ions, small molecules, proteins, and nucleic acids. The combination of nucleic acid amplification and solid-state nanopores to achieve trace detection of analytes is gradually attracting attention. This review outlines nucleic acid amplification strategies for enhancing the sensitivity of solid-state nanopore sensors by summarizing the articles published in the past 10 years. The future development prospects and challenges of nucleic acid amplification in solid-state nanopore sensors are discussed. This review helps readers better understand the field of solid-state nanopore sensors. We believe that solid-state nanopore sensors will break through the bottleneck of traditional detection and become a powerful single-molecule detection platform.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huimin Dou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaorui Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
21
|
Qiao N, Li Z, Zhang Z, Guo H, Liao J, Lu W, Li C. Effect of membrane thermal conductivity on ion current rectification in conical nanochannels under asymmetric temperature. Anal Chim Acta 2023; 1278:341724. [PMID: 37709465 DOI: 10.1016/j.aca.2023.341724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Nowadays, there have been extensively theoretical studies on the phenomenon of ion current rectification (ICR) induced by the asymmetric electrical double layer (EDL). As a key factor influencing the behavior of ion transport, temperature is given high priority by researchers. The thermal conductivity of the material commonly employed to prepare nanopores is 2-3 times higher than that of liquid solutions, which may affect ion transport within the nanochannel. However, it is often neglected in previous studies. Thus, we investigate the effect of membrane thermal conductivity on the ICR in conical nanochannels under asymmetric temperature. Based on the PNP-NS theoretical model, the ion current, the rectification ratio, as well as the temperature and ion concentration distributions along the nanochannel are calculated. It is found that the thermal conductivity of the solid membrane noticeably affects the temperature distribution across the nanochannel, altering the ion transport behavior. Larger membrane thermal conductivity tends to homogenize the temperature distribution in the nanochannel, leading to a decline of ionic thermal down-diffusion by a positive temperature difference and ionic thermal up-diffusion by a negative temperature difference, with the former promoting and the latter inhibiting ion current. As a result, the rectification ratio decreases under the positive temperature difference and increases under the negative temperature difference as the thermal conductivity of the membrane increases. These studies will be instructive for the design of nanofluidic diodes and biosensors.
Collapse
Affiliation(s)
- Nan Qiao
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhenquan Li
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhe Zhang
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hengyi Guo
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaqiang Liao
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Lu
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Changzheng Li
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi, 530004, China.
| |
Collapse
|
22
|
Li M, Xiong Y, Qing G. Innovative Chemical Tools to Address Analytical Challenges of Protein Phosphorylation and Glycosylation. Acc Chem Res 2023; 56:2514-2525. [PMID: 37638729 DOI: 10.1021/acs.accounts.3c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
23
|
Huang Y, Liu L, Luo C, Liu W, Lou X, Jiang L, Xia F. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev 2023; 52:6270-6293. [PMID: 37581902 DOI: 10.1039/d2cs00865c] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
24
|
Xiong Y, Li M, Cao Y, Li Z, Chang Y, Zhao X, Qing G. Nanofluidic Device for Detection of Lysine Methylpeptides and Sensing of Lysine Methylation. Anal Chem 2023; 95:7761-7769. [PMID: 37140051 DOI: 10.1021/acs.analchem.3c01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protein methylation is the smallest possible yet vitally important post-translational modification (PTM). This small and chemically inert addition in proteins makes the analysis of methylation more challenging, thus calling for an efficient tool for the sake of recognition and detection. Herein, we present a nanofluidic electric sensing device based on a functionalized nanochannel that was constructed by introducing monotriazole-containing p-sulfonatocalix[4]arene (TSC) into a single asymmetric polymeric nanochannel via click chemistry. The device can selectively detect lysine methylpeptides with subpicomole sensitivity, distinguish between different lysine methylation states, and monitor the lysine methylation process by methyltransferase at the peptide level in real time. The introduced TSC molecule, with its confined asymmetric configuration, presents the remarkable ability to selectively bind to lysine methylpeptides, which, coupled with the release of the complexed Cu ions, allows the device to transform the molecular-level recognition to the discernible change in ionic current of the nanofluidic electric device, thus enabling detection. This work could serve as a stepping stone to the development of a new methyltransferase assay and the chemical that specifically targets lysine methylation in PTM proteomics.
Collapse
Affiliation(s)
- Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, College of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, College of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yongxin Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinjia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
25
|
Yi W, Zhang C, Zhang Q, Zhang C, Lu Y, Yi L, Wang X. Solid-State Nanopore/Nanochannel Sensing of Single Entities. Top Curr Chem (Cham) 2023; 381:13. [PMID: 37103594 DOI: 10.1007/s41061-023-00425-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method. During the detection process, solid-state nanopore/nanochannel is easily blocked by single entities, and interfering substances easily enter the solid-state nanopore/nanochannel to generate interference signals, resulting in inaccurate measurement results. In addition, the problem of low flux in the detection process of solid-state nanopore/nanochannel, these defects limit the application of solid-state nanopore/nanochannel. In this review, we introduce the preparation and functionalization of solid-state nanopore/nanochannel, the research progress in the field of single entities sensing, and the novel sensing strategies on solving the above problems in solid-state nanopore/nanochannel single-entity sensing. At the same time, the challenges and prospects of solid-state nanopore/nanochannel for single-entity electrochemical sensing are also discussed.
Collapse
Affiliation(s)
- Wei Yi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Chuanping Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Qianchun Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, People's Republic of China
| | - Yebo Lu
- College of Information Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Xingzhu Wang
- School of Electrical Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
26
|
Laucirica G, Toum Terrones Y, Wagner MFP, Cayón VM, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Electrochemically addressed FET-like nanofluidic channels with dynamic ion-transport regimes. NANOSCALE 2023; 15:1782-1793. [PMID: 36602003 DOI: 10.1039/d2nr04510a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanofluidic channels in which the ionic transport can be modulated by the application of an external voltage to the nanochannel walls have been described as nanofluidic field effect transistors (nFETs) because of their analogy with electrolyte-gated field effect transistors. The creation of nFETs is attracting increasing attention due to the possibility of controlling ion transport by using an external voltage as a non-invasive stimulus. In this work, we show that it is possible to extend the actuation range of nFETs by using the supporting electrolyte as a "chemical effector". For this aim, a gold-coated poly(ethylene terephthalate) (PET) membrane was modified with electroactive poly-o-aminophenol. By exploiting the interaction between the electroactive poly-o-aminophenol and the ions in the electrolyte solution, the magnitude and surface charge of the nanochannels were fine-tuned. In this way, by setting the electrolyte nature it has been possible to set different ion transport regimes, i.e.: cation-selective or anion-selective ion transport, whereas the rectification efficiency of the ionic transport was controlled by the gate voltage applied to the electroactive polymer layer. Remarkably, under both regimes, the platform displays a reversible and rapid response. We believe that this strategy to preset the actuation range of nFETs by using the supporting electrolyte as a chemical effector can be extended to other devices, thus offering new opportunities for the development of stimulus-responsive solid-state nanochannels.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Yamili Toum Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Michael F P Wagner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287 Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
27
|
Liu HL, Zhan K, Wang K, Xia XH. Recent advances in nanotechnologies combining surface-enhanced Raman scattering and nanopore. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Wang Y, Zhu Z, Yu C, Wu R, Zhu J, Li B. Lego-Like Catalytic Hairpin Assembly Enables Controllable DNA-Oligomer Formation and Spatiotemporal Amplification in Single Molecular Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206283. [PMID: 36436946 DOI: 10.1002/smll.202206283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.
Collapse
Affiliation(s)
- Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhentong Zhu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinbo Zhu
- Cavendish Lab, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
29
|
Dai Y, Zhang Y, Ma Q, Lin M, Zhang X, Xia F. Inner Wall and Outer Surface Distinguished Solid-State Nanopores for Sensing. Anal Chem 2022; 94:17343-17348. [PMID: 36473027 DOI: 10.1021/acs.analchem.2c04216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state nanopores, inspired by biological nanopores, have the advantages of good mechanical properties, stability, and easy modification. They have attracted wide attention in the fields of sequencing, sensing, molecular sieving, nanofluidic devices, nanoelectrochemistry, and energy conversion. Because of the ion/molecule transport characteristic of the pore, the research on solid-state nanopores mainly focuses on the functional modification of its inner wall. In recent years, the outer surface of nanopores has also attracted the attention of researchers, and the functional elements on the outer surface have the functions of anti-interference and ionic signal enhancement. In this perspective, we review research progress of inner wall and outer surface distinguished solid-state nanopores, highlight their processing and advantages, summarize their functions and applications in sensing, and give insight into further research.
Collapse
Affiliation(s)
- Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yiwei Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
30
|
Zhu F, Feng F, Toimil-Molares ME, Trautmann C, Wang L, Zhou J, Cheng J, Li H. Triazol-Methanaminium-Pillar[5]arene-Functionalized Single Nanochannel for Quantitative Analysis of Pyrophosphate in Water. Anal Chem 2022; 94:14889-14897. [PMID: 36269622 DOI: 10.1021/acs.analchem.2c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inorganic pyrophosphate (PPi) is an important biological functional anion and plays crucial roles in life science, environmental science, medicine, and chemical process. Quantification of PPi in water has far-reaching significance for life exploration, disease diagnosis, and water pollution control. The label-free quantitative detection of PPi anions with a nanofluidic sensing device based on a conical single nanochannel is demonstrated. The channel surface is functionalized with a synthetic PPi receptor, triazol-methanaminium-functionalized pillar[5]arene (TAMAP5), using carbodiimide coupling chemistry. Due to the specific binding between TAMAP5 and PPi, the functionalized nanochannel can discriminate PPi from other inorganic anions with high selectivity through ionic current recording, even in the presence of various interfering anions. The current response exhibits a linear correlation with PPi concentration in the range from 1 × 10-7 to 1 × 10-4 M with a limit of detection of 6.8 × 10-7 M. A spike-and-recovery analysis of PPi in East Lake water samples indicates that the proposed nanofluidic sensor has the ability to quantitate micromolar concentrations of PPi in environmental water samples.
Collapse
Affiliation(s)
- Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology, School of Basic Medical Science, Hubei University of Medicine, Shiyan 442000, Hubei, P. R. China
| | - Fudan Feng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany.,Technische Universitat Darmstadt, Darmstadt 64287, Germany
| | - Li Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| |
Collapse
|
31
|
Liu HL, Zhan K, Wang K, Xia XH. Nanopore-based surface-enhanced Raman scattering technologies. Sci Bull (Beijing) 2022; 67:1539-1541. [PMID: 36546279 DOI: 10.1016/j.scib.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hai-Ling Liu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kan Zhan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
32
|
Ran XQ, Qian HL, Yan XP. Integrating Ordered Two-Dimensional Covalent Organic Frameworks to Solid-State Nanofluidic Channels for Ultrafast and Sensitive Detection of Mercury. Anal Chem 2022; 94:8533-8538. [PMID: 35653553 DOI: 10.1021/acs.analchem.2c01595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Grafting specific recognition moieties onto solid-state nanofluidic channels is a promising way for selective and sensitive sensing of analytes. However, the time-consuming interaction between recognition moieties and analytes is the main hindrance to the application of nanofluidic channel-based sensors in rapid detection. Here, we show the integration of ordered two-dimensional covalent organic frameworks (2D COFs) to solid-state nanofluidic channels to achieve rapid, selective, and sensitive detection of contaminants. As a proof of concept, a thiourea-linked 2D COF (JNU-3) as the recognition unit is covalently bonded on the stable artificial anodic aluminum oxide nanochannels (AAO) to fabricate a JNU-3@AAO-based nanofluidic sensor. The rapid and selective interaction of Hg(II) with the highly ordered channels of JNU-3 allows the JNU-3@AAO-based nanofluidic sensor to realize ultrafast and precise determination of Hg(II) (90 s) with a low limit of detection (3.28 fg mL-1), wide linear range (0.01-100 pg mL-1), and good precision (relative standard deviation of 3.8% for 11 replicate determination of 10 pg mL-1). The developed method was successfully applied to the determination of mercury in a certified reference material A072301c (rice powder), real water, and rice samples with recoveries of 90.4-99.8%. This work reveals the great potential of 2D COFs-modified solid-state nanofluidic channels as a sensor for the rapid and precise detection of contaminants in complicated samples.
Collapse
Affiliation(s)
- Xu-Qin Ran
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Wei W, Chen X, Wang X. Nanopore Sensing Technique for Studying the Hofmeister Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200921. [PMID: 35484475 DOI: 10.1002/smll.202200921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The nanopore sensing technique is an emerging method of detecting single molecules, and extensive research has gone into various fields, including nanopore sequencing and other applications of single-molecule studies. Recently, several researchers have explored the specific ion effects in nanopore channels, enabling a unique understanding of the Hofmeister effect at the single-molecule level. Herein, the recent advances of using nanopore sensing techniques are reviewed to study the Hofmeister effect and the physicochemical mechanism of this process is attempted. The challenges and goals are also discussed for the future in this field.
Collapse
Affiliation(s)
- Weichen Wei
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaojuan Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xuejiao Wang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
34
|
Engineering highly efficient Li+ responsive nanochannels via host–guest interaction and photochemistry regulation. J Colloid Interface Sci 2022; 615:674-684. [DOI: 10.1016/j.jcis.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
|
35
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
36
|
Shi CF, Xia XH. In Situ Monitoring of DNA-Hg 2+ Binding Reaction within Confined Nanospace of Metamaterial Nanochannel by Plasmon-Enhanced Raman Scattering. J Phys Chem Lett 2022; 13:1330-1336. [PMID: 35107289 DOI: 10.1021/acs.jpclett.2c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanochannel-based plasmon-enhanced Raman scattering (PERS) substrates can simulate biological environments, revealing the recognition and conformation information on biomolecules in confined spaces. In this work, a metamaterial nanochannel-based PERS platform was constructed for highly sensitive analysis of DNA recognition to Hg2+ with the lowest Hg2+ concentration down to 1.0 pM. The established platform enables in situ monitoring of the thermodynamics and kinetics of DNA-Hg2+ recognition reaction in a confined nanospace. The recognition reaction in a nanospace shows good reversibility and specificity, and the isotherm follows well the Freundlich adsorption model. Compared to its folding on a rough Au nanofilm, the folding time of ssDNA-Rox decorated in nanochannels is remarkably increased, and the folding process can be tuned through varying the pore size and ionic strength. The presented PERS platform is promising for studying biomolecule-ion binding events and biomolecule conformation change under nanochannel-confined conditions.
Collapse
Affiliation(s)
- Cai-Feng Shi
- State Key lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xing-Hua Xia
- State Key lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
37
|
Liu Z, Liu X, Wang Y, Yang D, Li C. Ion current rectification in asymmetric charged bilayer nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
39
|
|
40
|
Qian T, Zhao C, Wang R, Chen X, Hou J, Wang H, Zhang H. Synthetic azobenzene-containing metal-organic framework ion channels toward efficient light-gated ion transport at the subnanoscale. NANOSCALE 2021; 13:17396-17403. [PMID: 34642709 DOI: 10.1039/d1nr04595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial nanochannels with diverse responsive properties have been widely developed to replicate the smart gating functionalities of biological ion channels. However, in these traditional nanochannels, common responsive molecules are usually too small to efficiently block the large channels under the closed states, leading to weak gating performances. Herein, we report carboxylated azobenzene-coordinated metal-organic-framework (AZO-MOF) ion channels with impressive light-gating properties. The AZO-MOF ion channels were synthesized by the confined growth of AZO-MOFs, composed of light-responsive AZO-containing ligands, non-responsive ligands and metal clusters, into ion-track-etched polymer nanochannels. The AZO-MOF ion channels with an appropriate number of AZO ligands showed a well-maintained crystalline and three-dimensional porous structure, including nanoscale cavities and subnanoscale windows for LiCl conduction. Meanwhile, the AZO-containing ligands bend and stretch upon light irradiation to open and close the pathways, thus gating the ion flux through the AZO-MOF ion channels with high on-off ratios up to 40.2, which is ∼2.3-30 times those of AZO-encapsulated MOF ion channels and AZO-modified nanochannels. This work suggests ways to achieve subnanoscaled gating of ion transport by angstrom-porous MOFs coordinated by stimuli-responsive ligands.
Collapse
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Ruoxin Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Xiaofang Chen
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
41
|
Ran XQ, Qian HL, Yan XP. Aptamer Self-Assembly-Functionalized Nanochannels for Sensitive and Precise Detection of Chloramphenicol. Anal Chem 2021; 93:14287-14292. [PMID: 34637621 DOI: 10.1021/acs.analchem.1c03396] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensitive and precise determination of chloramphenicol (CAP) is of great significance for human health due to its high risk in trace amounts. Solid-state artificial nanochannels are expected to be highly promising sensing devices owing to single-molecule sensitivity, target-specific selectivity, and portability. Herein, we report an aptamer self-assembly-functionalized artificial nanochannel-based sensor for highly sensitive and precise determination of CAP. Aptamer self-assembly (AAs) served as the specific recognition component and were in situ grown on the surface of stable anodic aluminum oxide (AAO) nanochannels to develop an AAs@AAO nanochannel-based sensor. Selective interaction with CAP led to the disassembly of AAs and sensitive current change of AAs@AAO nanochannels, allowing sensitive and precise sensing of CAP in complex food samples. The developed AAs@AAO nanochannel-based sensor showed a wide linear range from 0.32 to 1600 pg. mL-1, low limit of detection (LOD) of 0.1 pg. mL-1, high precision with relative standard deviation of 2.9%, and quantitative recoveries of 93.4-102.2% for CAP in milk, milk powder, and honey samples. This work proposes a versatile nanochannel-based platform for facile, sensitive, and precise sensing of hazardous residues in food samples.
Collapse
Affiliation(s)
- Xu-Qin Ran
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
43
|
Liu T, Wu X, Xu H, Ma Q, Du Q, Yuan Q, Gao P, Xia F. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels. Anal Chem 2021; 93:13054-13062. [PMID: 34519478 DOI: 10.1021/acs.analchem.1c03010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Probe-modified nanopores/nanochannels are one of the most advanced sensors because the probes interact strongly with ions and targets in nanoconfinement and create a sensitive and selective ionic signal. Recently, ionic signals have been demonstrated to be sensitive to the probe-target interaction on the outer surface of nanopores/nanochannels, which can offer more open space for target recognition and signal conversion than nanoconfined cavities. To enhance the ionic signal, we investigated the effect of grafting density, a critical parameter of the sensing interface, of the probe on the outer surface of nanochannels on the change rate of the ionic signal before and after target recognition (β). Electroneutral peptide nucleic acids and negatively charged DNA are selected as probes and targets, respectively. The experimental results showed that when adding the same number of targets, the β value increased with the probe grafting density on the outer surface. A theoretical model with clearly defined physical properties of each probe and target has been established. Numerical simulations suggest that the decrease of the background current and the aggregation of targets at the mouth of nanochannels with increasing probe grafting density contribute to this enhancement. This work reveals the signal mechanism of probe-target recognition on the outer surface of nanochannels and suggests a general approach to the nanochannel/nanopore design leading to sensitivity improvement on the basis of relatively good selectivity.
Collapse
Affiliation(s)
- Tianle Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaoqing Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hongquan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410000, P. R. China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
44
|
Zhou Q, Pan J, Deng S, Xia F, Kim T. Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008276. [PMID: 34245059 DOI: 10.1002/adma.202008276] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/15/2021] [Indexed: 05/14/2023]
Abstract
The rapid advances in the Internet of things and wearable devices have created a massive platform for sensor systems that detect chemical or biological agents. The accelerated development of these devices in recent years has simultaneously aggravated the power supply problems. Triboelectric nanogenerators (TENGs) represent a thriving renewable energy technology with the potential to revolutionize this field. In this review, the significance of TENG-based sensor systems in chemical or biological detection from the perspective of the development of power supply for biochemical sensors is discussed. Further, a range of TENGs are classified according to their roles as power supplies and/or self-powered active sensors. The TENG powered sensor systems are further discussed on the basis of their framework and applications. The working principles and structures of different TENG-based self-powered active sensors are presented, along with the classification of the sensors based on these factors. In addition, some representative applications are introduced, and the corresponding challenges are discussed. Finally, some perspectives for the future innovations of TENG-based sensor systems for chemical/biological detection are discussed.
Collapse
Affiliation(s)
- Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shujun Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
45
|
Lin B, Hui J, Mao H. Nanopore Technology and Its Applications in Gene Sequencing. BIOSENSORS-BASEL 2021; 11:bios11070214. [PMID: 34208844 PMCID: PMC8301755 DOI: 10.3390/bios11070214] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In recent years, nanopore technology has become increasingly important in the field of life science and biomedical research. By embedding a nano-scale hole in a thin membrane and measuring the electrochemical signal, nanopore technology can be used to investigate the nucleic acids and other biomacromolecules. One of the most successful applications of nanopore technology, the Oxford Nanopore Technology, marks the beginning of the fourth generation of gene sequencing technology. In this review, the operational principle and the technology for signal processing of the nanopore gene sequencing are documented. Moreover, this review focuses on the applications using nanopore gene sequencing technology, including the diagnosis of cancer, detection of viruses and other microbes, and the assembly of genomes. These applications show that nanopore technology is promising in the field of biological and biomedical sensing.
Collapse
Affiliation(s)
- Bo Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-21-62511070-8707
| |
Collapse
|
46
|
Cheng SQ, Liu XQ, Han ZL, Rong Y, Qin SY, Sun Y, Li H. Tailoring CO 2-Activated Ion Nanochannels Using Macrocyclic Pillararenes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27255-27261. [PMID: 34029047 DOI: 10.1021/acsami.1c03329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas-responsive nanochannels have great relevance for applications in many fields. Inspired by CO2-sensitive ion channels, herein we present an approach for designing solid-state nanochannels that allow controlled regulation of ion transport in response to alternate CO2/N2 stimuli. The pillar[5]arene (P5N) bearing diethylamine groups can convert into the water-soluble host P5C, containing cationic tertiary ammonium salt groups after absorbing CO2. Subsequently, the nanochannel walls are tailored using P5N-based host-guest chemistry. The ion transport rate of K+ in the P5N nanochannels under CO2 was 1.66 × 10-4 mol h-1 m-2, whereas that under N2 was 7.98 × 10-4 mol h-1 m-2. Notably, there was no significant change to the ion current after eight cycles, which may indicate the stability and repeatability of CO2-activated ion nanochannels. It is speculated that the difference in ion conductance resulted from the change in wettability and surface charge within the nanochannels in response to the gas stimuli. Achieving CO2-activated ion transport in solid-state nanochannels opens new avenues for biomimetic nanopore systems and advanced separation processes.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Xue-Qing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Zhi-Liang Han
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Yu Rong
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 P.R. China
| |
Collapse
|
47
|
Qiao Z, Jiang Z, Luo Q, Zhang H, Zheng J. A label-free ratiometric immunoassay using bioinspired nanochannels and a smart modified electrode. Anal Chim Acta 2021; 1162:338476. [PMID: 33926698 DOI: 10.1016/j.aca.2021.338476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Labeling with redox reporter is often required in developing electrochemical bioassay for most proteins or nucleic acid biomarkers. Herein, a label-free ratiometric immunosensing platform is firstly developed by integrating the antibody-conjugated nanochannels with a smart modified electrode. The electrode modifier is the composite of C60, tetraoctylammonium bromide (TOA+) and Prussian blue (PB). Cyclic voltammograms of the ultimate C60-TOA+/PB modified electrode exhibited two pairs of peaks at 0.15 V and -0.13 V, ascribing to the redox of PB and C60, respectively. With the addition of K3[Fe(CN)6] in the electrolyte solution, the peaks of PB decreased due to the adsorption of [Fe(CN)6]3- while the peaks of C60 increased because of the formation of the ternary complex (TC) C60-TOA+-[Fe(CN)6]3-. As a result, the peak current ratio IPB/ITC decreased gradually with the increment of the concentration of [Fe(CN)6]3-. For the nanochannels-based immunosensing platform, the steric hindrance of the bioconjugated nanochannels varied with the loading amount of the target CA125, and thus [Fe(CN)6]3- passing through the channels was quantitatively affected. And the higher CA125 level was, the less [Fe(CN)6]3- concentration was. And thus, the ratio IPB/ITC monitored at the C60-TOA+/PB modified electrode increased with the increase of the concentration of CA125. The ratiometric immunoassay featured a linear calibration range from 1.0 U mL-1 to 100 U mL-1 with a low detection limit of 0.86 U mL-1. In addition, the ratiometric immunosensing platform demonstrated good specificity and stability as well as acceptable accuracy in overcoming the effect of electrode passivation which was an inherent problem of electroanalysis.
Collapse
Affiliation(s)
- Zhe Qiao
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Zilian Jiang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Qiufen Luo
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Hongfang Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Jianbin Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
48
|
Yu C, Wang Y, Wu R, Zhu Z, Li B. Study on the Functionalization and Signaling Efficiency of the Hybridization Chain Reaction Using Traditional and Single Molecular Characterizations. ACS APPLIED BIO MATERIALS 2021; 4:3649-3657. [PMID: 35014450 DOI: 10.1021/acsabm.1c00136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As an important enzyme-free amplifier, the hybridization chain reaction (HCR) uses an ssDNA to trigger cycled displacement interactions between substrate hairpins and finally form elongated dsDNA concatamer mixtures. In many cases, to provide a signal probe or advanced function, additional oligonucleotides (named hairpin tails) have to be extended upon classic HCR hairpin substrates, but by doing so the HCR assembly efficiency and signal-to-noise ratio (SNR) may get seriously reduced. In this Article, a rational and general model that may guide the study on HCR functionalization and signaling efficiency is provided. We rationally design a four-hairpin model HCR system (4H-HCR) in which one or more hairpin substrates are appended with additional tails as a signaling probe. After HCR assembly, two adjacent tails are supposedly integrating into a full G-quadruplex structure to provide the evidence or signal for the assembly. A systematic study has been applied to reveal the relationship between the "tail-design" with assembly efficiency and SNR. A clear design rule-set guiding the optimized assembly and signal has been provided for traditional electrophoresis and G-quadruplex-enhanced fluorescence signal. Importantly, solid-state nanopore single molecular detection has been innovatively introduced and recommended as an "antirisk" and "mutual benefit" readout to traditional G-quadruplex signaling. Nanopore detection can provide a clear signal distinguished before and after the HCR reaction, especially when the traditional G-quadruplex-enhanced signal only provides low SNR. The G-quadruplex, in turn, may enhance the nanopore signal amplitude via increasing the diameter of the HCR products.
Collapse
Affiliation(s)
- Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhentong Zhu
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
49
|
Wu R, Wang Y, Zhu Z, Yu C, Li H, Li B, Dong S. Low-Noise Solid-State Nanopore Enhancing Direct Label-Free Analysis for Small Dimensional Assemblies Induced by Specific Molecular Binding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9482-9490. [PMID: 33476120 DOI: 10.1021/acsami.0c20359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid-state nanopores show special potential as a new single-molecular characterization for nucleic acid assemblies and molecular machines. However, direct recognition of small dimensional species is still quite difficult due the lower resolution compared with biological pores. We recently reported a very efficient noise-reduction and resolution-enhancement mechanism via introducing high-dielectric additives (e.g., formamide) into conical glass nanopore (CGN) test buffer. Based on this advance, here, for the first time, we apply a bare CGN to directly recognize small dimensional assemblies induced by small molecules. Cocaine and its split aptamer (Capt assembly) are chosen as the model set. By introducing 20% formamide into CGN test buffer, high cocaine-specific distinguishing of the 113 nt Capt assembly has been realized without any covalent label or additional signaling strategies. The signal-to-background discrimination is much enhanced compared with control characterizations such as gel electrophoresis and fluorescence resonance energy transfer (FRET). As a further innovation, we verify that low-noise CGN can also enhance the resolution of small conformational/size changes happening on the side chain of large dimensional substrates. Long duplex concatamers generated from the hybridization chain reaction (HCR) are selected as the model substrates. In the presence of cocaine, low-noise CGN has sensitively captured the current changes when the 26 nt aptamer segment is assembled on the side chain of HCR duplexes. This paper proves that the introduction of the low-noise mechanism has significantly improved the resolution of the solid-state nanopore at smaller and finer scales and thus may direct extensive and deeper research in the field of CGN-based analysis at both single-molecular and statistical levels, such as molecular recognition, assembly characterization, structure identification, information storage, and target index.
Collapse
Affiliation(s)
- Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhentong Zhu
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huan Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaojun Dong
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
50
|
Wu CT, Hsu JP. Electrokinetic behavior of bullet-shaped nanopores modified by functional groups: Influence of finite thickness of modified layer. J Colloid Interface Sci 2021; 582:741-751. [PMID: 32911418 DOI: 10.1016/j.jcis.2020.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
We examined theoretically the electrokinetic behavior of a bullet-shaped nanopore modified by a functional layer, focusing on the influence of its thickness. The nanopore contains both fixed surface charge coming from the original bare surface, and space fixed charge from the modified layer. The results of numerical simulation reveal that the presence of this layer is crucial to the electrokinetic behavior of the nanopore. In particular, its softness is capable of influencing ionic profiles through electroosmotic flow (EOF). Unlike a conical nanopore where its surface normal vector is constant, that of the present bullet-shaped nanopore varies along the pore axis, thereby affecting the degree of EOF, which in turn, can make the ionic profile inside the modified layer more uniform. This is crucial to the applications of the nanopore, for example, in mimicking biological membranes and sensing metal ions.
Collapse
Affiliation(s)
- Chun-Ting Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|