1
|
Xu F, Zhou J, Huang Q, Xu C, Yang H, Fan H, Yang X. Screening and validation of sponge materials assembled to a sampling device for enrichment and determination of amphetamine drugs in exhaled breath by HPLC-TQ-MS/MS. Talanta 2025; 293:127994. [PMID: 40179684 DOI: 10.1016/j.talanta.2025.127994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Exhaled breath aerosol (EBA) analysis of the amphetamine drugs (AMPs) and ephedrine (EPH) has a great potential to monitor illicit drug abuse due to its simple, non-invasive, convenient, and easily accepted sampling. Nevertheless, the extremely low concentration of AMPs and EPH in EBA poses great challenges to instrumental analysis. In this study, a self-designed sampling device equipped with sponge-based material was developed and coupled to high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-TQ-MS/MS) for monitoring of the AMPs and EPH in EBA. Accordingly, the cellulose sponge with high adsorption performance and low expiratory resistance was screened out from multiple commercial sponges, optimized its configuration performance, and assembled to the sampling device, reaching the adsorption rates of 81.6 ± 2.2-98.9 ± 2.5 % for EPH and typical AMPs, including amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine. The combination of HPLC-TQ-MS/MS and the device containing cellulose sponge showed excellent analytical performance, with linearity in the range of 30.0-20000.0 pg/filter (R ≥ 0.9901), low detection limit of 1.6-8.4 pg/filter, and the recoveries of 86.5-94.5 %. The device also exhibited good reusability and applicability for the simulated EBAs at different levels. Furthermore, the proposed method was successfully applied for determination of EPH in volunteers' EBAs, whose contents suggested a good correlation with that in saliva. Kinetic analysis provided insights into the adsorption mechanism, further validating reliability of the method. Overall, the simple, cheap, available, and reusable cellulose sponge assembled to sampling device was advantageous for enriching and monitoring of trace illicit drugs in human EBA.
Collapse
Affiliation(s)
- Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China; The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou, 510535, China
| | - Jiedan Zhou
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou, 510535, China
| | - Qingda Huang
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou, 510535, China
| | - Congfei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Cao S, Liu Y, Du Y, Li W, Dou X. Monitoring Amphetamine and Methamphetamine Mixtures Based on Deep Learning Involves Colorimetric Sensing. Anal Chem 2025; 97:9492-9500. [PMID: 40279188 DOI: 10.1021/acs.analchem.5c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Precise recognition and discrimination of highly similar analytes (either in structure or property) with distinguishable sensing responses are challenging but significant in the practical application of drug seizing, food additive inspection, environmental monitoring, etc. Here, a colorimetric differentiation strategy was proposed by modulating the probe structure to influence the aggregate behaviors of the reaction products; thus, amphetamine (AMP) and methamphetamine (MA) with the sole structural difference of a methyl group were successfully discriminated. Specifically, upon recognition of the furan ring-opening reaction, the probe was screened out from a series of furan-based probes with different electron-withdrawing groups, which further facilitated the aggregate state difference of reaction products and then amplified the difference in colorimetric responses. In addition, the probe-embedded porous polymer substrate was fabricated to accelerate the response for trace AMP and MA, and the judgment of doping ratios of AMP and MA in the mixtures was realized for the first time by further combining with the self-developed Drugs Analyst as well as deep learning algorithms. Hence, we envisage that this structural-modulation-enabled colorimetric differentiation strategy will shine light on the multianalyte discrimination from aspects of optical sensing development and multidisciplinary fusion.
Collapse
Affiliation(s)
- Sifan Cao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenlong Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025; 62:198-227. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Kim EJ, Kim Y, Kwon S, Kang SH, Park TH. Forensic electrochemical sensor for fentanyl and morphine detection using an Au-NiO x -electrodeposited carbon electrode. RSC Adv 2025; 15:13497-13504. [PMID: 40297009 PMCID: PMC12035603 DOI: 10.1039/d5ra00523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
The overuse and abuse of narcotics, such as fentanyl and morphine, has resulted in serious threats to human health. Although current detection methods are generally effective, they rely on specialized laboratory equipment. Herein, a forensic electrochemical sensor was developed for the on-site detection of trace quantities of fentanyl and morphine. A screen-printed carbon electrode (SPCE) was modified via the electrodeposition of Au and nickel oxide (NiO x ) to enhance its electrochemical activity. Au electrodeposition was performed using a multi-potential step method that alternated between deposition and resting potentials (-0.2 and 0.7 V, respectively) with pulse durations of 1 s and 500 ms, respectively. Subsequently, NiO x deposited onto the Au-SPCE by applying a constant potential of -1.0 V for 1 h resulted in uniform NiO x nanofilms on the three-dimensional leaf-shaped Au structure, as observed by focused ion beam scanning electron microscopy. In addition, X-ray diffraction and photoelectron spectroscopy analyses confirmed the presence and chemical states of Au and NiO x on the SPCE surface. The electrochemical sensing performance of the modified SPCE was evaluated using linear sweep voltammetry, which revealed detectable signals at 0.85 and 0.5 V for fentanyl and morphine, respectively. Moreover, the calibration curves exhibited a linear relationship between concentration and current density, thereby confirming the sensitivity of the sensor electrode. The distinct oxidation peak potentials enabled the simultaneous detection of fentanyl and morphine in mixed solutions, confirming its selectivity for target molecules. The findings of this study demonstrate the potential of Au-NiO x -modified SPCEs as a practical tool for rapid and selective electrochemical detection of narcotic substances.
Collapse
Affiliation(s)
- Eun Joong Kim
- Advanced Institute of Convergence Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Yekyung Kim
- Advanced Institute of Convergence Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Soyeon Kwon
- Advanced Institute of Convergence Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Sung Ho Kang
- Advanced Institute of Convergence Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Tae Hoon Park
- Advanced Institute of Convergence Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| |
Collapse
|
5
|
Zhao J, Wang Y, Liu B. Doping Detection Based on the Nanoscale: Biosensing Mechanisms and Applications of Two-Dimensional Materials. BIOSENSORS 2025; 15:227. [PMID: 40277541 PMCID: PMC12024749 DOI: 10.3390/bios15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Doping undermines fairness in sports and threatens athlete health, while conventional detection methods like LC-MS and GC-MS face challenges such as complex procedures, matrix interferences, and lengthy processing times, limiting on-site applications. Two-dimensional (2D) materials, including graphene, MoS2, and metal-organic frameworks (MOFs), offer promising solutions due to their large surface areas, tunable electronic structures, and special interactions with doping agents, such as hydrogen bonding, π-π stacking, and electrostatic forces. These materials enable signal transduction through changes in conductivity or fluorescence quenching. This review highlights the use of 2D materials in doping detection. For example, reduced graphene oxide-MOF composites show high sensitivity for detecting anabolic steroids like testosterone, while NiO/NGO nanocomposites exhibit strong selectivity for stimulants like ephedrine. However, challenges such as environmental instability and high production costs hinder their widespread application. Future efforts should focus on improving material stability through chemical modifications, reducing production costs, and integrating these materials into advanced systems like machine learning. Such advancements could revolutionize doping detection, ensuring fairness in sports and protecting athlete health.
Collapse
Affiliation(s)
| | | | - Bing Liu
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, China; (J.Z.); (Y.W.)
| |
Collapse
|
6
|
Manes A, Sran J, Bach H. Assessing the efficacy of nanoparticles in reversing opioid poisoning and preventing renarcotization. Nanomedicine (Lond) 2025; 20:755-763. [PMID: 39937043 PMCID: PMC11970740 DOI: 10.1080/17435889.2025.2463864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Opioid poisoning, also known as opioid overdose or opioid toxicity, is a medical emergency where there is excessive binding of opioids to mu-opioid receptors, leading to analgesia, sedation, and respiratory depression. Naloxone is currently the recommended treatment for reversing opioid poisoning; however, it has limitations, such as a shorter half-life than most opioids, which can lead to renarcotization. Multiple nanoparticle (NP) formulations have addressed this limitation by exhibiting a longer half-life as well as successfully antagonizing the effects of opioids. This review explores the polymer-, lipid-, and peptide-based NP formulations, which have been studied as alternatives for naloxone. NP-naloxone formulations have potential for implementation into clinical practice, yet their realization hinges on investment in research.
Collapse
Affiliation(s)
- Akash Manes
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joban Sran
- Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Cao S, Liu Y, Guo Y, Zu B, Yan F, Guo DS, Dou X. Highly Sensitive, Specific, and Fast Fluorescent Sensing of Amphetamine via Structural Regulation. ACS Sens 2025; 10:1998-2006. [PMID: 40080841 DOI: 10.1021/acssensors.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
How to modulate the molecular structure to finely manipulate the sensing performance is of great significance for propelling the oriented design of the optical sensing probe. Here, by taking the optical detection toward amphetamine (AMP) as a model, a structural regulation strategy for the D-π-A probe was proposed to manipulate the reaction activity and optical response. The optimal probe was screened out from a series of D-π-A molecules with an electrophilic site owing to its faster response and more remarkable emission shift, as well as the desirable specificity. In particular, it was found that the probe reactivity induced two trade-off effects. First, it is kinetically expressed by the reaction time that greatly affects the sensitivity (emission shift), and second, it thermodynamically determines the specificity. Upon fine modulation, the optimal probe in the solid state integrated in a portable sensing chip was demonstrated with fast and visualized analysis for AMP in complicated scenarios. Overall, the proposed structure-performance correlation and the mediation on the trade-off effect would provide an in-depth insight for the oriented design of an optical sensor with a desirable sensing performance.
Collapse
Affiliation(s)
- Sifan Cao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Guo
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Fei Yan
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dong-Sheng Guo
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Shao S, Wang X, Sorial C, Sun X, Xia X. Sensitive Colorimetric Lateral Flow Assays Enabled by Platinum-Group Metal Nanoparticles with Peroxidase-Like Activities. Adv Healthc Mater 2025; 14:e2401677. [PMID: 39108051 PMCID: PMC11799360 DOI: 10.1002/adhm.202401677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Indexed: 02/07/2025]
Abstract
The last several decades have witnessed the success and popularity of colorimetric lateral flow assay (CLFA) in point-of-care testing. Driven by increasing demand, great efforts have been directed toward enhancing the detection sensitivity of CLFA. Recently, platinum-group metal nanoparticles (PGM NPs) with peroxidase-like activities have emerged as a type of promising colorimetric labels for enhancing the sensitivity of CLFA. By incorporating a simple and rapid post-treatment process, the PGM NP-based CLFAs are orders of magnitude more sensitive than conventional gold nanoparticle-based CLFAs. In this perspective, the study begins with introducing the design, synthesis, and characterization of PGM NPs with peroxidase-like activities. The current techniques for surface modification of PGM NPs are then discussed, followed by operation and optimization of PGM NP-based CLFAs. Afterward, opinions are provided on the social impact of PGM NP-based CLFAs. Lastly, this perspective is concluded with an outlook of future research directions in this emerging field, where the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Shikuan Shao
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaochuan Wang
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Caroline Sorial
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohan Sun
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
9
|
Ai Z, Cai H, Liu C, Zhao Y, Fu Q, Fan N, Li Y, Li S, Zhou S, Li C, Li J, Ding S, Chen R. Ultrasensitive Bi-Mode Lateral-Flow Assay via UCNPs-Based Host-Guest Assembly of Fluorescent-Colorimetric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410947. [PMID: 40035510 DOI: 10.1002/smll.202410947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/17/2025] [Indexed: 03/05/2025]
Abstract
Fluorescent-colorimetric nanoparticles (FCNPs) attract considerable interest as an emerging dual-signal reporter for on-site qualitative/quantitative point-of-care testing. However, the suboptimal signaling components and self-assembled structure lacking physical isolation in traditional FCNPs result in low fluorescence brightness, poor stability, and strong internal filtration effect (IFE), which severely limits their wide application in lateral flow assay (LFA). Here, ordered self-assembly for hydrophobic upconversion nanoparticles (UCNPs) is developed using 3D porous space magnetic dendritic mesoporous silica (MS), stepwise surface silanization, and polydopamine (PDA) flexible scaffold modification to fabricate MS@UCNPs@PDA (MSUD). With rational design, MSUD improves stability and luminescence intensity (131 times higher than quantum dot-based fluorophores), and also eliminates IFE and fluorescence background interference on LFA strips. The detection limits of MSUD-labeled LFA for qualitative and quantitative detection of methamphetamine by naked eye-based colorimetric and smartphone-based fluorescence strategy are 1.047 × 104 pg mL-1 and 47.25 pg mL-1, ≈10- and 2116- times lower than that of gold nanoparticles-LFA, respectively. The practicality of the MSUD-based LFA is validated in 83 urine/hair forensic samples, with the quantitative determination results in good agreement with the liquid chromatography-mass spectrometer data. This work presents an innovative strategy for constructing FCNPs, facilitating their progressive development and widespread applications.
Collapse
Affiliation(s)
- Zhujun Ai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Huan Cai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing, 400062, P. R. China
| | - Yan Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Qing Fu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yujian Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Siqiao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Song Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chunyang Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Juan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
- Western Institute of Digital-Intelligent Medicine, Chongqing National Biological Industry Base, Chongqing, 401329, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
- Western Institute of Digital-Intelligent Medicine, Chongqing National Biological Industry Base, Chongqing, 401329, P. R. China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
- Western Institute of Digital-Intelligent Medicine, Chongqing National Biological Industry Base, Chongqing, 401329, P. R. China
| |
Collapse
|
10
|
Cai Z, Huo Z, Li G, Cheng X, Xiao F, Du Y, Zu B, Dou X. Precise Electron-Withdrawing Strength Regulation of π-Conjugate Bridge-Boosted Specific Detection toward α-Methyltryptamine. Anal Chem 2025; 97:2418-2427. [PMID: 39846813 DOI: 10.1021/acs.analchem.4c05950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The specific fluorescent detection of α-methyltryptamine (AMT) presents a great challenge because similar amine groups and benzene rings exist in a variety of amines. Here, we show the precise modulation of the electron-withdrawing strength of the π-conjugate bridge in aldehyde-containing Schiff base-based fluorescent probes for ultratrace AMT discrimination. It is found that different electron-withdrawing groups -C6H4, -C6H2N2, and -C6H2Br2 as the π-conjugate bridge of the 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF)-based probes can classify and identify organic amines with different amine nucleophilicities. Notably, the probe with -C6H2Br2 as the π-conjugate bridge, denoted as BrFS-TCF, which has the highest electrophilicity of the recognition site, shows a superior nM-level limit of detection (LOD) and an instant response time (<0.1 s) toward AMT. Especially, it shows an excellent selectivity facing the secondary amines, tertiary amines, aromatic amines, and even primary amines. The present strategy would provide a new pathway for chemical substances with similar structures and properties and especially for fighting against illegal drugs.
Collapse
Affiliation(s)
- Zhenzhen Cai
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhiheng Huo
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Gaosheng Li
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xu Cheng
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China
| | - Fang Xiao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Nouwairi R, Jones CK, Charette ME, Holmquist E, Golabek Z, Landers JP. Automated Nanoliter Volume Assay Optimization on a Cost-Effective Microfluidic Disc. Anal Chem 2025; 97:300-311. [PMID: 39731577 PMCID: PMC11740179 DOI: 10.1021/acs.analchem.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Optimizing multireagent assays often requires successive titration of individual components until the optimal combination of conditions is achieved. This process is time-consuming, laborious, and often expensive since parallelized experimentation requires bulk consumption of reagents. Microfluidics presents a solution through miniaturization of standard processes by reducing reaction volume, executing multiple parallel workflows, and enabling automation. While single-digit microliter reactions can be effective, scaling to nanoliter volumes without employing droplets is difficult. We describe a cost-effective, customizable centrifugal microdisc for optimizing assays pertinent to a broad array of applications. An automated two-stage metering process leverages tunable, laser-actuated valves that retain defined fluidic volumes upon opening and meter discrete nanoliter volumes into downstream architecture. We demonstrate that ∼150 nL volumes could be metered and tuned for specific applications. We illustrate the potential for controlled metering of up to four reagents with high parallelization for rapid, cost-effective assay optimization with minimal manual intervention.
Collapse
Affiliation(s)
- Renna
L. Nouwairi
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Carter K. Jones
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Maura E. Charette
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Emilee Holmquist
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Zoey Golabek
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - James P. Landers
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Mechanical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Department
of Pathology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Muneer S, Smith M, Bazley MM, Cozzolino D, Blanchfield JT. Detection of low-level fentanyl concentrations in mixtures of cocaine, MDMA, methamphetamine, and caffeine via surface-enhanced Raman spectroscopy. J Forensic Sci 2025; 70:73-83. [PMID: 39526510 DOI: 10.1111/1556-4029.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) was utilized to measure low-level fentanyl concentrations mixed in common cutting agents, cocaine, 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, and caffeine. Mixtures were prepared with a fentanyl concentration range of 0-339 μM. Data was initially analyzed by plotting the area of a diagnostic peak (1026 cm-1) against concentration to generate a calibration model. This method was successful with fentanyl/MDMA samples (LOD 0.04 μM) but not for the other mixtures. A chemometric approach was then employed. The data was evaluated using principal component analysis (PCA), partial least squares (PLS1) regression, and linear discriminant analysis (LDA). The LDA model was used to classify samples into one of three designated concentration ranges, low = 0-0.4 mM, medium = 0.4-14 mM, or high >14 mM, with fentanyl concentrations correctly classified with greater than 85% accuracy. This model was then validated using a series of "blind" fentanyl mixtures and these unknown samples were assigned to the correct concentration range with an accuracy >95%. The PLS1 model failed to provide accurate quantitative assignments for the samples but did provide an accurate prediction for the presence or absence of fentanyl. The combination of the two models enabled accurate quantitative assignment of fentanyl in binary mixtures. This work establishes a proof of concept, indicating a larger sample size could generate a more accurate model. It demonstrates that samples, containing variable, low concentrations of fentanyl, can be accurately quantified, using SERS.
Collapse
Affiliation(s)
- Saiqa Muneer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Smith
- Research and Scientific Branch, Queensland Fire and Emergency Services, Brisbane, Queensland, Australia
| | - Mikaela M Bazley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Wu J, Zhang Y, Zhang M, Dong L, Zou B, Jin J, Liu Y, Yu D, Xu Y, Fan Y, Ouyang Z, Shen Q, Wang H. Rapid on-site detection of illicit drugs in urine using C18 pipette-tip based solid-phase extraction coupled with a miniaturized mass spectrometer. J Chromatogr A 2024; 1738:465485. [PMID: 39515206 DOI: 10.1016/j.chroma.2024.465485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Drug abuse is a social issue worldwide, and there is an increasing demand for on-site rapid detection of illicit drugs. In this study, a rapid and simple analytical method for the detection of 6-monoacetylmorphine (6-MAM), methamphetamine (MA), methylenedioxymethamphetamine (MDMA), ketamine (K), norketamine (NK), and cocaine (COC) in urine was developed. The developed method combines C18 pipette-tip based solid-phase extraction (C18 PT-SPE) with a miniaturized mass spectrometer (miniMS), exhibiting remarkable simplicity, high sensitivity, and strong reliability, compared with the conventional method. The optimal extraction and elution conditions for C18 PT-SPE were considered as 9 and 3 aspirating-dispensing cycles, respectively. The miniMS parameters including spray voltage, isolation potential, and collision-induced dissociation energy for the detection of these six illicit drugs were optimized using a nano-electrospray ionization method. The limit of detection (LOD), limit of quantification (LOQ), linear range, and linearity for the analysis of six illicit drugs in urine with the proposed C18 PT-SPE-miniMS method were determined. Except for the LOD of K and COC was determined as 0.5 and 0.25 ng mL-1 respectively, and the LOD of 6-MAM MA, MDMA, and NK was determined as 1 ng mL-1. This method enables rapid on-site detection, providing easier operation, lower cost, and better portability compared to conventional methods, making it a potential tool in drug crime investigation and forensic science.
Collapse
Affiliation(s)
- Jiahui Wu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, PR China; Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China
| | - Manman Zhang
- Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, PR China
| | - Linpei Dong
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Bo Zou
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Jiabin Jin
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, PR China
| | - Yong Liu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, PR China
| | - Danxia Yu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, PR China
| | - Yu Xu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, PR China
| | - Yilei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, PR China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China.
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, PR China.
| |
Collapse
|
14
|
Anzar N, Suleman S, Singh Y, Kumari S, Parvez S, Pilloton R, Narang J. The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors-A Comprehensive Review. BIOSENSORS 2024; 14:477. [PMID: 39451690 PMCID: PMC11506482 DOI: 10.3390/bios14100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The increasing use of illicit drugs has become a major global concern. Illicit drugs interact with the brain and the body altering an individual's mood and behavior. As the substance-of-abuse (SOA) crisis continues to spread across the world, in order to reduce trafficking and unlawful activity, it is important to use point-of-care devices like biosensors. Currently, there are certain conventional detection methods, which include gas chromatography (GC), mass spectrometry (MS), surface ionization, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemiluminescence (ECL), high-performance liquid chromatography (HPLC), etc., for the detection of abused drugs. These methods have the advantage of high accuracy and sensitivity but are generally laborious, expensive, and require trained operators, along with high sample requirements, and they are not suitable for on-site drug detection scenarios. As a result, there is an urgent need for point-of-care technologies for a variety of drugs that can replace conventional techniques, such as a biosensor, specifically an immunosensor. An immunosensor is an analytical device that integrates an antibody-based recognition element with a transducer to detect specific molecules (antigens). In an immunosensor, the highly selective antigen-antibody interaction is used to identify and quantify the target analyte. The binding event between the antibody and antigen is converted by the transducer into a measurable signal, such as electrical, optical, or electrochemical, which corresponds to the presence and concentration of the analyte in the sample. This paper provides a comprehensive overview of various illicit drugs, the conventional methods employed for their detection, and the advantages of immunosensors over conventional techniques. It highlights the critical need for on-site detection and explores emerging point-of-care testing methods. The paper also outlines future research goals in this field, emphasizing the potential of advanced technologies to enhance the accuracy, efficiency, and convenience of drug detection.
Collapse
Affiliation(s)
- Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Yashda Singh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Supriya Kumari
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India;
| | - Roberto Pilloton
- National Research Council, Department of Chemical Sciences and Materials Technology, Institute of Crystallography, 00015 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.); (S.K.)
| |
Collapse
|
15
|
Bae SK, Kim SY, Kim YS, Myung S, Seo JH. Ionic Liquid-Based Hybrid Gel Microcolumns for Enhanced Narcotic Detection in Portable Micro-Gas Chromatography. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39344136 DOI: 10.1021/acsami.4c10094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As the societal issue of increasing global illicit drug usage emerges, there is a growing demand for more portable and versatile drug detectors. Traditional drug analysis techniques such as gas chromatography (GC), liquid chromatography (LC), and Fourier transform infrared spectroscopy (FTIR) face significant challenges in adapting to diverse real-world applications due to their size, cost, and power requirements. While advancements have been made in the development of on-site drug detection methods such as fluorescence, stereoresonance energy transfer (FRET), colorimetric, electrochemical sensing, and lateral flow assays (LFAs), their reliance on specific reactive materials poses limitations in effectively detecting a wide range of narcotics. Therefore, this study proposes the development of specialized microcolumns with optimized stationary phases for next-generation portable microfabricated GC-based narcotic detectors. The stationary phase consists of a hybrid gel incorporating the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and OV-1. The stationary phase not only enhances interactions between drug analytes but also demonstrates improved separation characteristics among various narcotic substances. Additionally, the principles of the separation results were validated through density functional theory (DFT) analysis, and the effective separation of over seven types of narcotics was demonstrated through temperature optimization. This research lays the groundwork for the advancement of next-generation portable drug analyzers, offering significant potential in the field.
Collapse
Affiliation(s)
- Sung-Kuk Bae
- Department of Mechanical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791, Republic of Korea
| | - So Young Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea
| | - Yong-Sung Kim
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea
| | - Jung Hwan Seo
- Department of Mechanical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791, Republic of Korea
| |
Collapse
|
16
|
Marvi PK, Ahmed SR, Das P, Ghosh R, Srinivasan S, Rajabzadeh AR. Prunella vulgaris-phytosynthesized platinum nanoparticles: Insights into nanozymatic activity for H 2O 2 and glutamate detection and antioxidant capacity. Talanta 2024; 274:125998. [PMID: 38574541 DOI: 10.1016/j.talanta.2024.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 μM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 μM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Raja Ghosh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
17
|
Dang KPT, Nguyen TTG, Cao TD, Le VD, Dang CH, Duy NPH, Phuong PTT, Huy DM, Kim Chi TT, Nguyen TD. Biogenic fabrication of a gold nanoparticle sensor for detection of Fe 3+ ions using a smartphone and machine learning. RSC Adv 2024; 14:20466-20478. [PMID: 38946772 PMCID: PMC11208897 DOI: 10.1039/d4ra03265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine learning for detection of Fe3+ ions in water. AuNPs were synthesized using the aqueous extract of Eleutherine bulbosa leaf as reductants and stabilizing agents. Physicochemical analyses revealed diverse AuNP shapes and sizes with an average size of 19.8 nm, with a crystalline structure confirmed via SAED and XRD techniques. AuNPs exhibited high sensitivity and selectivity in detection of Fe3+ ions through UV-vis spectroscopy and smartphones, relying on nanoparticle aggregation. To enhance image quality, we developed a lightbox and implemented a reference color value for standardization, significantly improving performance of machine learning algorithms. Our method achieved approximately 6.7% higher evaluation metrics (R 2 = 0.8780) compared to non-normalized approaches (R 2 = 0.8207). This work presented a promising tool for quantitative Fe3+ ion analysis in water.
Collapse
Affiliation(s)
- Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - T Thanh-Giang Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tien-Dung Cao
- School of Information Technology, Tan Tao University Long An Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Nguyen Phuc Hoang Duy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Pham Thi Thuy Phuong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Do Manh Huy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| |
Collapse
|
18
|
Lu Y, Cao Y, Tang X, Hu N, Wang Z, Xu P, Hua Z, Wang Y, Su Y, Guo Y. Deep learning-assisted mass spectrometry imaging for preliminary screening and pre-classification of psychoactive substances. Talanta 2024; 272:125757. [PMID: 38368831 DOI: 10.1016/j.talanta.2024.125757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Currently, it is of great urgency to develop a rapid pre-classification and screening method for suspected drugs as the constantly springing up of new psychoactive substances. In most researches, psychoactive substances classification approaches depended on the similar chemical structures and pharmacological action with known drugs. Such approaches could not face the complicated circumstance of emerging new psychoactive substances. Herein, mass spectrometry imaging and convolutional neural networks (CNN) were used for preliminary screening and pre-classification of suspected psychoactive substances. Mass spectrometry imaging was performed simultaneously on two brain slices as one was from blank group and another one was from psychoactive substance-induced group. Then, fused neurotransmitter variation mass spectrometry images (Nv-MSIs) reflecting the difference of neurotransmitters between two slices were achieved through two homemade programs. A CNN model was developed to classify the Nv-MSIs. Compared with traditional classification methods, CNN achieved better estimation accuracy and required minimal data preprocessing. Also, the specific region on Nv-MSIs and weight of each neurotransmitter that affected the classification most could be unraveled by CNN. Finally, the method was successfully applied to assist the identification of a new psychoactive substance seized recently. This sample was identified as cannabinoids, which greatly promoted the screening process.
Collapse
Affiliation(s)
- Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuqi Cao
- Technical Centre, Shanghai Tobacco (Group) Corp., Shanghai, 200082, China
| | - Xiaohang Tang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Na Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhengyong Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100193, China
| | - Zhendong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100193, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100193, China.
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Wei Y, Yang L, Ye Y, Liao L, Dai H, Wei Z, Lin Y, Zheng C. A simple aptamer-dye fluorescence sensor for detecting Δ9-tetrahydrocannabinol and its metabolite in urban sewage. Chem Commun (Camb) 2024; 60:5205-5208. [PMID: 38652014 DOI: 10.1039/d4cc00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This work developed an aptamer-dye complex as a label-free ratiometric fluorescence sensor for rapid analysis of THC and its metabolite in sewage samples. Integrated with a portable fluorescence capture device, this sensor exhibited excellent sensitivity with visualization of as low as 0.6 μM THC via naked-eye observation, and THC analysis can be accomplished within 4 min, which would be a complementary tool for quantifying THC in sewage samples to estimate cannabis consumption.
Collapse
Affiliation(s)
- Yingnan Wei
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Lin Yang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Ye
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Linchuan Liao
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hao Dai
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zeliang Wei
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Lin
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
20
|
Zhao Y, Guo Y, Xu Z, Lv T, Wang L, Li M, Chen X, Liu B, Peng X. Ratiometric determination of etomidate based on an albumin-based indicator displacement assay (IDA). Chem Commun (Camb) 2024; 60:4691-4694. [PMID: 38592772 DOI: 10.1039/d4cc01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The first fluorescent sensor based on the indicator displacement assay (IDA) for on-site determination of etomidate.
Collapse
Affiliation(s)
- Yutian Zhao
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yanan Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, P. R. China
| | - Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Mingle Li
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
21
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
22
|
Lee T, Park J, Oh SH, Cheong DY, Roh S, You JH, Hong Y, Lee G. Glucose Oxidase Activity Colorimetric Assay Using Redox-Sensitive Electrochromic Nanoparticle-Functionalized Paper Sensors. ACS OMEGA 2024; 9:15493-15501. [PMID: 38585131 PMCID: PMC10993408 DOI: 10.1021/acsomega.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Glucose oxidase (GOx) activity assays are vital for various applications, including glucose metabolism estimation and fungal testing. However, conventional methods involve time-consuming and complex procedures. In this study, we present a colorimetric platform for in situ GOx activity measurement utilizing redox-sensitive electrochromic nanoparticles based on polyaniline (PAni). The glucose-adsorbed colorimetric paper sensor, herein termed Glu@CPS, is created by immobilizing ferrocene and glucose onto paper substrates that have been functionalized with PAni nanoparticles. Glu@CPS not only demonstrated rapid detection (within 5 min) but also exhibited remarkable selectivity for GOx and a limit of detection as low as 1.25 μM. Moreover, Glu@CPS demonstrated consistent accuracy in the measurement of GOx activity, exhibiting no deviations even after being stored at ambient temperature for a duration of one month. To further corroborate the effectiveness of this method, we applied Glu@CPS in the detection of GOx activity in a moldy red wine. The results highlight the promising potential of Glu@CPS as a convenient and precise platform for GOx activity measurement in diverse applications including food quality control, environmental monitoring, and early detection of fungal contamination.
Collapse
Affiliation(s)
- Taeha Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Jeongmin Park
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
| | - Seung Hyeon Oh
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Da Yeon Cheong
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Jae Hyun You
- Division
of Convergence Business, Korea University, Sejong 30019, South Korea
| | - Yoochan Hong
- Department
of Medical Device, Korea Institute of Machinery
and Materials (KIMM), Daegu 42994, South Korea
| | - Gyudo Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| |
Collapse
|
23
|
Balamurugan TST, Stelmaszczyk P, Wietecha-Posłuszny R, Poltorak L. Electroanalytical characterization of clozapine at the electrified liquid-liquid interface and its detection in soft and hard drinks. Analyst 2024; 149:2073-2083. [PMID: 38415352 DOI: 10.1039/d3an02188b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Clozapine (CZ) is a prescribed benzodiazepine psychiatric drug that is often possessed as an illicit drug and is associated with drug-facilitated sexual assaults (DFSA) due to its strong sedative capabilities. Hence, we propose an electrified liquid-liquid interface (eLLI) based transducing element as an alternative electroanalytical platform for rapid screening of CZ in soft and hard drinks which is habitually associated with DFSA crimes. First, molecular partitioning and the effect of chemical composition, pH, and the presence of ethanol in the biphasic configuration of the aqueous phase on the interfacial behaviour and analytical performance of the CZ at the eLLI have been investigated with voltammetry. Next, the electrochemical profiles of various soft and hard drinks were studied at the eLLI. The eLLI-based CZ sensor has shown a broad dynamic range (15-150 μM), lower detection limits (1μM), and adequate reliability towards rapid CZ screening in spiked soft and hard drink samples with reference to the standard chromatographic analysis.
Collapse
Affiliation(s)
- Thangaraj S T Balamurugan
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| | - Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
24
|
Usman M, Baig Y, Nardiello D, Quinto M. How new nanotechnologies are changing the opioid analysis scenery? A comparison with classical analytical methods. Forensic Sci Res 2024; 9:owae001. [PMID: 38560581 PMCID: PMC10981550 DOI: 10.1093/fsr/owae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Opioids such as heroin, fentanyl, raw opium, and morphine have become a serious threat to the world population in the recent past, due to their increasing use and abuse. The detection of these drugs in biological samples is usually carried out by spectroscopic and/or chromatographic techniques, but the need for quick, sensitive, selective, and low-cost new analytical tools has pushed the development of new methods based on selective nanosensors, able to meet these requirements. Modern sensors, which utilize "next-generation" technologies like nanotechnology, have revolutionized drug detection methods, due to easiness of use, their low cost, and their high sensitivity and reliability, allowing the detection of opioids at trace levels in raw, pharmaceutical, and biological samples (e.g. blood, urine, saliva, and other biological fluids). The peculiar characteristics of these sensors not only have allowed on-site analyses (in the field, at the crime scene, etc.) but also they are nowadays replacing the gold standard analytical methods in the laboratory, even if a proper method validation is still required. This paper reviews advances in the field of nanotechnology and nanosensors for the detection of commonly abused opioids both prescribed (i.e. codeine and morphine) and illegal narcotics (i.e. heroin and fentanyl analogues).
Collapse
Affiliation(s)
- Muhammad Usman
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Yawar Baig
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
| | - Donatella Nardiello
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
25
|
Clément P, Schlage WK, Hoeng J. Recent advances in the development of portable technologies and commercial products to detect Δ 9-tetrahydrocannabinol in biofluids: a systematic review. J Cannabis Res 2024; 6:9. [PMID: 38414071 PMCID: PMC10898188 DOI: 10.1186/s42238-024-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The primary components driving the current commercial fascination with cannabis products are phytocannabinoids, a diverse group of over 100 lipophilic secondary metabolites derived from the cannabis plant. Although numerous phytocannabinoids exhibit pharmacological effects, the foremost attention has been directed towards Δ9-tetrahydrocannabinol (THC) and cannabidiol, the two most abundant phytocannabinoids, for their potential human applications. Despite their structural similarity, THC and cannabidiol diverge in terms of their psychotropic effects, with THC inducing notable psychological alterations. There is a clear need for accurate and rapid THC measurement methods that offer dependable, readily accessible, and cost-effective analytical information. This review presents a comprehensive view of the present state of alternative technologies that could potentially facilitate the creation of portable devices suitable for on-site usage or as personal monitors, enabling non-intrusive THC measurements. METHOD A literature survey from 2017 to 2023 on the development of portable technologies and commercial products to detect THC in biofluids was performed using electronic databases such as PubMed, Scopus, and Google Scholar. A systematic review of available literature was conducted using Preferred Reporting Items for Systematic. Reviews and Meta-analysis (PRISMA) guidelines. RESULTS Eighty-nine studies met the selection criteria. Fifty-seven peer-reviewed studies were related to the detection of THC by conventional separation techniques used in analytical laboratories that are still considered the gold standard. Studies using optical (n = 12) and electrochemical (n = 13) portable sensors and biosensors were also identified as well as commercially available devices (n = 7). DISCUSSION The landscape of THC detection technology is predominantly shaped by immunoassay tests, owing to their established reliability. However, these methods have distinct drawbacks, particularly for quantitative analysis. Electrochemical sensing technology holds great potential to overcome the challenges of quantification and present a multitude of advantages, encompassing the possibility of miniaturization and diverse modifications to amplify sensitivity and selectivity. Nevertheless, these sensors have considerable limitations, including non-specific interactions and the potential interference of compounds and substances existing in biofluids. CONCLUSION The foremost challenge in THC detection involves creating electrochemical sensors that are both stable and long-lasting while exhibiting exceptional selectivity, minimal non-specific interactions, and decreased susceptibility to matrix interferences. These aspects need to be resolved before these sensors can be successfully introduced to the market.
Collapse
Affiliation(s)
- Pierrick Clément
- Centre Suisse d'Electronique Et de Microtechnique SA (CSEM), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland.
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Strasse 21, 51429, Bergisch Gladbach, Germany
| | - Julia Hoeng
- Biology Consultant, Max-Baermann-Strasse 21, 51429, Bergisch Gladbach, Germany
- Vectura Fertin Pharma, C/O Jagotec AG, Messeplatz 10, 4058, Basel, Switzerland
| |
Collapse
|
26
|
Alsulami T, Alzahrani A. Enhanced Nanozymatic Activity on Rough Surfaces for H 2O 2 and Tetracycline Detection. BIOSENSORS 2024; 14:106. [PMID: 38392024 PMCID: PMC10886513 DOI: 10.3390/bios14020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The needless use of tetracyclines (TCs) in foodstuffs is a huge health concern in low- and middle-income and Arab countries. Herein, a sensitive and faster monitoring system for H2O2 and TCs is proposed, utilizing the large surface-to-volume ratio of a non-spherical gold nanoparticle/black phosphorus nanocomposite (BP-nsAu NPs) for the first time. BP-nsAu NPs were synthesized through a single-step method that presented nanozymatic activity through 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation while H2O2 was present and obeyed the Michaelis-Menten equation. The nanozymatic activity of the BP-nsAu NPs was enhanced 12-fold and their detection time was decreased 83-fold compared to conventional nanozymatic reactions. The proposed method enabled us to quantify H2O2 with a limit of detection (LOD) value of 60 nM. Moreover, target-specific aptamer-conjugated BP-nsAu NPs helped us detect TCs with an LOD value of 90 nM. The present strategy provides a proficient route for low-level TC monitoring in real samples.
Collapse
Affiliation(s)
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Ahmed SR, Sherazee M, Das P, Shalauddin M, Akhter S, Basirun WJ, Srinivasan S, Rajabzadeh AR. Electrochemical assisted enhanced nanozymatic activity of functionalized borophene for H 2O 2 and tetracycline detection. Biosens Bioelectron 2024; 246:115857. [PMID: 38029708 DOI: 10.1016/j.bios.2023.115857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
This study unveils the electrochemically-enhanced nanozymatic activity exhibited by borophene during the reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. Herein, the surface of the pristine borophene was first modified with the addition of thiocyanate groups to improve hydroxyl radical (•OH) scavenging activity. Then, the oxidation reaction of TMB was accelerated under applied electrochemical potential. Both factors significantly improved the detection limit and drastically decreased the detection time. DPPH testing revealed that the radical scavenging nature of borophene was more than 70%, boosting its catalytic activity. In the presence of H2O2, borophene catalyzed the oxidation of TMB and produced a blue-colored solution that was linearly correlated with the concentration of H2O2 and allowed for the detection of H2O2 up to 38 nM. The present finding was further extended to nanozymatic detection of tetracyclines (TCs) using a target-specific aptamer, and the results were colorimetrically quantifiable up to 1 μM with a LOD value of 150 nM. Moreover, transferring the principles of the discussed detection method to form a portable and disposable paper-based system enabled the quantification of TCs up to 0.2 μM. All the sensing experiments in this study indicate that the nanozymatic activity of borophene has significantly improved under electrochemical potential compared to conventional nanozyme-based colorimetric detection. Hence, the present discovery of electrochemically-enhanced nanozymatic activity would be promising for various sensitive and time-dependent colorimetric sensor development initiatives in the future.
Collapse
Affiliation(s)
- Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, Canada, L8S 4L7.
| | - Masoomeh Sherazee
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, Canada, L8S 4L7
| | - Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L7, Canada
| | - Md Shalauddin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shamima Akhter
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Department of Biomedical Engineering, School of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, Canada, L8S 4L7.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario, Canada, L8S 4L7.
| |
Collapse
|
28
|
Goryński K, Sobczak Ł, Kołodziej D. Developing and Evaluating the Greenness of a Reliable, All-in-One Thin-Film Microextraction Protocol for Determining Fentanyl, Methadone, and Zolpidem in Plasma, Urine, and Oral Fluid. Molecules 2024; 29:335. [PMID: 38257248 PMCID: PMC10818652 DOI: 10.3390/molecules29020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
This paper proposes an all-in-one microextraction-based protocol capable of determining and quantifying fentanyl, methadone, and zolpidem in plasma, urine, and saliva at concentrations below those required by international regulatory organizations. A homemade thin-film microextraction device featuring an octyl-cyanopropyl stationary phase was coupled with LC-MS/MS. The proposed method was developed and validated according to FDA criteria, providing extraction efficiency values ranging from 26.7% to 76.2% with no significant matrix effects (2.6% to 15.5% signal suppression). The developed protocol provided low limits of quantification (mostly equal to 1 ng mL-1) and good reproducibility (intra- and inter-day RSDs of less than 9.6% and 12.0%, respectively) and accuracy (89% to 104% of the test concentration). An assessment of the protocol's environmental impact indicated that attention must be devoted to eliminating the use of toxic reagents and developing its capability for in situ sampling and in-field analysis using portable instruments. The proposed TFME-based protocol provides clinical laboratories with a versatile, one-step tool that enables the simultaneous monitoring of fentanyl, methadone, and zolpidem using the most popular biological matrices.
Collapse
Affiliation(s)
- Krzysztof Goryński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Łukasz Sobczak
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Dominika Kołodziej
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
29
|
Van Echelpoel R, Joosten F, Parrilla M, De Wael K. Progress on the Electrochemical Sensing of Illicit Drugs. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:413-442. [PMID: 38273206 DOI: 10.1007/10_2023_239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.
Collapse
|
30
|
Takahashi F, Shimosaka Y, Mori S, Kaneko M, Harayama Y, Kobayashi K, Shoji T, Seto Y, Tatsumi H, Jin J. Development of a Potential-Modulated Electrochemiluminescence Measurement System for Selective and Sensitive Determination of the Controlled Drug Codeine. Chem Pharm Bull (Tokyo) 2024; 72:271-279. [PMID: 38432909 DOI: 10.1248/cpb.c23-00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Codeine is a common analgesic drug that is a pro-drug of morphine. It also has a high risk of abuse as a recreational drug because of its extensive distribution as an OTC drug. Therefore, sensitive and selective screening methods for codeine are crucial in forensic analytical chemistry. To date, a commercial analytical kit has not been developed for dedicated codeine determination, and there is a need for an analytical method to quantify codeine in the field. In the present work, potential modulation was combined with electrochemiluminescence (ECL) for sensitive determination of codeine. The potential modulated technique involved applying a signal to electrodes by superimposing an AC potential on the DC potential. When tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) was used as an ECL emitter, ECL activity was confirmed for codeine. A detailed investigation of the electrochemical reaction mechanism suggested a characteristic ECL reaction mechanism involving electrochemical oxidation of the opioid framework. Besides the usual ECL reaction derived from the amine framework, selective detection of codeine was possible under the measurement conditions, with clear luminescence observed in an acidic solution. The sensitivity of codeine detection by potential modulated-ECL was one order of magnitude higher than that obtained with the conventional potential sweep method. The proposed method was applied to codeine determination in actual prescription medications and OTC drug samples. Codeine was selectively determined from other compounds in medications and showed good linearity with a low detection limit (150 ng mL-1).
Collapse
Affiliation(s)
| | - Yuki Shimosaka
- Department of Chemistry, Faculty of Science, Shinshu University
| | - Shuki Mori
- Department of Chemistry, Faculty of Science, Shinshu University
| | - Mayu Kaneko
- Department of Chemistry, Faculty of Science, Shinshu University
| | - Yuta Harayama
- Department of Legal Medicine, Shinshu University School of Medicine
| | - Kanya Kobayashi
- Department of Legal Medicine, Shinshu University School of Medicine
| | - Taku Shoji
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University
| | | | | | - Jiye Jin
- Department of Chemistry, Faculty of Science, Shinshu University
| |
Collapse
|
31
|
Beduk D, Beduk T, de Oliveira Filho JI, Ait Lahcen A, Aldemir E, Guler Celik E, Salama KN, Timur S. Smart Multiplex Point-of-Care Platform for Simultaneous Drug Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37247-37258. [PMID: 37499237 PMCID: PMC10416146 DOI: 10.1021/acsami.3c06461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Recently, illicit drug use has become more widespread and is linked to problems with crime and public health. These drugs disrupt consciousness, affecting perceptions and feelings. Combining stimulants and depressants to suppress the effect of drugs has become the most common reason for drug overdose deaths. On-site platforms for illicit-drug detection have gained an important role in dealing, without any excess equipment, long process, and training, with drug abuse and drug trafficking. Consequently, the development of rapid, sensitive, noninvasive, and reliable multiplex drug-detecting platforms has become a major necessity. In this study, a multiplex laser-scribed graphene (LSG) sensing platform with one counter, one reference, and three working electrodes was developed for rapid and sensitive electrochemical detection of amphetamine (AMP), cocaine (COC), and benzodiazepine (BZD) simultaneously in saliva samples. The multidetection sensing system was combined with a custom-made potentiostat to achieve a complete point-of-care (POC) platform. Smartphone integration was achieved by a customized application to operate, display, and send data. To the best of our knowledge, this is the first multiplex LSG-based electrochemical platform designed for illicit-drug detection with a custom-made potentiostat device to build a complete POC platform. Each working electrode was optimized with standard solutions of AMP, COC, and BZD in the concentration range of 1.0 pg/mL-500 ng/mL. The detection limit of each illicit drug was calculated as 4.3 ng/mL for AMP, 9.7 ng/mL for BZD, and 9.0 ng/mL for COC. Healthy and MET (methamphetamine) patient saliva samples were used for the clinical study. The multiplex LSG sensor was able to detect target analytes in real saliva samples successfully. This multiplex detection device serves the role of a practical and affordable alternative to conventional drug-detection methods by combining multiple drug detections in one portable platform.
Collapse
Affiliation(s)
- Duygu Beduk
- Central
Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Tutku Beduk
- Silicon
Austria Labs (SAL) GmbH, Europastraße 12, 9500 Villach, Austria
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Department
of Radiology, Weill Cornell Medicine, Dalio
Institute for Cardiovascular Imaging, New York, New York 10021, United States
| | - Ebru Aldemir
- Department
of Psychiatry, Faculty of Medicine, Izmir
Tinaztepe University, 35400 Buca, Izmir, Turkey
| | - Emine Guler Celik
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Suna Timur
- Central
Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
32
|
Chen M, Burn PL, Shaw PE. Luminescence-based detection and identification of illicit drugs. Phys Chem Chem Phys 2023; 25:13244-13259. [PMID: 37144605 DOI: 10.1039/d3cp00524k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Luminescence-based sensing is capable of being used for the sensitive, rapid, and in some cases selective detection of chemicals. Furthermore, the method is amenable to incorporation into handheld low-power portable detectors that can be used in the field. Luminescence-based detectors are now commercially available for explosive detection with the technology built on a strong foundation of science. In contrast, there are fewer examples of luminescence-based detection of illicit drugs, despite the pervasive and global challenge of combating their manufacture, distribution and consumption and the need for handheld detection systems. This perspective describes the relatively nascent steps that have been reported in the use of luminescent materials for the detection of illicit drugs. Much of the published work has focused on detection of illicit drugs in solution with less work on vapour detection using thin luminescent sensing films. The latter are better suited for handheld sensing devices and detection in the field. Illicit drug detection has been achieved via different mechanisms, all of which change the luminescence of the sensing material. These include photoinduced hole transfer (PHT) leading to quenching of the luminescence, disruption of Förster energy transfer between different chromophores by a drug, and chemical reaction between the sensing material and a drug. The most promising of these is PHT, which can be used for rapid and reversible detection of illicit drugs in solution and film-based sensing of drugs in the vapour phase. However, there are still significant knowledge gaps, for example, how vapours of illicit drugs interact with the sensing films, and how to achieve selectivity for specific drugs.
Collapse
Affiliation(s)
- M Chen
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - P L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - P E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
33
|
Gomez Cardoso A, Rahin Ahmed S, Keshavarz-Motamed Z, Srinivasan S, Reza Rajabzadeh A. Recent advancements of nanomodified electrodes - Towards point-of-care detection of cardiac biomarkers. Bioelectrochemistry 2023; 152:108440. [PMID: 37060706 DOI: 10.1016/j.bioelechem.2023.108440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
The increasing number of deaths from cardiovascular diseases has become a substantial concern in both developed and underdeveloped countries. Rapid and on-site monitoring of this disease is urgently important to control, prevent and make awareness of public health. Recently, a lot of focus has been placed on nanomaterials and modify these nanomaterials have been explored to detect cardiac biomarkers. By implementing biosensors that are modified with novel recognition elements and more stable nanomaterials, the use of electrochemistry for point-of-care devices is more realistic every day. This review focuses on the current state of nanomaterials conjugated biorecognition elements (enzyme integrated with nanomaterials, antibody conjugated nanomaterials and aptamer conjugated nanomaterials) for electrochemical cardiovascular disease detection. Specifically, a lot of attention has been given to the trends toward more stable biosensors that have increased the potential to be used as point-of-care devices for the detection of cardiac biomarkers due to their high stability and specificity. Moreover, the recent progress on biomolecule-free electrochemical nanosensors for cardiovascular disease detection has been considered. At last, the possibility and drawbacks of some of these techniques for point-of-care cardiac device development in the future have been discussed.
Collapse
Affiliation(s)
- Ana Gomez Cardoso
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Syed Rahin Ahmed
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
34
|
Pazuki D, Ghosh R, Howlader MMR. Nanomaterials-Based Electrochemical Δ 9-THC and CBD Sensors for Chronic Pain. BIOSENSORS 2023; 13:384. [PMID: 36979596 PMCID: PMC10046734 DOI: 10.3390/bios13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Chronic pain is now included in the designation of chronic diseases, such as cancer, diabetes, and cardiovascular disease, which can impair quality of life and are major causes of death and disability worldwide. Pain can be treated using cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) due to their wide range of therapeutic benefits, particularly as sedatives, analgesics, neuroprotective agents, or anti-cancer medicines. While little is known about the pharmacokinetics of these compounds, there is increasing interest in the scientific understanding of the benefits and clinical applications of cannabinoids. In this review, we study the use of nanomaterial-based electrochemical sensing for detecting Δ9-THC and CBD. We investigate how nanomaterials can be functionalized to obtain highly sensitive and selective electrochemical sensors for detecting Δ9-THC and CBD. Additionally, we discuss the impacts of sensor pretreatment at fixed potentials and physiochemical parameters of the sensing medium, such as pH, on the electrochemical performance of Δ9-THC and CBD sensors. We believe this review will serve as a guideline for developing Δ9-THC and CBD electrochemical sensors for point-of-care applications.
Collapse
Affiliation(s)
- Dadbeh Pazuki
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4K1, Canada;
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4LS, Canada;
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
35
|
Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, Ahmed SR, Rajabzadeh AR, Srinivasan S. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
36
|
Ultrasensitive and rapid detection of methamphetamine in forensic biological fluids using fluorescent apta-nanobiosensors based on CdTe quantum dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
37
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
González-Hernández J, Moya-Alvarado G, Alvarado-Gámez AL, Urcuyo R, Barquero-Quirós M, Arcos-Martínez MJ. Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Mikrochim Acta 2022; 189:483. [DOI: 10.1007/s00604-022-05578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
|
39
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
40
|
Vannoy KJ, Krushinski LE, Kong EF, Dick JE. Reagentless Voltammetric Identification of Cocaine from Complex Powders. Anal Chem 2022; 94:12638-12644. [PMID: 36066582 DOI: 10.1021/acs.analchem.2c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cocaine is one of the most commonly trafficked and abused drugs in the United States, and deployable field tests are important for rapid identification in nonlaboratory settings. At present, colorimetric tests exist for in-field determination, but these fundamentally suffer from interferent effects. Cocaine is an organic salt that is readily water soluble as a cation and almost insoluble in the deprotonated neutral form. Here, we take advantage of the electrochemical window of water to increase the pH at the electrode surface by driving water reduction, effectively electroprecipitating the cocaine base. The precipitate on the electrode surface is then electrochemically oxidized by a voltammetric sweep through sufficiently positive potentials. We demonstrate excellent selectivity to cocaine compared to common adulterants, such as procaine, lidocaine, benzocaine, caffeine, and levamisole. Finally, we detect cocaine on a carbon fiber microelectrode, demonstrating miniaturizability and allowing access to low-resistance media (e.g., tap water).
Collapse
Affiliation(s)
- Kathryn J Vannoy
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lynn E Krushinski
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edgar F Kong
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
41
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
42
|
Detection of 3,4-Methylene Dioxy Amphetamine in Urine by Magnetically Improved Surface-Enhanced Raman Scattering Sensing Strategy. BIOSENSORS 2022; 12:bios12090711. [PMID: 36140096 PMCID: PMC9496583 DOI: 10.3390/bios12090711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Abuse of illicit drugs has become a major issue of global concern. As a synthetic amphetamine analog, 3,4-Methylene Dioxy Amphetamine (MDA) causes serotonergic neurotoxicity, posing a serious risk to human health. In this work, a two-dimensional substrate of ITO/Au is fabricated by transferring Au nanoparticle film onto indium–tin oxide glass (ITO). By magnetic inducing assembly of Fe3O4@Au onto ITO/Au, a sandwich-based, surface-enhanced Raman scattering (SERS) detection strategy is designed. Through the use of an external magnet, the MDA is retained in the region of hot spots formed between Fe3O4@Au and ITO/Au; as a result, the SERS sensitivity for MDA is superior compared to other methods, lowering the limit of detection (LOD) to 0.0685 ng/mL and attaining a corresponding linear dynamic detection range of 5–105 ng/mL. As an actual application, this magnetically improved SERS sensing strategy is successfully applied to distinguish MDA in urine at trace level, which is beneficial to clinical and forensic monitors.
Collapse
|
43
|
Harpaz D, Bernstein N, Namdar D, Eltzov E. Portable biosensors for rapid on-site determination of cannabinoids in cannabis, a review. Biotechnol Adv 2022; 61:108031. [PMID: 36058440 DOI: 10.1016/j.biotechadv.2022.108031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Recent studies highlight the therapeutic virtues of cannabidiol (CBD). Furthermore, due to their molecular enriched profiles, cannabis inflorescences are biologically superior to a single cannabinoid for the treatment of various health conditions. Thus, there is flourishing demand for Cannabis sativa varieties containing high levels of CBD. Additionally, legal regulations around the world restrict the cultivation and consumption of tetrahydrocannabinol (THC)-rich cannabis plants for their psychotropic effects. Therefore, the use of cannabis varieties that are high in CBD is permitted as long as their THC content does not exceed a low threshold of 0.3%-0.5%, depending on the jurisdiction. These chemovars are legally termed 'hemp'. This controlled cannabinoid requirement highlights the need to detect low levels of THC, already in the field. In this review, cannabis profiling and the existing methods used for the detection of cannabinoids are firstly evaluated. Then, selected valuable biosensor technologies are discussed, which suggest portable, rapid, sensitive, reproducible, and reliable methods for on-site identification of cannabinoids levels, mainly THC. Recent cutting-edge techniques of promising potential usage for both cannabis and hemp analysis are identified, as part of the future cultivation and agricultural improvement of this crop.
Collapse
Affiliation(s)
- Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, POBox 6, Bet-Dagan 50250, Israel.
| | - Dvora Namdar
- Institute of Soil Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, POBox 6, Bet-Dagan 50250, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| |
Collapse
|
44
|
Shan X, Cao C, Yang B. Analytical Approaches for the Determination of Buprenorphine, Methadone and Their Metabolites in Biological Matrices. Molecules 2022; 27:molecules27165211. [PMID: 36014451 PMCID: PMC9415157 DOI: 10.3390/molecules27165211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The abuse of buprenorphine and methadone has grown into a rising worldwide issue. After their consumption, buprenorphine, methadone and their metabolites can be found in the human organism. Due to the difficulty in the assessment of these compounds by routine drug screening, the importance of developing highly sensitive analytical approaches is undeniable. Liquid chromatography tandem mass spectrometry is the preferable technique for the determination of buprenorphine, methadone and their metabolites in biological matrices including urine, plasma, nails or oral fluids. This research aims to review a critical discussion of the latest trends for the monitoring of buprenorphine, methadone and their metabolites in various biological specimens.
Collapse
|
45
|
Hu R, Yan Y, Jiang L, Huang C, Shen X. Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction. Mikrochim Acta 2022; 189:324. [PMID: 35939150 DOI: 10.1007/s00604-022-05405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted "light-up" AIE-MIP sensing method displayed excellent performance with a linear range of 2.0-12.0 μmol L-1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted "light-up" AIE-MIP sensing method was 0.3 μmol L-1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0-12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
46
|
Yence M, Cetinkaya A, Kaya SI, Ozkan SA. Recent Developments in the Sensitive Electrochemical Assay of Common Opioid Drugs. Crit Rev Anal Chem 2022; 54:882-895. [PMID: 35853096 DOI: 10.1080/10408347.2022.2099732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Opioids are a class of drugs used to treat moderate to severe pain and have short-term adverse effects. Nevertheless, they are considered necessary for pain management. However, well-known hazards are connected with an opioid prescription, such as overuse, addiction, and overdose deaths. For example, the death rate from opioid analgesic poisoning in the USA approximately doubled, owing to the overuse and addiction of opioid analgesics. Also, opioids are a very important group of analytes in forensic chemistry, so it is necessary to use reliable, fast, and sensitive analytical tools to determine opioid analgesics. This review focuses on the opioid overdose crisis, the properties of commonly used opioid drugs, their mechanism, effects, and some chromatographic and spectroscopic detection methods are explained briefly. Then most essentially recent developments covering the last ten years in the sensitive electrochemical methods of common opioid analgesics, their innovations and features, and future research directions are presented.
Collapse
Affiliation(s)
- Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
47
|
Akbari M, Mohammadnia MS, Ghalkhani M, Aghaei M, Sohouli E, Rahimi-Nasrabadi M, Arbabi M, Banafshe HR, Sobhani-Nasab A. Development of an electrochemical fentanyl nanosensor based on MWCNT-HA/ Cu-H3BTC nanocomposite. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
48
|
Rahin Ahmed S, Sherazee M, Srinivasan S, Reza Rajabzadeh A. Nanozymatic detection of thiocyanate through accelerating the growth of ultra-small gold nanoparticles/graphene quantum dots hybrids. Food Chem 2022; 379:132152. [PMID: 35063843 DOI: 10.1016/j.foodchem.2022.132152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
Thiocyanate (SCN-) concentration monitoring in food is important to ensure the health and safety of the consumers.A colorimetric detection of thiocyanate (SCN-) based on the nanozymatic activity of gold nanoparticle-graphene quantum dots (GQDs-Au NPs) hybrids in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 has been proposed. Here, a new synthesis method of GQDs directly from graphite was introduced. Transmission electron microscopy (TEM) images revealed that the size of the GQDs was 3-5 nm, and the emission peak appeared at 450 nm. As-synthesized GQDs was utilized to produce GQDs-Au NPs hybrids without additional chemicals. However, the presence of SCN- inhibits the growth of Au NPs, the resulting Au NPs are smaller in size. Moreover, SCN- group is well-known for hydroxyl radical (OH) scavenging activity that could oxidize TMB. Both effects boosted the nanozymatic activity of GQDs-Au NPs to detect SCN- under optimized conditions with a limit of detection (LOD) of 3 nM. Present study also validates the methodology to detect SCN- in raw milk.
Collapse
Affiliation(s)
- Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Masoomeh Sherazee
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
49
|
Azimi S, Docoslis A. Recent Advances in the Use of Surface-Enhanced Raman Scattering for Illicit Drug Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:3877. [PMID: 35632286 PMCID: PMC9143835 DOI: 10.3390/s22103877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
The rapid increase in illicit drug use and its adverse health effects and socio-economic consequences have reached alarming proportions in recent years. Surface-enhanced Raman scattering (SERS) has emerged as a highly sensitive analytical tool for the detection of low dosages of drugs in liquid and solid samples. In the present article, we review the state-of-the-art use of SERS for chemical analysis of illicit drugs in aqueous and complex biological samples, including saliva, urine, and blood. We also include a review of the types of SERS substrates used for this purpose, pointing out recent advancements in substrate fabrication towards quantitative and qualitative detection of illicit drugs. Finally, we conclude by providing our perspective on the field of SERS-based drug detection, including presently faced challenges. Overall, our review provides evidence of the strong potential of SERS to establish itself as both a laboratory and in situ analytical method for fast and sensitive drug detection and identification.
Collapse
Affiliation(s)
| | - Aristides Docoslis
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
50
|
Muthusamy A, Kim CH, Virgil SC, Knox HJ, Marvin JS, Nichols AL, Cohen BN, Dougherty DA, Looger LL, Lester HA. Three Mutations Convert the Selectivity of a Protein Sensor from Nicotinic Agonists to S-Methadone for Use in Cells, Organelles, and Biofluids. J Am Chem Soc 2022; 144:8480-8486. [PMID: 35446570 PMCID: PMC9121368 DOI: 10.1021/jacs.2c02323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/28/2022]
Abstract
We report a reagentless, intensity-based S-methadone fluorescent sensor, iS-methadoneSnFR, consisting of a circularly permuted GFP inserted within the sequence of a mutated bacterial periplasmic binding protein (PBP). We evolved a previously reported nicotine-binding PBP to become a selective S-methadone-binding sensor, via three mutations in the PBP's second shell and hinge regions. iS-methadoneSnFR displays the necessary sensitivity, kinetics, and selectivity─notably enantioselectivity against R-methadone─for biological applications. Robust iS-methadoneSnFR responses in human sweat and saliva and mouse serum enable diagnostic uses. Expression and imaging in mammalian cells demonstrate that S-methadone enters at least two organelles and undergoes acid trapping in the Golgi apparatus, where opioid receptors can signal. This work shows a straightforward strategy in adapting existing PBPs to serve real-time applications ranging from subcellular to personal pharmacokinetics.
Collapse
Affiliation(s)
- Anand
K. Muthusamy
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91106, United States
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Charlene H. Kim
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Scott C. Virgil
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Hailey J. Knox
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Jonathan S. Marvin
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - Aaron L. Nichols
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Bruce N. Cohen
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Dennis A. Dougherty
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| | - Loren L. Looger
- Howard
Hughes Medical Institute, University of
California, San Diego, San Diego, California 92093, United States
| | - Henry A. Lester
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91106, United States
| |
Collapse
|