1
|
Mao QY, Ran XQ, Xu ST, Gu P, Jiang Y, Yan XP, Qian HL. Unlocking Enhanced Detection of Perfluoroalkanesulfonic Acids via Fluorinated Nonpolar 3D Covalent Organic Frameworks-Based Ambient Probe Nanoelectrospray Ionization Mass Spectrometry. Anal Chem 2025; 97:6312-6319. [PMID: 40091416 DOI: 10.1021/acs.analchem.5c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The trace levels and severe matrix interferences greatly limited the determination of stable, persistent, and long-range-transported perfluoroalkanesulfonic acids (PFSAs) in complex environments. Here, we design and prepare the first fluorinated nonpolar 3D COF (TFPM-Pa-CF3) as an adsorbent, consisting of tetrakis(4-formylphenyl)methane (TFPM) and 2,5-diaminobenzo-trifluoride (Pa-CF3) for adsorption and extraction of PFSAs. The proposed TFPM-Pa-CF3 demonstrates excellent adsorption capacity (509.1 mg g-1) and rapid adsorption kinetics (5 min) for PFSAs attributed to the synergistic effects of F-F, hydrophobic, and electrostatic interactions. Furthermore, TFPM-Pa-CF3 is grown in situ on a stainless needle and coupled with ambient probe nanoelectrospray ionization mass spectrometry (PESI-MS) to develop a rapid and direct determination method with a low limit of detection (0.05-0.86 ng L-1) and wide linear range (1-10,000 ng L-1) for trace perfluorooctanesulfonate and its alternatives in environmental soil, algae and water. This work unlocks the efficient determination or removal of PFSAs in a complex environment, facilitating the solution of critical environmental PFSAs problems.
Collapse
Affiliation(s)
- Qian-Ying Mao
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Gu
- Department of Light Chemical Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yun Jiang
- Department of Light Chemical Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Aslam AA, Amjad S, Irshad A, Kokab O, Ullah MS, Farid A, Mehmood RA, Hassan SU, Nazir MS, Ahmed M. From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO 2 Adsorption. Top Curr Chem (Cham) 2025; 383:10. [PMID: 39987291 DOI: 10.1007/s41061-025-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Covalent organic frameworks (COFs) are highly crystalline polymers that possess exceptional porosity and surface area, making them a subject of significant research interest. COF materials are synthesized by chemically linking organic molecules in a repetitive arrangement, creating a highly effective porous crystalline structure that adsorbs and retains gases. They are highly effective in removing impurities, such as CO2, because of their desirable characteristics, such as durability, high reactivity, stable porosity, and increased surface area. This study offers a background overview, encompassing a concise discussion of the current issue of excessive carbon emissions, and a synopsis of the materials most frequently used for CO2 collection. This review provides a detailed overview of COF materials, particularly emphasizing their synthesis methods and applications in carbon capture. It presents the latest research findings on COFs synthesized using various covalent bond formation techniques. Moreover, it discusses emerging trends and future prospects in this particular field.
Collapse
Affiliation(s)
- Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland.
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan.
| | - Sania Amjad
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Adnan Irshad
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
- Department of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Osama Kokab
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | - Mudassar Sana Ullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan
| | - Awais Farid
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Rana Adeel Mehmood
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan.
| |
Collapse
|
3
|
Qiu M, Tian Y, Qu W, Ma Y, Zhao F, Jiang Y, Zhao Q, Man C. Postbiotic-biosynthesized silver nanoparticles anchored on covalent organic frameworks integrated into carboxymethyl chitosan-based film for enhancing antibacterial packaging. Int J Biol Macromol 2025; 291:139143. [PMID: 39722393 DOI: 10.1016/j.ijbiomac.2024.139143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Food packaging plays a vital role in guaranteeing the quality and safety of fresh products during the storage and distribution. Carboxymethyl chitosan (CMCS) is identified as a promising polymer for food packaging film owing to its film-forming ability, non-toxicity, and biodegradability. Nevertheless, the practical applications of pure CMCS film usually suffer from some limits owing to its poor antibacterial effect and mechanical strength. In this study, postbiotic-biosynthesized silver nanoparticles (AgNPs) anchored on covalent organic frameworks (COF) (namely COF-AgNP) were integrated into the CMCS film to enhance antibacterial packaging performance for preservation of fruits. Utilizing postbiotic as a reducing agent, COF-AgNPs composite nanomaterials were prepared by anchoring AgNPs on COF via in-situ reduction of Ag+. Furthermore, antibacterial packaging film was prepared using CMCS and COF-AgNPs (CMCS@COF-AgNPs) via a solution-casting method. Furthermore, characterization results proved that mechanical strength of CMCS@COF-AgNP films exhibited a gradual enhancement with the increased COFs-AgNPs content. Moreover, CMCS@COF-AgNP films exhibited an enhanced antibacterial activity and excellent biocompatibility. Importantly, CMCS@COF-AgNP coating can effectively preserve citrus quality and prolong its storage time. Therefore, CMCS@COF-AgNP films could be used as a promising and economically viable solution to diminish postharvest losses and prolong the shelf life of fresh products.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenxuan Qu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Fu J, Kang JY, Gao W, Huang ZW, Kong LQ, Xie K, Zhu QH, Zhang GH, Tao GH, He L. Covalent organic frameworks for radioactive iodine capture: structure and functionality. Chem Commun (Camb) 2025; 61:2235-2256. [PMID: 39775467 DOI: 10.1039/d4cc06092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The adsorption of radioactive iodine is a critical concern in nuclear safety and environmental protection due to its hazardous nature and long half-life. Covalent organic frameworks (COFs) have emerged as promising materials for capturing radioactive iodine owing to their tunable porosity, high surface area, and versatile functionalization capabilities. This review provides a comprehensive overview of the application of COFs in the adsorption of radioactive iodine. We begin by discussing the sources, properties, and hazards of radioactive iodine, as well as traditional capture techniques and their limitations. We then delve into the intrinsic structures of COFs, focusing on their porosity, conjugated frameworks, and hydrogen bonding, which are pivotal for effective iodine adsorption. The review further explores various functionalization strategies, including electron-rich COFs, flexible COFs, ionic COFs, COF nanosheets, and quasi-3D COFs, highlighting how these modifications enhance the adsorption performance. Finally, we conclude with an outlook on future research directions and potential applications, underscoring the significance of continued innovation in this field. This review aims to provide valuable insights for researchers and practitioners seeking to develop advanced materials for the efficient capture of radioactive iodine.
Collapse
Affiliation(s)
- Jie Fu
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Jin-Yang Kang
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Wei Gao
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Zhi-Wen Huang
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Ling-Qin Kong
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Kai Xie
- CNNC Sichuan Environmental Protection Engineering Co., Ltd., Guangyuan 628000, China.
| | - Qiu-Hong Zhu
- School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guo-Hao Zhang
- School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Zhang M, Liu L, Liu F, Sun QY, Zhao YF, Wang XL, Li N, Jiang HL, Wu YN, Zhao RS, Wang X. Hydroxylated magnetic microporous organic network for efficient magnetic solid phase extraction of trace triazine herbicides. J Chromatogr A 2025; 1741:465606. [PMID: 39732032 DOI: 10.1016/j.chroma.2024.465606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs. Theoretical analyses and characterization data revealed interaction mechanisms, including hydrogen bonds (N-H···O and O-H···N), halogen bond (Cl···N) and π stackings (NH-π, CH-π and π-π). This approach was developed for the detection of THs, achieving a low detection limit 0.03∼0.6 ng⋅L-1 for water, and 0.006∼0.134 μg·kg-1 for honey. Trace concentrations of THs, ranging from 1.0∼21.2 ng⋅L-1 in surface water and 0.1∼0.9 μg·kg-1 in honey, were successfully detected. Sample spiked recovery experiments demonstrated recoveries between 72.1-116.2 %, validating accuracy and applicability of method. This study realizes a speedy and sensitive determination of THs, showcasing potential of MMON-2OH in pollutant removal and food safety maintenance.
Collapse
Affiliation(s)
- Min Zhang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lu Liu
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Feng Liu
- Quality Department, Sinotruk Jinan Truck Co., Ltd., Jinan 250000, China
| | - Qian-Yun Sun
- Shandong Institute of Metrology, Jinan 250014, China
| | - Yan-Fang Zhao
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao-Li Wang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Li
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hai-Long Jiang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong-Ning Wu
- China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Ru-Song Zhao
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xia Wang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
6
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. In situ growth of hierarchical porous covalent organic framework coating for enhanced solid-phase microextraction of phenolic compounds. J Chromatogr A 2025; 1739:465519. [PMID: 39550880 DOI: 10.1016/j.chroma.2024.465519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Covalent organic frameworks (COFs), when utilized as solid-phase microextraction (SPME) coating materials, exhibit remarkable abilities to concentrate phenols by thousands-fold owing to their vast surface area and exceptional stability. However, the prevalent micropores inherent in COFs can impede rapid mass transfer of target molecules, prolonging SPME extraction times. To addresses this limitation, this work introduces a novel approach by integrating hierarchical porous structures into COFs, leveraging polystyrene microspheres as hard templates during the in situ growth process of the SPME coating. Due to the presence of a hierarchical porous structure derived from the template, the resulting hierarchical porous TpBD coating, termed HP-TpBD, demonstrated enhanced extraction efficiency, accelerated extraction kinetics, and notably shortened extraction times for phenolic compounds. Coupled with gas chromatography-mass spectrometry, a highly sensitive method featuring a low limit of detection (0.20-0.28 ng L-1), a broad linear range (1.0∼1.0 × 104 ng L-1), and excellent precision (RSD < 8.5 %) was established. This methodology enables accurate quantitative analysis of phenols in water and soil samples. This work provides valuable insights into developing COF-based SPME coatings for the efficient extraction of volatile contaminants, paving the way for more efficient and sensitive analytical procedures.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Nanozyme coating-gated multifunctional COF composite based dual-ratio enhanced dual-mode sensor for highly sensitive and reliable detection of organophosphorus pesticides in real samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135791. [PMID: 39265396 DOI: 10.1016/j.jhazmat.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The reliable detection of organophosphorus pesticides (OPs) in complex matrices remains an enormous challenge due to inevitable interference of sample matrices and testing factors. To address this issue, we designed a nanozyme-coated mesoporous COF with guest molecule loading, and successfully used it to construct a dual-ratio dual-mode sensor through target-regulated signal generation. The multifunctional COF-based composite (MB/COF@MnO2, MCM) featured high loading of methylene blue (MB), oxidase-like MnO2 coatings as gatekeepers, and specific recognition of thiocholine (TCh). TCh, a regulator produced from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine, could decompose MnO2 coatings, triggering the release of abundant MB and oxidation of few o-phenylenediamine (OPD). OPs, strong inhibitors of AChE, could restrain TCh production and MnO2 decomposition, thereby controlling the release of less MB and oxidation of more OPD. This regulation boosted the dual-ratio dual-mode assay of OPs by using the released MB and oxidized OPD in the solution as testing signals, measured by both fluorescent and electrochemical methods. Experimental results demonstrated the sensitive detection of dichlorvos with LODs of 0.083 and 0.026 ng/mL via the fluorescent/electrochemical mode, respectively. This study represented a creative endeavor to develop dual-ratio dual-mode sensors for OPs detection in complex samples, offering high sensitivity, excellent selectivity, and good reliability.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
8
|
Li SL, Yan ZY, Qian HL, Xu ST, Yan XP. Aptamer-Conjugated Covalent-Organic Framework Nanochannels for Selective and Sensitive Detection of Aflatoxin B1. Anal Chem 2024; 96:17370-17376. [PMID: 39420777 DOI: 10.1021/acs.analchem.4c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sensitive and selective detection of trace aflatoxin B1 (AFB1) in foods is of great importance to guarantee food safety and quality but still challenging because of its trace amount and the interference from the complex food matrix. Here, we report the integration of aptamer (Apt) and an ordered 2D covalent organic framework (COF) to solid-state anodic aluminum oxide (AAO) nanochannels (Apt/COF/AAO) for selective and sensitive detection of trace AFB1. The high specificity of Apt for AFB1 led to a selective change in the surface charge of Apt/COF/AAO and in turn the current change of the nanochannel, permitting the selective and sensitive determination of trace AFB1 in complex food samples. The developed nanofluidic sensor gave a wide linear range (1-500 pg mL-1), low detection limit (0.11 pg mL-1), and good precision (relative standard deviation of 1.5% for 11 replicate determinations of 100 pg mL-1). In addition, the developed sensor was successfully used for the detection of AFB1 in food samples with the recovery of 86.9%-102.5%. The coupling of Apt-conjugated 2D COF with an AAO nanochannel provides a promising way for sensitive and selective determination of food contaminants in complex samples.
Collapse
Affiliation(s)
- Shi-Lun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Li ZY, Zhu JH, Xu YZ, Zhao J, Liu YS, Wang LL, Sun SY, Ji SL. Facile preparation of covalent-organic framework composites for magnetic solid-phase extraction of naphthaleneacetic acid in food prior to HPLC-UV analysis. J Chromatogr A 2024; 1731:465180. [PMID: 39053255 DOI: 10.1016/j.chroma.2024.465180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Novel magnetic covalent organic frameworks (COFs) were prepared by one-pot synthetic strategy and employed as an efficient adsorbent for magnetic solid-phase extraction (MSPE) of naphthaleneacetic acid (NAA) in food samples. Depending on the predesigned the hydrogen bonding, π-π and hydrophobic interactions of magnetic COFs, the efficient and selective extraction process for NAA was achieved within 15 min. The magnetic COFs adsorbent combined with HPLC-UV was devoted to develop a novel quantitative method for NAA in complex food. The method afforded good coefficient in range of 0.002-10.0 µg mL-1 and low limit of detection was 0.0006 µg mL-1. And the newly established method afforded less adsorbent consumption, wider linearity and lower LODs than the reported analytical methods. Ultimately, the method was successfully applied to determine NAA in fresh pear, tomato and peach juice. The magnetic COFs based MSPE coupled with HPLC-UV method provided a simple, efficient and dependable alternative to monitor trace NAA in food samples.
Collapse
Affiliation(s)
- Zi-Yu Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Institute of Bionanotechnology, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai, Shandong 264025, PR China
| | - Jia-Hui Zhu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yu-Zhuo Xu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Institute of Bionanotechnology, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai, Shandong 264025, PR China.
| | - Shu-Yang Sun
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China.
| | - Shi-Lei Ji
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|
10
|
Zhang Q, Zhu N, Lu Z, He M, Chen B, Hu B. Magnetic covalent organic frameworks as sorbents in the chromatographic analysis of environmental organic pollutants. J Chromatogr A 2024; 1728:465034. [PMID: 38824842 DOI: 10.1016/j.chroma.2024.465034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, China
| | - Man He
- Department of Chemistry, Wuhan University, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, China.
| |
Collapse
|
11
|
Li Y, Wang T, He W, Zhang L, Cheng Z. Internal Superwettability Inversion of a COF-Encapsulated Melamine Sponge Prepared by a One-Step Synthesis at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15038-15045. [PMID: 38982769 DOI: 10.1021/acs.langmuir.4c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Superwettable materials have been attracting attention due to their unique properties, showing great application prospects in a variety of fields including oil-water separation. Herein, a kind of covalent organic framework (COF)-encapsulated melamine sponge (MS) capable of internal superwettability inversion is prepared by a one-step synthesis at room temperature. COF is produced in situ on the skeleton of MS, which is favorable for practical application, and the prepared COF-encapsulated sponge (MS@COF) exhibits superhydrophobicity (water contact angle of about 157.0°) due to the rough surface provided by the micro/nanostructure of COF. More importantly, MS@COF displays reversibly superhydrophilicity by simple prewetting, achieving superwettability inversion conveniently, unlike the previous switchable materials that rely on external conditions. This facile intrinsic superwettability inversion greatly enriches the application prospects of this kind of smart sponge.
Collapse
Affiliation(s)
- Yu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Chen XJ, Zhang CR, Cai YJ, He HX, Niu CP, Qi JX, Liu JL, Xia Z, Liang RP, Qiu JD. Construction of a Bifunctional Redox-Site Conjugated Covalent-Organic Framework for Photoinduced Precision Trapping of Uranyl Ions. Inorg Chem 2024; 63:11459-11469. [PMID: 38842950 DOI: 10.1021/acs.inorgchem.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Hao-Xuan He
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Peng Niu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jia-Xin Qi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jin-Lan Liu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zheng Xia
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
13
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
14
|
S S, Rajamohan N, S S, R A, M R. Sustainable remediation of pesticide pollutants using covalent organic framework - A review on material properties, synthesis methods and application. ENVIRONMENTAL RESEARCH 2024; 246:118018. [PMID: 38199472 DOI: 10.1016/j.envres.2023.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Covalent organic frameworks (COF) have emerged as a potential class of materials for a variety of applications in a wide number of sectors including power storage, environmental services, and biological applications due to their ordered and controllable porosity, large surface area, customizable structure, remarkable stability, and diverse electrical characteristics. COF have received a lot of attention in recent years in the field of environmental remediation, It also find its way to eliminate the emerging pollutant from the environment notably pesticide from polluted water. This review more concentrated on the application of COF in pesticide removal by modifying COF structure, COF synthesis and material properties. To increase the adsorption ability and selectivity of the material towards certain pesticides removal, the synthesis of COF involves organic linkers with various functional groups such as amine, carboxylic acid groups etc. The COF have a high degree of stability and endurance make them suitable for intermittent usage in water treatment applications. This review manifests the novel progress where modified COFs employed in a prominent manner to remove pesticides from polluted water. Some examples of COF application in the eradication of pesticides are triformyl phenylene framework functionalized with amine groups has capacity to remove up to 50 mg/l of Organophosphorus - chlorpyrifos. COF modified to improve their photocatalytic capacity to breakdown the pesticide under visible light irradiation. COF tetraphenyl ethylene linked with carboxylic acid group shows efficient photocatalytic degradation of 90% of organochlorine insecticide endosulfan when subjected to visible light. Atrazine and imidacloprid are reduced from 100 ppm to 1 ppm in aqueous solutions by COF based on high adsorption capacity. In addition, the strategies, technique, synthesis and functional group modification design of COF are discussed.
Collapse
Affiliation(s)
- Sujatha S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - Sanjay S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Abhishek R
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
15
|
Liu W, Zheng P, Xia Y, Li F, Zhang M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024; 269:125352. [PMID: 37984233 DOI: 10.1016/j.talanta.2023.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The threat from pesticide trifluralin residues to ecological environment and public health is becoming a growing problem. Thus, rapid and sensitive detection, particularly a simple and portable detected platform for trifluralin residues, are highly desired. Here, a small organic aggregation-induced emission (AIE) molecule (TPETPy) is facilely synthesized and applied to detect trifluralin both in lab and in actual water systems. Based on the photo-induced electron transfer (PET) mechanism, the emissive peak of TPETPy located at 475 nm in tetrahydrofuran (THF)/water mixture (ƒw = 90 %) under the excitation of 340 nm, decreases dramatically upon trace trifluralin addition and exhibits ultra-fast response (3 s), high sensitivity and selectivity, and good anti-interference ability. The fluorescence sensing correlation with the concentration of trifluralin shows good linearity in the range of 20-90 μg L-1 with the limit of detection of 6.28 μg L-1. Moreover, a portable smartphone-integrated detected platform based on fluorescent pattern Red/Green/Blue (RGB) values is first employed to realize the real-time and on-site quantitative fluorescent detection of trifluralin in actual water sources, featuring good accuracy and reproducibility. Hereby, this work provides not only a highly efficient trifluralin residues fluorescent probe but also a portable and straightforward operating platform to detect trifluralin pesticides quantitatively.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, PR China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
16
|
Liu Y, Yang X, Hu J, Lu N, He D, Chi H, Liu Y, Yang S, Wen X. A novel deep eutectic solvent modified magnetic covalent organic framework for the selective separation and determination of trace copper ion in medicinal plants and environmental samples. Anal Chim Acta 2024; 1290:342197. [PMID: 38246739 DOI: 10.1016/j.aca.2023.342197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Pretreatment techniques should be introduced before metal ion determination because there is very low content of heavy metals in Chinese medicinal plants and environmental samples. Magnetic dispersive micro solid phase extraction (MDMSPE) has been widely used for the separation and adsorption of heavy metal pollutants in medicinal plants and environmental samples. However, the majority of MDMSPE adsorbents have certain drawbacks, including low selectivity, poor anti-interference ability, and small adsorption capacity. Therefore, modifying currently available adsorption materials has gained attention in research. RESULTS In this study, a novel adsorbent MCOF-DES based on a magnetic covalent organic framework (MCOF) modified by a new deep eutectic solvent (DES) was synthesized for the first time and used as an adsorbent of MDMSPE. The MDMSPE was combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for selective separation, enrichment, and accurate determination of trace copper ion (Cu2+) in medicinal plants and environmental samples. Various characterization results show the successful preparation of new MCOF-DES. Under the optimal conditions, the enrichment factor (EF) of Cu2+ was 30, the limit of detection (LOD) was 0.16 μg L-1, and the limit of quantitation (LOQ) was 0.54 μg L-1. The results for the determination of Cu2+ were highly consistent with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method. SIGNIFICANCE The established method based on a new adsorption material MCOF-DES has achieved the selective separation and determination of trace Cu2+ in medicinal and edible homologous medicinal materials (Phyllanthus emblica Linn.) and environmental samples (soil and water), which provides a promising, selective, and sensitive approach for the determination of trace Cu2+ in other real samples.
Collapse
Affiliation(s)
- Ya Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Xiaofang Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jiayi Hu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Ning Lu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Daichun He
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Huajian Chi
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
17
|
Vállez-Gomis V, Benedé JL, Lara-Molina E, López-Nogueroles M, Chisvert A. A miniaturized stir bar sorptive dispersive microextraction method for the determination of bisphenols in follicular fluid using a magnetic covalent organic framework. Anal Chim Acta 2024; 1289:342215. [PMID: 38245199 DOI: 10.1016/j.aca.2024.342215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Bisphenols, particularly bisphenol A (BPA), are the primary monomers used as additives in the manufacturing of many consumer products. The exposure to these compounds is related to endocrine-disrupting and reproductive effects, among others. For this reason, the development of analytical methods for their determination in biological matrixes is needed to monitor the population exposure to these compounds. Their quantification at ovarian level (i.e., follicular fluid) is interesting for the assessment of the bisphenol content to draw conclusions about infertility problems. However, the background does not meet all requirements by focusing mainly on BPA. RESULTS In this work, a miniaturized stir bar sorptive dispersive microextraction (mSBSDME) approach has been developed for the determination of BPA and eight analogues in follicular fluid. In the proposed method, the sample is previously cleaned-up using a zirconia-based solid-phase extraction cartridge, removing proteins and phospholipids, and then subjected to the mSBSDME for the preconcentration of the analytes. For this purpose, a magnetic covalent organic framework was used as sorbent. A Plackett-Burman design was applied to select the significant variables affecting the mSBSDME. Afterwards, the only significant variable (i.e., sorbent amount) was optimized. Under the optimized conditions, the proposed method was properly validated, and satisfactory analytical parameters in terms of linearity (up to 50 ng mL-1), enrichment factors (8.5-14.3), limits of detection in the low ng mL-1 range, and precision (relative standard deviations below 11.5 %) were obtained. Finally, the method was successfully applied to five samples, detecting BPA and other two analogues. SIGNIFICANCE This method expands the potential applicability of the mSBSDME to other low-availability complex matrixes, which would otherwise be difficult to analyze. Moreover, it offers a valuable tool for monitoring the female population's exposure to bisphenols with the final aim of evaluating if infertility problems of women might be associated to the exposure to these highly endocrine disrupting compounds.
Collapse
Affiliation(s)
- Víctor Vállez-Gomis
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain
| | - Evelin Lara-Molina
- IVIRMA Barcelona, Barcelona, 08029, Spain; IVI Foundation IVIRMA Global, Biomedical Research Institute La Fe, Valencia, 46026, Spain
| | - Marina López-Nogueroles
- Analytical Unit Platform, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, 46100, Spain.
| |
Collapse
|
18
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
19
|
Zhao J, Li ZY, Yang CX, Li YP, Liu YS, Hu ZH, Pan XM, Ma XL, Wang W, Yang XS, Wang LL. Magnetic covalent organic frameworks for extraction and determination of endocrine-disrupting chemicals in beverage and water samples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:257-265. [PMID: 37552783 DOI: 10.1002/jsfa.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Phenolic endocrine-disrupting chemicals (EDCs) are widespread and easily ingested through the food chain. They pose a serious threat to human health. Magnetic solid-phase extraction (MSPE) is an effective sample pre-treatment technology to determine traces of phenolic EDCs. RESULTS Magnetic covalent organic framework (COF) (Fe3 O4 @COF) nanospheres were prepared and characterized. The efficient and selective extraction of phenolic EDCs relies on a large specific surface and the inherent porosity of COFs and hydrogen bonding, π-π, and hydrophobic interactions between COF shells and phenolic EDCs. Under optimal conditions, the proposed magnetic solid-phase extraction-high-performance liquid chromatography-ultra violet (MSPE-HPLC-UV) based on the metallic covalent organic framework method for phenolic EDCs shows good linearities (0.002-6 μg mL-1 ), with R2 of 0.995 or higher, and low limits of detection (6-1.200 ng mL-1 ). CONCLUSION Magnetic covalent organic frameworks (Fe3 O4 @COFs) with good MSPE performance for phenolic EDCs were synthesized by the solvothermal method. The magnetic covalent organic framework-based MSPE-HPLC-UV method was applied successfully to determine phenolic EDCs in beverage and water samples with satisfactory recoveries (90.200%-123%) and relative standard deviations (2.100%-12.100%). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Zhao
- School of Food Engineering, Ludong University, Yantai, China
| | - Zi-Yu Li
- School of Food Engineering, Ludong University, Yantai, China
| | - Chun-Xu Yang
- School of Food Engineering, Ludong University, Yantai, China
| | - Ya-Ping Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, China
- Institute of Bionanotechnology, Ludong University, Yantai, China
| | - Zhen Hua Hu
- School of Food Engineering, Ludong University, Yantai, China
- Institute of Bionanotechnology, Ludong University, Yantai, China
| | - Xiao-Ming Pan
- School of Food Engineering, Ludong University, Yantai, China
| | - Xiu-Li Ma
- School of Food Engineering, Ludong University, Yantai, China
| | - Wei Wang
- School of Food Engineering, Ludong University, Yantai, China
| | - Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, China
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, China
- Institute of Bionanotechnology, Ludong University, Yantai, China
| |
Collapse
|
20
|
Zhou W, Hu K, Wang Y, Jiang RW, Pawliszyn J. Embedding Mixed Sorbents in Binder: Solid-Phase Microextraction Coating with Wide Extraction Coverage and Its Application in Environmental Water Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:771-779. [PMID: 38127806 DOI: 10.1021/acs.est.3c07244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Solid-phase microextraction (SPME) is a simple and highly effective sample-preparation technique for water analysis. However, the extraction coverage of a given SPME device with a specific coating can be an issue when analyzing multiple environmental contaminants. Therefore, instead of synthesizing one sorbent material with dual or multiple functions, we investigated a new strategy of preparing SPME blades using a homogeneous slurry made by mixing three different sorbent particles─namely, hydrophobic/lipophilic balanced (HLB), HLB-weak cationic exchange (HLB-WCX), and HLB-weak anionic exchange (HLB-WAX)─with a polyacrylonitrile (PAN) binder. The developed coating is matrix compatible, as the binder functions not only as a glue for immobilizing the sorbent particles but also as a porous filter, which only allows small molecules to enter the pores and interact with the particles, thus avoiding contamination from large elements. The results confirmed that the proposed mixed-coating SPME device provides good extraction performance for polar and nonpolar as well as positively and negatively charged compounds. Based on this device, three comprehensive analytical methodologies─high-throughput SPME-LC-MS/MS (for the quantitative analysis of targeted drugs of abuse and artificial sweeteners), in-bottle SPME-LC-high resolution MS (HRMS) (for the untargeted screening of organic contaminants), and on-site drone sampling SPME-LC-HRMS (for on-site sampling and untargeted screening)─were developed for use in environmental water analysis. The resultant data confirm that the proposed strategies enable comprehensive water quality assessment by using a single SPME device.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kai Hu
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuanpeng Wang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Runshan Will Jiang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
21
|
Wei J, Shao X, Guo J, Zheng Y, Wang Y, Zhang Z, Chen Y, Li Y. Rapid and selective removal of aristolochic acid I in natural products by vinylene-linked iCOF resins. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132140. [PMID: 37734311 DOI: 10.1016/j.jhazmat.2023.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023]
Abstract
Rapid, efficient, and selective removal of toxicants such as aristolochic acid I (AAI) from complex natural product systems is of great significance for the safe use of herbal medicines or medicine-food plants. Addressing this challenge, we develop a high-performance separation approach based on ionic covalent organic frameworks (iCOFs) to separate and remove AAI. Two vinylene-linked iCOFs (NKCOF-46-Br- and NKCOF-55-Br-) with high crystallinity are fabricated in a green and scalable fashion via a melt polymerization synthesis method. The resulting materials exhibit a uniform morphology, high stability, fast equilibrium time, and superior affinity and selectivity for AAI. Compared to conventional separation media, NKCOF-46-Br- and NKCOF-55-Br- achieve the record high adsorption capacities of 246.0 mg g-1 and 178.4 mg g-1, respectively. Various investigations reveal that the positively charged framework and favorable pore microenvironment of iCOFs contribute to their high selectivity and adsorption efficiency. Moreover, the iCOFs exhibit excellent biocompatibility by in vivo toxicity assays. This study paves a new avenue for the rapid, selective and efficient removal of toxicants from complex natural systems.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanxue Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Zango ZU, Binzowaimil AM, Aldaghri OA, Eisa MH, Garba A, Ahmed NM, Lim JW, Ng HS, Daud H, Jumbri K, Khoo KS, Ibnaouf KH. Applications of covalent organic frameworks for the elimination of dyes from wastewater: A state-of-the-arts review. CHEMOSPHERE 2023; 343:140223. [PMID: 37734509 DOI: 10.1016/j.chemosphere.2023.140223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Ayed M Binzowaimil
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah A Aldaghri
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Mohamed Hassan Eisa
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Naser M Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Hanita Daud
- Mathematical and Statistical Science, Department of Fundamental and Applied Sciences, Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Khalid Hassan Ibnaouf
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| |
Collapse
|
23
|
Yue JY, Pan ZX, Song LP, Yu WJ, Zheng H, Wang JC, Yang P, Tang B. Mixed-Linkage Donor-Acceptor Covalent Organic Framework as a Turn-On Fluorescent Sensor for Aliphatic Amines. Anal Chem 2023; 95:17400-17406. [PMID: 37967038 DOI: 10.1021/acs.analchem.3c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Amine determination is crucial to our daily life, including the prevention of pollution, the treatment of certain disorders, and the evaluation of food quality. Herein, a mixed-linkage donor-acceptor covalent organic framework (named DSE-COF) was first constructed by the polymerization between 2,4-dihydroxybenzene-1,3,5-tricarbaldehyde (DTA) and 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diyl)dianiline (SEZ). DSE-COF displayed superior turn-on fluorescent responses to primary, secondary, and tertiary aliphatic amines, such as cadaverine, isopropylamine, sec-butylamine, cyclohexylamine, hexamethylenediamine, di-n-butylamine, and triethylamine in absolute acetonitrile than other organic species. Further experiments and theoretical calculations demonstrated that the combination of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) effects between the DSE-COF and aliphatic amines resulted in enhanced fluorescence. Credibly, DSE-COF can quantitatively detect cadaverine content in actual pork samples with satisfactory results. In addition, DSE-COF-based test papers could rapidly monitor cadaverine from real pork samples, manifesting the potential application of COFs in food quality inspection.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Jiang Yu
- Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Institute for Food and Drug Control, Jinan 250101, P. R. China
| | - Hong Zheng
- Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Institute for Food and Drug Control, Jinan 250101, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
24
|
Qi G. Efficient capture and highly sensitive analysis of okadaic acid by three-dimensional covalent organic frameworks with hydroxyl surface engineering. J Chromatogr A 2023; 1708:464334. [PMID: 37660560 DOI: 10.1016/j.chroma.2023.464334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
A novel three-dimensional covalent organic framework (3D-COF) with content-tunable and active hydroxyl groups (OH) on the pore walls was developed and adopted for the high-performance capture of okadaic acid (OA) marine toxins. Using pore-surface engineering, the integration of linear building blocks (4,4'-diamino-3,3'-biphenyldiol, BD(OH)2 and benzidine, BD) with the 3D structural building block backbone (4,4',4'',4'''-methane-tetrayltetrabenzaldehyde, TFPM) was achieved. By adjusting the ratio of BD(OH)2, functional multicomponent-COFs [OH]x-BD-TFPM COFs (X = 25%) were synthesized, which offered ideal access to convert a conventional COF into a functional platform with multiple-mode interactions of hydrophobic and hydrophilic groups for OA capture. [OH]x-BD-TFPM was characterized using SEM, XRD, FT-IR, and BET. The adsorption features and analytical performance of OA were screened and evaluated. Optimization of dispersive solid-phase extraction using [OH]25-BD-TFPM was accomplished, and the method was verified for sensitive quantitative detection of OA in clam and mussel samples. Coupled with LC-MS/MS, the resultant [OH]25-BD-TFPM COF demonstrated the ability to analyze OA, and the limit of detection for OA in shellfish was determined to be 0.005 μg/kg. A significant improvement in trace OA detection was observed compared to previously reported SPE materials without adjustable hydrophilic interactions. The recoveries of OA in the fortified clam and mussel samples were in the ranges of 93.9‒105.1% and 96.7‒110.2%, respectively. This study highlights that OH-group surface engineering in channel walls is a facile and powerful strategy for developing functional 3D-COFs with multiple interactions for high-performance target capture.
Collapse
Affiliation(s)
- Guomin Qi
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
25
|
Fu J, Liu JY, Zhang GH, Zhu QH, Wang SL, Qin S, He L, Tao GH. Boost of Gas Adsorption Kinetics of Covalent Organic Frameworks via Ionic Liquid Solution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302570. [PMID: 37229752 DOI: 10.1002/smll.202302570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Adsorption, storage, and conversion of gases (e.g., carbon dioxide, hydrogen, and iodine) are the three critical topics in the field of clean energy and environmental mediation. Exploring new methods to prepare high-performance materials to improve gas adsorption is one of the most concerning topics in recent years. In this work, an ionic liquid solution process (ILSP), which can greatly improve the adsorption kinetic performance of covalent organic framework (COF) materials for gaseous iodine, is explored. Anionic COF TpPaSO3 H is modified by amino-triazolium cation through the ILSP method, which successfully makes the iodine adsorption kinetic performance (K80% rate) of ionic liquid (IL) modified COF AC4 tirmTpPaSO3 quintuple compared with the original COF. A series of experimental characterization and theoretical calculation results show that the improvement of adsorption kinetics is benefited from the increased weak interaction between the COF and iodine, due to the local charge separation of the COF skeleton caused by the substitution of protons by the bulky cations of ILs. This ILSP strategy has competitive help for COF materials in the field of gas adsorption, separation, or conversion, and is expected to expand and improve the application of COF materials in energy and environmental science.
Collapse
Affiliation(s)
- Jie Fu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jia-Ying Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shuang-Long Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Song Qin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
26
|
Fu Y, Li Z, Hu C, Li Q, Chen Z. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography. J Chromatogr A 2023; 1705:464205. [PMID: 37442070 DOI: 10.1016/j.chroma.2023.464205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
A new kind of covalent organic framework (COF) was first utilized as an stationary phase for open-tubular electrochromatography (OT-CEC) by in situ synthesis immobilized method at room temperature. On the basis of our previous work, 4,4',4″-(1,3,5-Triazine-2,4,6-triyl)trianiline (TZ) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) were employed as building blocks for the synthesis of COF TZ-BPTA. The coated capillary and COF TZ-BPTA were characterized by scanning electron microscopy (SEM). Then, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were also applied to characterize COF TZ-BPTA and the modified column. In SEM, it can be seen that COF TZ-BPTA was the spherical shape and the modified capillary was covered with globular particles equably. The COF TZ-BPTA coated column exhibited good separation resolution and efficiency towards two antiepileptic drugs and other kinds of small organic molecules involving alkylbenzene, sulfonamides, polycyclic aromatic hydrocarbon (PAH), parabens, amino acids and herbicides. The maximum column efficiency was over 2.8 × 105 plates·m-1. In addition, the precisions (RSDs) of the retention times for the alkylbenzenes of intra-day runs (n = 3), inter-day runs (n = 3) and column-to-column runs (n = 3) were all less than 1.70% and separation performance was without obvious change within 100 times run. In addition, the real sample was tested on COF TZ-BPTA coated column. Hence, COF TZ-BPTA showed great potential in the separation domain.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Zhentao Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Changjun Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Qiaoyan Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China
| | - Zilin Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan 430071, China.
| |
Collapse
|
27
|
Ran XQ, Xu ST, Qian HL, Yan XP. Irreversible fluorine covalent organic framework based probe nanoelectrospray ionization mass spectrometry for direct and rapid determination of perfluoroalkyl carboxylic acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131584. [PMID: 37167864 DOI: 10.1016/j.jhazmat.2023.131584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Probe nanoelectrospray ionization mass spectrometry (PESI-MS) is practically desirable for rapid and ultra-sensitive analysis of trace contaminants in environment, but limited with the stable and selective probe coating. Herein, we show the design and preparation of irreversible fluorine-based covalent organic framework (TFPPA-F4) covalently bonded probe to couple with ESI-MS (TFPPA-F4-PESI-MS) for direct and rapid determination of perfluoroalkyl carboxylic acids (PFCAs) in environmental water. Chemical bonding coating of irreversible crystalline TFPPA-F4 not only improved stability of the probe, but also offered accessible multiple interactions including hydrophobic, hydrogen bonding and F-F interactions to promote the kinetics and selectivity for PFCAs. The proposed TFPPA-F4-PESI-MS realized rapid determination of PFCAs (about 4 min) with low limits of detection of 0.06-0.88 ng L-1 and wide linear range of 1-5000 ng L-1 (R2 of 0.9982-0.9998). Recoveries for the spiked lake and pond water were 85.9-111.1 %. TFPPA-F4 based probe can maintain the extraction performance after 100 times of extraction. This work shows the great potential of the irreversible covalent organic framework based PESI-MS in rapid and ultra-sensitive determination of contaminants in environmental samples.
Collapse
Affiliation(s)
- Xu-Qin Ran
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Zhang C, Li Y, Yuan H, Lu Z, Zhang Q, Zhao L. Methacrylate bonded covalent organic framework monolithic column online coupling with high-performance liquid chromatography for analysis of trace estrogens in food. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123697. [PMID: 37059013 DOI: 10.1016/j.jchromb.2023.123697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous materials with unique properties and have been considered as a promising functional extraction medium in sample pretreatment. In this study, a new methacrylate-bonded COF (TpTh-MA) was well designed and synthesized via the aldehyde-amine condensation reaction, and the TpTh-MA was incorporated into poly (ethylene dimethacrylate) porous monolith by a facile polymerization reaction inside capillary to prepare a novel TpTh-MA monolithic column. The fabricated TpTh-MA monolithic column was characterized with scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and N2 adsorption-desorption experiments. Then, the homogeneous porous structure, good permeability and high mechanical stability of TpTh-MA monolithic column was used as separation and enrichment media of capillary microextraction, which was coupled with high-performance liquid chromatography fluorescence detection for online enrichment and analysis of trace estrogens. The main experimental parameters influencing the extraction efficiency were systematically investigated. The adsorption mechanism for three estrogens was also explored and discussed based on hydrophobic effect, π-π affinity and hydrogen bonding interaction, which contributed to its strong recognition affinity to target compounds. The enrichment factors of the TpTh-MA monolithic column micro extraction method for the three estrogens were 107-114, indicating a significant preconcentration ability. Under optimal conditions, a new online analysis method was developed and exhibited good sensitivity and wide linearity range of 0.25-100.0 µg·L-1 with a coefficient of determination (R2) higher than 0.9990 and a low limit of detection with 0.05-0.07 µg·L-1. The method was successfully applied for online analysis of three estrogens of milk and shrimp samples and the recoveries obtained from spiking experiments were in range of 81.4-113% and 77.9-111%, with the relative standard deviations of 2.6-7.9% and 2.1-8.3% (n = 5), respectively. The results revealed the great potential for the application of the COFs-bonded monolithic column in the field of sample pretreatment.
Collapse
Affiliation(s)
- Chengjiang Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Yuhuang Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Hongmei Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zeyi Lu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qi Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lirong Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
29
|
Cui WR, Xu W, Chen YR, Liu K, Qiu WB, Li Y, Qiu JD. Olefin-linked cationic covalent organic frameworks for efficient extraction of ReO 4-/ 99TcO 4. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130603. [PMID: 36580784 DOI: 10.1016/j.jhazmat.2022.130603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Efficient extraction of radioactive 99TcO4- from strong acid/base solutions by porous adsorbents is extremely desirable but remains a great challenge. To overcome the challenge, here we report the first example of an olefin-linked cationic covalent organic framework (COF) named BDBI-TMT with excellent acid, base and radiation stability is synthesized by integrating robust imidazolium salt-based linkers with triazine building blocks. BDBI-TMT shows an ultra-fast adsorption kinetics (equilibrium is reached within 1 min) and an excellent ReO4- (a non-radioactive surrogate of 99TcO4-) capture capacity of 726 mg g-1, which can be attributed to the abundance of precisely tailored imidazolium salt-based units on the highly accessible pore walls of the ordered pore channels. Furthermore, the formation of the highly conjugated bulky alkyl skeleton enhances the hydrophobicity of BDBI-TMT, which significantly improves not only the affinity toward ReO4-/99TcO4- but also the chemical stability, allowing selective and reversible extraction of ReO4-/99TcO4- even under extreme conditions. This work demonstrates the great potential of olefin-linked cationic COFs for ReO4-/99TcO4- extraction, providing a new avenue to construct high-performance porous adsorbents for radionuclide remediation.
Collapse
Affiliation(s)
- Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yi-Ru Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Kai Liu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Bin Qiu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
30
|
Wang YX, Zhang W, Shen XF, Qiao JY, Pang YH. Magnetic covalent organic frameworks for rapid solid-phase extraction of phthalate esters and bisphenol A in beverage samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1135-1144. [PMID: 36779345 DOI: 10.1039/d2ay01989b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) and bisphenol A (BPA) are endocrine-disrupting chemicals (EDCs), which are widely used in the production of food plastic packaging and easily migrate to food. Continuous exposure to EDCs may cause harm to human health. Herein, magnetic covalent organic framework TFP-NDA/Fe3O4 was synthesized by magnetizing covalent organic framework TFP-NDA through a facile coprecipitation method, and used as an adsorbent for rapid solid-phase extraction of PAEs (diethyl phthalate (DEP), diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP)) and BPA. The extraction equilibrium can be reached within 12 min. By combination with a gas chromatography-flame ionization detector, the limits of detection were 0.7-2.3 μg L-1 and the linear ranges were 10-500 μg L-1 for diethyl phthalate (DEP) and 10-1000 μg L-1 for diisobutyl phthalate (DIBP), dibutyl phthalate (DBP) and BPA with R2 > 0.9916. In beverage samples (plastic bottled drinking water, juice and carbonated drink), the developed method was successfully applied to extract and quantify PAEs and BPA with recoveries ranging from 81.7% to 114.2%.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Wang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Jin-Yu Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Yang XS, Zhao J, Ma TT, Li ZY, Wang LL, Ji SL, Sun MY, Liu YS, Hu ZH, Liu QW, Jin CW, Sun SY, Gong HS. Magnetic covalent organic framework for effective solid-phase extraction and HPLC determination of ochratoxin A in food. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
32
|
Mei D, Liu L, Yan B. Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
34
|
Covalent organic framework in situ grown on Fe 3O 4 hollow microspheres for stir bar sorptive-dispersive microextraction of triazole pesticides. Mikrochim Acta 2022; 190:34. [PMID: 36538150 DOI: 10.1007/s00604-022-05613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/03/2022] [Indexed: 01/07/2023]
Abstract
Based on covalent organic framework (COF) 1,3,5-tris-(4-formylphenyl)benzene-benzidine (TFPB-BD) in situ grown on Fe3O4 hollow microspheres and combined with gas chromatography-flame thermionic detector, a rapid and simple stir bar sorptive-dispersive microextraction method was developed for the determination of five triazole pesticides (paclobutrazol, hexaconazole, flusilazole, propiconazole, and tebuconazole). The synthesized TFPB-BD/Fe3O4 microspheres were characterized by transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analysis, which showed that the material has strong magnetism and higher load capacity of COF. Under optimal conditions, the extraction equilibrium could be achieved within 9 min with detection limits of 0.17-1.48 μg L-1 (S/N = 3) and a linear range of 5-1000 μg L-1. The developed method was applied to the determination of trace triazole pesticides in apples, pears, and cabbages with recoveries from 81 to 117%.
Collapse
|
35
|
Liu Q, Xu C, Chu S, Li S, Wang F, Si Y, Mao G, Wu C, Wang H. Covalent organic framework-loaded silver nanoparticles as robust mimetic oxidase for highly sensitive and selective colorimetric detection of mercury in blood. J Mater Chem B 2022; 10:10075-10082. [PMID: 36458484 DOI: 10.1039/d2tb01887j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Covalent organic frameworks (COFs) were fabricated with a hierarchical flower-like hollow structure, possessing a large specific surface area, high porosity, and excellent environmental stability. In situ growth of noble silver nanoparticles (AgNPs) onto COFs was conducted yielding COF-Ag nanozymes. The structural advantages of COFs can ensure the uniform dispersion and effective size control of AgNPs. More interestingly, the oxidase-like catalytic activity of the obtained COF-Ag nanozymes could be enhanced in the presence of Hg2+ ions, which could specifically interact with AgNPs to form Ag-Hg alloys. A COF-Ag catalysis-based colorimetric platform was thereby constructed for highly selective and sensitive analysis of Hg2+ ions, showing a linear concentration range from 0.050 to 10.0 μM, with a limit of detection of about 3.7 nM. Besides, the developed colorimetric strategy was successfully applied for detecting Hg2+ ions in human blood with favorable detection recoveries, indicating its potential for applications in the biomedical analysis, environmental monitoring, and food safety fields.
Collapse
Affiliation(s)
- Qingqing Liu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, P. R. China. .,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Chenchen Xu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Su Chu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Shuai Li
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, P. R. China.
| | - Fengxiang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yanmei Si
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Choufei Wu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, P. R. China.
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, P. R. China. .,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
36
|
Lu Q, Lin S, Ding Q, Zhang H, Tong P, Fang M, Zhang W, Zhang L. An agaric-like covalent organic framework composite for efficient extraction of trace cytokinins in plant samples. J Chromatogr A 2022; 1683:463524. [DOI: 10.1016/j.chroma.2022.463524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/31/2022]
|
37
|
Wang Q, Wu Y, Guo W, Zhang F, Zhang F. A magnetic covalent organic framework as selective adsorbent for preconcentration of multi strobilurin fungicides in foods. Food Chem 2022; 392:133190. [DOI: 10.1016/j.foodchem.2022.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
38
|
Hu R, Yuan Y, Gu M, Zou YQ. Recent advances in chiral aggregation-induced emission fluorogens. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P. Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Mikrochim Acta 2022; 189:340. [PMID: 35995957 DOI: 10.1007/s00604-022-05444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 μg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 μg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.
Collapse
Affiliation(s)
- Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025. .,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025.
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Quan-Wen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Xin-Yan Peng
- Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, People's Republic of China, 264005
| | - Ping Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| |
Collapse
|
40
|
Yang Y, Luo N, Lin S, Yao H, Cai Y. Cyano Substituent on the Olefin Linkage: Promoting Rather than Inhibiting the Performance of Covalent Organic Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongliang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R.China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R.China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiyun Lin
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huan Yao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing 100029, P. R. China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R.China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
41
|
Lu F, Wu M, Lin C, Lin X, Xie Z. Efficient and selective solid-phase microextraction of polychlorinated biphenyls by using a three-dimensional covalent organic framework as functional coating. J Chromatogr A 2022; 1681:463419. [PMID: 36044783 DOI: 10.1016/j.chroma.2022.463419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Developing functional fiber coating for selective solid phase microextraction (SPME) of trace pollutants is critical in environmental analysis. Herein, the novel covalent organic frameworks (COFs) with three-dimensional (3D) frameworks and multiple interactions were designed and presented for the selective SPME of polychlorinated biphenyls (PCBs). Using tetra (p-aminophenyl) methane (TAM) and 1,3,5-triformylphloroglucinol (Tp) as the monomers, the 3D TpTAM-COF was synthesized and possessed a large specific surface area, high thermal stability, and spatial selectivity toward PCBs. Characterizations such as morphology, XPS, XRD, thermal stability, and enhancement factors (EFs) were studied. Multiple interactions including π-π conjugation, hydrophobic interaction, and selectivity toward non-planar structure were adopted, which resulted in a superior adsorption affinity toward PCBs on TpTAM-COF. Under the optimal conditions, the spatial selectivity toward PCBs, organic analogs (o-dichlorobenzene, biphenyl) and polycyclic aromatic hydrocarbons (naphthalene, pyrene, and anthracene)) was achieved. Efficient and selective adsorption of fifteen PCBs was fulfilled with the highest EF up to 10305. Using the HS-SPME-GC-MS method, the recoveries of PCBs in the river water and soil samples were determined to be 84.8 ± 7.8% ∼ 117.2 ± 8.5% (n = 3) and 84.4 ± 8.6% ∼ 114.7 ± 7.6% (n = 3), respectively. Compared with most commercial SPME fibers and other COFs-based fibers, the resultant TpTAM-COF-coated fibers possessed higher selectivity and EFs of PCBs. It proposed a promising approach for selective SPME of trace PCBs by multiple interactions in the steric structure of 3D COFs.
Collapse
Affiliation(s)
- Feifei Lu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Qi Shan Campus, 2 Xue Yuan Road,U., Fuzhou 350108, China; Fujian Key Laboratory of Quality and Safety of Agri-Products, Institute of Agricultural Quality Standards and testing Technology Research, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Mengqin Wu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Qi Shan Campus, 2 Xue Yuan Road,U., Fuzhou 350108, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Qi Shan Campus, 2 Xue Yuan Road,U., Fuzhou 350108, China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Qi Shan Campus, 2 Xue Yuan Road,U., Fuzhou 350108, China; Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, Fuzhou, Fujian 350108, China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Qi Shan Campus, 2 Xue Yuan Road,U., Fuzhou 350108, China; Engineering Technology Research Center on reagent and Instrument for rapid detection of product quality and food safety, Fuzhou, Fujian 350108, China; Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
42
|
Ran XQ, Qian HL, Yan XP. Integrating Ordered Two-Dimensional Covalent Organic Frameworks to Solid-State Nanofluidic Channels for Ultrafast and Sensitive Detection of Mercury. Anal Chem 2022; 94:8533-8538. [PMID: 35653553 DOI: 10.1021/acs.analchem.2c01595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Grafting specific recognition moieties onto solid-state nanofluidic channels is a promising way for selective and sensitive sensing of analytes. However, the time-consuming interaction between recognition moieties and analytes is the main hindrance to the application of nanofluidic channel-based sensors in rapid detection. Here, we show the integration of ordered two-dimensional covalent organic frameworks (2D COFs) to solid-state nanofluidic channels to achieve rapid, selective, and sensitive detection of contaminants. As a proof of concept, a thiourea-linked 2D COF (JNU-3) as the recognition unit is covalently bonded on the stable artificial anodic aluminum oxide nanochannels (AAO) to fabricate a JNU-3@AAO-based nanofluidic sensor. The rapid and selective interaction of Hg(II) with the highly ordered channels of JNU-3 allows the JNU-3@AAO-based nanofluidic sensor to realize ultrafast and precise determination of Hg(II) (90 s) with a low limit of detection (3.28 fg mL-1), wide linear range (0.01-100 pg mL-1), and good precision (relative standard deviation of 3.8% for 11 replicate determination of 10 pg mL-1). The developed method was successfully applied to the determination of mercury in a certified reference material A072301c (rice powder), real water, and rice samples with recoveries of 90.4-99.8%. This work reveals the great potential of 2D COFs-modified solid-state nanofluidic channels as a sensor for the rapid and precise detection of contaminants in complicated samples.
Collapse
Affiliation(s)
- Xu-Qin Ran
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Yin Y, Liu G. Application of a novel hydroxyl functionalized fluorescent covalent organic framework for turn-off ultrasensitive Zn 2+ ion detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1988-1995. [PMID: 35532901 DOI: 10.1039/d2ay00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this research, a novel hydroxyl functionalized covalent organic framework (COF) with fluorescence properties was rationally designed based on the reaction between 2,5-dihydroxy-terephthalic-dihydrazide (DHTPz) and 1,3,5-benzenetricarboxaldehyde (Bt) for Zn2+ detection. The prepared DHTPz-Bt exhibited strong fluorescence, while the apparent quenching of fluorescence was observed after the introduction of Zn2+. Meanwhile, DHTPz-Bt exhibited high sensitivity and promising selectivity during the detection of Zn2+. Additionally, the recognition process was revealed to be attributed to the coordination between the hydroxyl groups on the phenyls of DHTPz-Bt and Zn2+ ions, as verified by using Fourier-transform infrared spectra and X-ray photoelectron spectra. This work demonstrates the great potential of fluorescent probes by rationally introducing metal ligands, which will lead to a suite of new COF materials for metal ion sensing in a practical manner.
Collapse
Affiliation(s)
- Yuan Yin
- Key Lab of Smart Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, 100083, China.
- Key Lab of Agriculture Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, 100083, China
| | - Gang Liu
- Key Lab of Smart Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, 100083, China.
- Key Lab of Agriculture Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
44
|
Qian HL, Wang ZH, Yang J, Yan XP. Building-block exchange synthesis of amino-based three-dimensional covalent organic framework for gas chromatographic separation of isomers. Chem Commun (Camb) 2022; 58:8133-8136. [DOI: 10.1039/d2cc02383k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermally stable three-dimensional covalent organic framework (3D COFs) with rich pore of channels and cages are promising as stationary phase for gas chromatography (GC), which has not been explored....
Collapse
|