1
|
Roesler J, Spitzer D, Jia X, Aasen SN, Sommer K, Roller B, Olshausen N, Hebach NR, Albinger N, Ullrich E, Zhu L, Wang F, Macas J, Forster MT, Steinbach JP, Sevenich L, Devraj K, Thorsen F, Karreman MA, Plate KH, Reiss Y, Harter PN. Disturbance in cerebral blood microcirculation and hypoxic-ischemic microenvironment are associated with the development of brain metastasis. Neuro Oncol 2024; 26:2084-2099. [PMID: 38831719 PMCID: PMC11534324 DOI: 10.1093/neuonc/noae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Brain metastases (BM) constitute an increasing challenge in oncology due to their impact on neurological function, limited treatment options, and poor prognosis. BM occurs through extravasation of circulating tumor cells across the blood-brain barrier. However, the extravasation processes are still poorly understood. We here propose a brain colonization process which mimics infarction-like microenvironmental reactions, that are dependent on Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF). METHODS In this study, intracardiac BM models were used, and cerebral blood microcirculation was monitored by 2-photon microscopy through a cranial window. BM formation was observed using cranial magnetic resonance, bioluminescent imaging, and postmortem autopsy. Ang-2/VEGF targeting strategies and Ang-2 gain-of-function (GOF) mice were employed to interfere with BM formation. In addition, vascular and stromal factors as well as clinical outcomes were analyzed in BM patients. RESULTS Blood vessel occlusions by cancer cells were detected, accompanied by significant disturbances of cerebral blood microcirculation, and focal stroke-like histological signs. Cerebral endothelial cells showed an elevated Ang-2 expression both in mouse and human BM. Ang-2 GOF resulted in an increased BM burden. Combined anti-Ang-2/anti-VEGF therapy led to a decrease in brain metastasis size and number. Ang-2 expression in tumor vessels of established human BM negatively correlated with survival. CONCLUSIONS Our observations revealed a relationship between disturbance of cerebral blood microcirculation and brain metastasis formation. This suggests that vessel occlusion by tumor cells facilitates brain metastatic extravasation and seeding, while combined inhibition of microenvironmental effects of Ang-2 and VEGF prevents the outgrowth of macrometastases.
Collapse
Affiliation(s)
- Jenny Roesler
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Daniel Spitzer
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Xiaoxiong Jia
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Neurosurgery Department, Tianjin Huanhu Hospital, Tianjin, China
| | - Synnøve Nymark Aasen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Kathleen Sommer
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Bastian Roller
- Goethe University, University Hospital, Dr. Senckenberg Institute for Neurooncology, Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Niels Olshausen
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils R Hebach
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nawid Albinger
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University, University Hospital, Frankfurt, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University, University Hospital, Frankfurt, Germany
| | - Ling Zhu
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Fan Wang
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Jadranka Macas
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Marie-Therese Forster
- Department of Neurosurgery, Goethe University, University Hospital, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Dr. Senckenberg Institute for Neurooncology, Frankfurt, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Kavi Devraj
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| | - Frits Thorsen
- Department of Biomedicine, Molecular Imaging Center, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Matthia A Karreman
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl H Plate
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Yvonne Reiss
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| |
Collapse
|
2
|
Sweeney PL, Suri Y, Basu A, Koshkin VS, Desai A. Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:858-873. [PMID: 38239394 PMCID: PMC10792482 DOI: 10.20517/cdr.2023.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Renal cell carcinoma (RCC), the most prevalent type of kidney cancer, is a significant cause of cancer morbidity and mortality worldwide. Antiangiogenic tyrosine kinase inhibitors (TKIs), in combination with immune checkpoint inhibitors (ICIs), are among the first-line treatment options for patients with advanced RCC. These therapies target the vascular endothelial growth factor receptor (VEGFR) tyrosine kinase pathway and other kinases crucial to cancer proliferation, survival, and metastasis. TKIs have yielded substantial improvements in progression-free survival (PFS) and overall survival (OS) for patients with advanced RCC. However, nearly all patients eventually progress on these drugs as resistance develops. This review provides an overview of TKI resistance in RCC and explores different mechanisms of resistance, including upregulation of alternative proangiogenic pathways, epithelial-mesenchymal transition (EMT), decreased intracellular drug concentrations due to efflux pumps and lysosomal sequestration, alterations in the tumor microenvironment including bone marrow-derived cells (BMDCs) and tumor-associated fibroblasts (TAFs), and genetic factors such as single nucleotide polymorphisms (SNPs). A comprehensive understanding of these mechanisms opens the door to the development of innovative therapeutic approaches that can effectively overcome TKI resistance, thereby improving outcomes for patients with advanced RCC.
Collapse
Affiliation(s)
- Patrick L. Sweeney
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yash Suri
- University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Arnab Basu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Vadim S. Koshkin
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Arpita Desai
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Sekino Y, Teishima J, Liang G, Hinata N. Molecular mechanisms of resistance to tyrosine kinase inhibitor in clear cell renal cell carcinoma. Int J Urol 2022; 29:1419-1428. [PMID: 36122306 PMCID: PMC10087189 DOI: 10.1111/iju.15042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Loss of von Hippel-Lindau tumor suppressor gene is frequently observed in ccRCC and increases the expression of hypoxia-inducible factors and their targets, including epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor. Tyrosine kinase inhibitors (TKIs) offer a survival benefit in metastatic renal cell carcinoma (mRCC). Recently, immune checkpoint inhibitors have been introduced in mRCC. Combination therapy with TKIs and immune checkpoint inhibitors significantly improved patient outcomes. Therefore, TKIs still play an essential role in mRCC treatment. However, the clinical utility of TKIs is compromised when primary and acquired resistance are encountered. The mechanism of resistance to TKI is not fully elucidated. Here, we comprehensively reviewed the molecular mechanisms of resistance to TKIs and a potential strategy to overcome this resistance. We outlined the involvement of angiogenesis, non-angiogenesis, epithelial-mesenchymal transition, activating bypass pathways, lysosomal sequestration, non-coding RNAs, epigenetic modifications and tumor microenvironment factors in the resistance to TKIs. Deep insight into the molecular mechanisms of resistance to TKIs will help to better understand the biology of RCC and can ultimately help in the development of more effective therapies.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
5
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
6
|
Khan KA, Wu FTH, Cruz‐Munoz W, Kerbel RS. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 2021; 13:e08253. [PMID: 34125494 PMCID: PMC8261516 DOI: 10.15252/emmm.201708253] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenic drugs targeting the VEGF pathway are most effective in advanced metastatic disease settings of certain types of cancers, whereas they have been unsuccessful as adjuvant therapies of micrometastatic disease in numerous phase III trials involving early-stage (resectable) cancers. Newer investigational anti-angiogenic drugs have been designed to inhibit the Angiopoietin (Ang)-Tie pathway. Acting through Tie2 receptors, the Ang1 ligand is a gatekeeper of endothelial quiescence. Ang2 is a dynamically expressed pro-angiogenic destabilizer of endothelium, and its upregulation is associated with poor prognosis in cancer. Besides using Ang2 blockers as inhibitors of tumor angiogenesis, little attention has been paid to their use as stabilizers of blood vessels to suppress tumor cell extravasation and metastasis. In clinical trials, Ang2 blockers have shown limited efficacy in advanced metastatic disease settings. This review summarizes preclinical evidence suggesting the potential utility of Ang2 inhibitors or Tie2 activators as neoadjuvant or adjuvant therapies in the prevention or treatment of early-stage micrometastatic disease. We further discuss the rationale and potential of combining these strategies with immunotherapy, including immune checkpoint targeting antibodies.
Collapse
Affiliation(s)
- Kabir A Khan
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Florence TH Wu
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - William Cruz‐Munoz
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| |
Collapse
|
7
|
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:186. [PMID: 34099013 PMCID: PMC8183071 DOI: 10.1186/s13046-021-01961-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
| | - Mark Myers
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | | | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia.
- Federation University Australia, Ballarat, Victoria, 3350, Australia.
- The Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, 3052, Australia.
| |
Collapse
|
8
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. ARID1A knockdown in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity. Int J Biol Macromol 2021; 180:1-13. [PMID: 33675830 DOI: 10.1016/j.ijbiomac.2021.02.218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
AT-rich interactive domain 1A (ARID1A) is a novel tumor suppressor gene found in several human cells and its loss/defect is commonly observed in many cancers. However, its roles in angiogenesis, which is one of the hallmarks for tumor progression, remained unclear. Herein, we demonstrated the direct effects of ARID1A knockdown in human endothelial cells by lentivirus-based short-hairpin RNA (shRNA) (shARID1A) on angiogenesis. Functional assays revealed that shARID1A significantly enhanced cell proliferation and migration/invasion and endothelial tube formation compared with the control cells transfected with scramble shRNA (shControl). Additionally, the shARID1A-transfected cells had significantly increased podosome formation and secretion of angiopoietin-2 (ANG2), a key angiogenic factor. Moreover, neutralization of ANG2 with monoclonal anti-ANG2 antibody strongly reduced cell proliferation and migration/invasion and endothelial tube formation in the shARID1A-transfected cells. These findings indicate that down-regulation of ARID1A in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
9
|
Han E, Kim J, Jung MJ, Chin S, Lee JH, Won KY, Moon A. ERG and nestin: useful markers of immature vessels and novel prognostic markers in renal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:116-125. [PMID: 33532029 PMCID: PMC7847495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) accounts for approximately 90% of all renal malignancy. Because a rich vasculature is an outstanding feature of RCC, information on the blood vessels of RCC might explain its tumor characteristics. Several researchers have noted the effects of tumor vessels on the clinicopathologic characteristics and prognosis of tumors; however, a clear association has not been established. We hypothesized that the immaturity of the neovasculature may be an important clinicopathologic characteristic forprognosis of RCC patients. ERG and nestin are new vascular markers that regulate vascular homeostasis and angiogenesis. Therefore, in the present study, we investigated how ERG and nestin were expressed with respect to tumor characteristics. MATERIALS AND METHODS IHC staining for ERG, nestin, CD31, and CD34 was performed for 217 renal tumors, including clear-cell RCC (ccRCC; n = 184), papillary RCC (pRCC; n = 14), chromophobe RCC (chRCC; n = 14), and oncocytoma (n = 5). RESULTS Vascular endothelial cells from normal kidney consistently showed strong nuclear expression of ERG and nestin. Conversely, a loss of ERG and nestin expression was observed in endothelial cells of some tumor blood vessels, which was associated with tumor progression. In particular, the loss of ERG expression was significantly associated with progression-free survival and overall survival (univariate analyses: P = 0.027 and P = 0.004, respectively; multivariate analyses: P = 0.030 and P = 0.046, respectively). CONCLUSION A loss of ERG and nestin expression is associated with tumor progression, and loss of ERG is a powerful prognostic marker for ccRCC.
Collapse
Affiliation(s)
- Eunkyung Han
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheon, Republic of Korea
| | - Jiyoon Kim
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheon, Republic of Korea
| | - Min Jung Jung
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheon, Republic of Korea
| | - Susie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheon, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of MedicineCheonan, Republic of Korea
| | - Kyu Yeoun Won
- Department of Pathology, Kyung Hee University Hostpital at Gangdong, Kyung Hee University, College of MedicineSeoul, Republic of Korea
| | - Ahrim Moon
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheon, Republic of Korea
| |
Collapse
|
10
|
Heil F, Babitzki G, Julien-Laferriere A, Ooi CH, Hidalgo M, Massard C, Martinez-Garcia M, Le Tourneau C, Kockx M, Gerber P, Rossomanno S, Krieter O, Lahr A, Wild N, Harring SV, Lechner K. Vanucizumab mode of action: Serial biomarkers in plasma, tumor, and skin-wound-healing biopsies. Transl Oncol 2020; 14:100984. [PMID: 33338877 PMCID: PMC7749407 DOI: 10.1016/j.tranon.2020.100984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Vanucizumab is a novel bispecific antibody inhibiting vascular endothelial growth factor (VEGF-A) and angiopoietin-2 (Ang-2) that demonstrated safety and anti-tumor activity in part I of a phase I study of 42 patients with advanced solid tumors. Part II evaluated the pharmacodynamic effects of vanucizumab 30 or 15 mg/kg every 2 weeks in 32 patients. Serial plasma samples, paired tumor, and skin-wound-healing biopsies were taken over 29 days to evaluate angiogenic markers. Vanucizumab was associated with marked post-infusion reductions in circulating unbound VEGF-A and Ang-2. By day 29, tumor samples revealed mean reductions in density of microvessels (-32.2%), proliferating vessels (-47.9%) and Ang-2 positive vessels (-62.5%). Skin biopsies showed a mean reduction in density of microvessels (-49.0%) and proliferating vessels (-25.7%). Gene expression profiling of tumor samples implied recruitment and potential activation of lymphocytes. Biopsies were safely conducted. Vanucizumab demonstrated a consistent biological effect on vascular-related biomarkers, confirming proof of concept. Skin-wound-healing biopsies were a valuable surrogate for studying angiogenesis-related mechanisms.
Collapse
Affiliation(s)
- Florian Heil
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Galina Babitzki
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | | | | | - Manuel Hidalgo
- Division of Hematology and Medical Oncology, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, USA.
| | | | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation, Institut Curie, Paris & Saint-Cloud, France; INSERM U900 Research unit, Institut Curie, Saint-Cloud, France; Versailles-Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France.
| | | | - Peter Gerber
- Roche Innovation Center Basel, Basel, Switzerland.
| | | | - Oliver Krieter
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Angelika Lahr
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Norbert Wild
- Roche Centralized and Point of Care Solutions, Penzberg, Germany.
| | | | - Katharina Lechner
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| |
Collapse
|
11
|
Gengenbacher N, Singhal M, Mogler C, Hai L, Milde L, Pari AAA, Besemfelder E, Fricke C, Baumann D, Gehrs S, Utikal J, Felcht M, Hu J, Schlesner M, Offringa R, Chintharlapalli SR, Augustin HG. Timed Ang2-Targeted Therapy Identifies the Angiopoietin-Tie Pathway as Key Regulator of Fatal Lymphogenous Metastasis. Cancer Discov 2020; 11:424-445. [PMID: 33106316 DOI: 10.1158/2159-8290.cd-20-0122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Recent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases. Multiregimen survival studies and correlative patient data identified primary tumor-derived Angiopoietin-2 (Ang2) as a potent therapeutic target to restrict lymphogenous tumor cell dissemination. Mechanistically, tumor-associated lymphatic endothelial cells (EC), in contrast to blood vascular EC, were found to be critically addicted to the Angiopoietin-Tie pathway. Genetic manipulation experiments in combination with single-cell mapping revealed agonistically acting Ang2-Tie2 signaling as key regulator of lymphatic maintenance. Correspondingly, acute presurgical Ang2 neutralization was sufficient to prolong survival by regressing established intratumoral lymphatics, hence identifying a therapeutic regimen that warrants further clinical evaluation. SIGNIFICANCE: Exploiting multiple mouse tumor models including a unique GEMM-derived allograft system in combination with preclinical therapy designs closely matching the human situation, this study provides fundamental insight into the biology of tumor-associated lymphatic EC and defines an innovative presurgical therapeutic window of migrastatic Ang2 neutralization to restrict lymphogenous metastasis.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Milde
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Claudine Fricke
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Daniel Baumann
- Faculty of Biosciences, Heidelberg University, Mannheim, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Moritz Felcht
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany. .,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
12
|
Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC. Cell Death Dis 2020; 11:367. [PMID: 32409702 PMCID: PMC7224303 DOI: 10.1038/s41419-020-2486-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Sunitinib has been used as the main therapy to treat the metastatic clear cell renal cell carcinoma (ccRCC) as it could function via suppressing the tumor growth and angiogenesis. Yet most ccRCC tumors may still regrow due to the development of sunitinib-resistance, and detailed mechanisms remain to be further investigated. The angiopoietin family includes angiopoietin-1 and angiopoietin-2 (ANGPT-1 and -2). It was reported that estradiol regulates expression of ANGPT-1, but not ANGPT-2, through estrogen receptor α (ERα) in an experimental stroke model. To date, there is no finding to link the E2/ER signal on regulating ANGPT-2. Our study is the first to explore (i) how estrogen receptor β (ERβ) can up-regulate ANGPT-2 in RCC cells, and (ii) how ERβ-increased ANGPT-2 can promote the HUVEC tube formation and reduce sunitinib sensitivity. Mechanistic studies revealed that ERβ could function via transcriptional regulation of the cytokine ANGPT-2 in the ccRCC cells. We found the up-regulated ANGPT-2 of RCC cells could then increase the Tie-2 phosphorylation to promote the angiogenesis and increase sunitinib treatment resistance of endothelial cells. In addition to the endothelial cell tube formation and aortic ring assay, preclinical studies with a mouse RCC model also confirmed the finding. Targeting this newly identified ERβ/ANGPT-2/Tie-2 signaling pathway with the FDA-approved anti-estrogen, Faslodex, may help in the development of a novel combined therapy with sunitinib to better suppress the ccRCC progression.
Collapse
|
13
|
Xu W, Puligandla M, Manola J, Bullock AJ, Tamasauskas D, McDermott DF, Atkins MB, Haas NB, Flaherty K, Uzzo RG, Dutcher JP, DiPaola RS, Bhatt RS. Angiogenic Factor and Cytokine Analysis among Patients Treated with Adjuvant VEGFR TKIs in Resected Renal Cell Carcinoma. Clin Cancer Res 2019; 25:6098-6106. [PMID: 31471309 DOI: 10.1158/1078-0432.ccr-19-0818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The use of VEGFR TKIs for the adjuvant treatment of renal cell carcinoma (RCC) remains controversial. We investigated the effects of adjuvant VEGFR TKIs on circulating cytokines in the ECOG-ACRIN 2805 (ASSURE) trial. EXPERIMENTAL DESIGN Patients with resected high-risk RCC were randomized to sunitinib, sorafenib, or placebo. Plasma from 413 patients was analyzed from post-nephrectomy baseline, 4 weeks, and 6 weeks after treatment initiation. Mixed effects and Cox proportional hazards models were used to test for changes in circulating cytokines and associations between disease-free survival (DFS) and cytokine levels. RESULTS VEGF and PlGF increased after 4 weeks on sunitinib or sorafenib (P < 0.0001 for both) and returned to baseline at 6 weeks on sunitinib (corresponding to the break in the sunitinib schedule) but not sorafenib (which was administered continuously). sFLT-1 decreased after 4 weeks on sunitinib and 6 weeks on sorafenib (P < 0.0001). sVEGFR-2 decreased after both 4 and 6 weeks of treatment on sunitinib or sorafenib (P < 0.0001). Patients receiving placebo had no significant changes in cytokine levels. CXCL10 was elevated at 4 and 6 weeks on sunitinib and sorafenib but not on placebo. Higher baseline CXCL10 was associated with worse DFS (HR 1.41 per log increase in CXCL10, Bonferroni-adjusted P = 0.003). This remained significant after adjustment for T-stage, Fuhrman grade, and ECOG performance status. CONCLUSIONS Among patients treated with adjuvant VEGFR TKIs for RCC, drug-host interactions mediate changes in circulating cytokines. Elevated baseline CXCL10 was associated with worse DFS. Studies to understand functional consequences of these changes are under way.
Collapse
Affiliation(s)
- Wenxin Xu
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Maneka Puligandla
- Dana-Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Judith Manola
- Dana-Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | | | | | | | - Michael B Atkins
- MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Naomi B Haas
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Rupal S Bhatt
- Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
14
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
He F, Zhang D, Chen Q, Zhao Y, Wu L, Li Z, Zhang C, Jiang Z, Wang Y. Angiopoietin‐Tie signaling in kidney diseases: an updated review. FEBS Lett 2019; 593:2706-2715. [PMID: 31380564 DOI: 10.1002/1873-3468.13568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Fang‐Fang He
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Di Zhang
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qing Chen
- Department of Hepatobiliary Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yi Zhao
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Liang Wu
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhen‐Qiong Li
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chun Zhang
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhao‐Hua Jiang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yu‐Mei Wang
- Department of Nephrology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
16
|
Tiainen L, Korhonen EA, Leppänen VM, Luukkaala T, Hämäläinen M, Tanner M, Lahdenperä O, Vihinen P, Jukkola A, Karihtala P, Aho S, Moilanen E, Alitalo K, Kellokumpu-Lehtinen PL. High baseline Tie1 level predicts poor survival in metastatic breast cancer. BMC Cancer 2019; 19:732. [PMID: 31340773 PMCID: PMC6657075 DOI: 10.1186/s12885-019-5959-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
Background Angiopoietin growth factors (Angs) regulate angiogenesis and lymphangiogenesis by binding to the endothelial Tie2 receptor. Ang2 expression is elevated in tissue hypoxia and inflammation, which also induce cleavage of the extracellular domain of the orphan Tie1 receptor. Here we have examined if the concentrations of Ang2 and the soluble extracellular domain of Tie1 in patient plasma are associated with the prognosis of patients with metastatic breast cancer. Methods Plasma Tie1 and Ang2 levels were measured in metastatic breast cancer patients treated in a phase II trial with a taxane-bevacizumab combination chemotherapy in the first-line treatment setting. They were analyzed before treatment, after 6 weeks and 6 months of treatment, and at the final study visit. Using the median concentrations as cutoffs, Tie1 and Ang2 data were dichotomized into low and high concentration groups. Additionally, we analyzed Tie1 concentrations in plasma from 10 healthy women participating in a breast cancer primary prevention study. Results Plasma samples were available from 58 (89%) of the 65 patients treated in the trial. The baseline Tie1 levels of the healthy controls were significantly lower than those of the metastatic patients (p < 0.001). The overall survival of the patients with a high baseline Tie1 level was significantly shorter (multivariate HR 3.07, 95% CI 1.39–6.79, p = 0.005). Additionally, the progression-free survival was shorter for patients with a high baseline Tie1 level (multivariate HR 3.78, 95% CI 1.57–9.09, p = 0.003). In contrast, the baseline Ang2 levels had no prognostic impact in a multivariate Cox proportional hazard regression analysis. The combined analysis of baseline Tie1 and Ang2 levels revealed that patients with both high Tie1 and high Ang2 baseline levels had a significantly shorter overall survival than the patients with low baseline levels of both markers (multivariate HR for overall survival 4.32, 95% CI 1.44–12.94, p = 0.009). Conclusions This is the first study to demonstrate the prognostic value of baseline Tie1 plasma concentration in patients with metastatic breast cancer. Combined with the results of the Ang2 analyses, the patients with both high Tie1 and Ang2 levels before treatment had the poorest survival. Trial registration Clinicaltrials.gov: NCT00979641, registration date 19-DEC-2008. The regional Ethics Committee: R08142M, registration date 18-NOV-2008.
Collapse
Affiliation(s)
- Leena Tiainen
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland. .,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland.
| | - Emilia A Korhonen
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland
| | - Tiina Luukkaala
- Research, Development and Innovation Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, P.O. Box 2000, FI-33521, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, P.O. Box 100, FI-33014, Tampere, Finland
| | - Minna Tanner
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland.,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland
| | - Outi Lahdenperä
- Department of Oncology and Radiotherapy, Turku University Central Hospital, P.O. Box 52, 20521, Turku, Finland
| | - Pia Vihinen
- Department of Oncology and Radiotherapy, Turku University Central Hospital, P.O. Box 52, 20521, Turku, Finland
| | - Arja Jukkola
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 10, 90029 OYS, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 10, 90029 OYS, Oulu, Finland
| | - Sonja Aho
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland.,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, P.O. Box 100, FI-33014, Tampere, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland.,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland
| |
Collapse
|
17
|
Li W, Zhang W, Zhang C, Zhu C, Yi X, Zhou Y, Lv Y. Soluble Tei2 fusion protein inhibits retinopathy of prematurity occurrence via regulation of the Ang/Tie2 pathway. Exp Ther Med 2019; 18:614-620. [PMID: 31258697 PMCID: PMC6566045 DOI: 10.3892/etm.2019.7608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the potential mechanism of retinopathy of prematurity (ROP) using an oxygen-induced retinopathy (OIR) mouse model. For experiments, mice were divided into either the OIR group or control group. Fluorescein isothiocyanate-dextran cardiac perfusion and stretched retina preparation were performed. The total retina area, area of instillation, density of microvascular network, area of new blood vessels, vein width and the tortuosity of arteries were measured. Next, mice were randomly assigned into the PBS, soluble TEK receptor tyrosine kinase (sTie2)-fusion protein (Fc), angiopoietin 1 (Ang1), ranibizumab, ranibizumab + sTie2-Fc and ranibizumab + Ang1 treatment groups. Following housing for 5 days, the body weight of each mouse was recorded. Mice in the OIR group presented smaller total retina area and larger area of instillation, larger area of new blood vessels, and higher microvascular network density compared with the control PBS group. Obvious retinal vein dilatation and arterial tortuosity were identified in the OIR group. The amount of endotheliocyte nuclei of new vessels beyond the inner limiting membrane was larger in the OIR group compared with the control group. Furthermore in the next set of experiments, a larger area of instillation, smaller area of new blood vessels and decreased amount of endotheliocyte nuclei of new vessels were observed in the sTie2-Fc group, Ang1 group, ranibizumab group, ranibizumab + sTie2-Fc group and ranibizumab + Ang1 group compared with the PBS group. Specifically, the ranibizumab + sTie2-Fc group and ranibizumab + Ang1 group demonstrated markedly reduced retina instillation area and microvascular network density in the instillation area. Total retina area and body weight following 10 days of the experiment for the ranibizumab group were significantly lower compared with other groups. In conclusion, the combined regulation of the Ang/Tie2 and the vascular endothelial growth factor (VEGF)/VEGF receptor pathways markedly increased the efficacy of treatment with retinal neovascularization (RNV). Regulation of these pathways has a potential for treating RNV, in particular ROP.
Collapse
Affiliation(s)
- Weijing Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Weihua Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Cuiying Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chunfang Zhu
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiangling Yi
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan Zhou
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan Lv
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
18
|
Limitations to the Therapeutic Potential of Tyrosine Kinase Inhibitors and Alternative Therapies for Kidney Cancer. Ochsner J 2019; 19:138-151. [PMID: 31258426 DOI: 10.31486/toj.18.0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Renal cell carcinomas (RCCs) are the most common primary renal tumor. RCCs have a high rate of metastasis and have the highest mortality rate of all genitourinary cancers. They are often diagnosed late when metastases have developed, and these metastases are difficult to treat successfully. Since 2006, the standard first-line treatment for patients with metastatic RCC has been multitargeted tyrosine kinase inhibitors (TKIs) that include mammalian target of rapamycin (mTOR) inhibitors. RCCs are highly vascularized tumors, and their angiogenesis is controlled by tyrosine kinases that play a vital role in growth factor signaling to stimulate this process. TKI therapy was introduced for direct targeting of angiogenesis in RCC. TKIs have been moderately successful in the treatment of metastatic RCC and initially increased cancer-specific survival times. However, RCC rapidly becomes resistant to TKIs, and no current drug has produced a cure for advanced RCC. Methods: We provide an overview of RCC, explain some reasons for therapy resistance in RCC, and describe some therapies that may overcome resistance to TKIs. The key pathways that determine therapy resistance are illustrated. Results: Factors involved in the development and progression of RCC include genetic mutations, activation of hypoxia-inducible factor and related proteins, cellular metabolism, the tumor microenvironment, and growth factors and their receptors. Resistance to the therapeutic potential of TKIs can be acquired or intrinsic. Alternative therapies include other small molecule drugs and immunotherapy based on immune checkpoint blockade. Conclusion: The treatment of RCC is undergoing a paradigm shift from sole use of small molecule antiangiogenesis TKIs as first-line therapy to include newly approved agents for second-line and third-line therapy that now involve the mTOR pathway and immune checkpoint blockade drugs for patients with advanced RCC.
Collapse
|
19
|
Fischl AS, Wang X, Falcon BL, Almonte-Baldonado R, Bodenmiller D, Evans G, Stewart J, Wilson T, Hipskind P, Manro J, Uhlik MT, Chintharlapalli S, Gerald D, Alsop DC, Benjamin LE, Bhatt RS. Inhibition of Sphingosine Phosphate Receptor 1 Signaling Enhances the Efficacy of VEGF Receptor Inhibition. Mol Cancer Ther 2019; 18:856-867. [PMID: 30787172 DOI: 10.1158/1535-7163.mct-18-0548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 01/15/2023]
Abstract
Inhibition of VEGFR signaling is an effective treatment for renal cell carcinoma, but resistance continues to be a major problem. Recently, the sphingosine phosphate (S1P) signaling pathway has been implicated in tumor growth, angiogenesis, and resistance to antiangiogenic therapy. S1P is a bioactive lipid that serves an essential role in developmental and pathologic angiogenesis via activation of the S1P receptor 1 (S1P1). S1P1 signaling counteracts VEGF signaling and is required for vascular stabilization. We used in vivo and in vitro angiogenesis models including a postnatal retinal angiogenesis model and a renal cell carcinoma murine tumor model to test whether simultaneous inhibition of S1P1 and VEGF leads to improved angiogenic inhibition. Here, we show that inhibition of S1P signaling reduces the endothelial cell barrier and leads to excessive angiogenic sprouting. Simultaneous inhibition of S1P and VEGF signaling further disrupts the tumor vascular beds, decreases tumor volume, and increases tumor cell death compared with monotherapies. These studies suggest that inhibition of angiogenesis at two stages of the multistep process may maximize the effects of antiangiogenic therapy. Together, these data suggest that combination of S1P1 and VEGFR-targeted therapy may be a useful therapeutic strategy for the treatment of renal cell carcinoma and other tumor types.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Carcinoma, Renal Cell/blood supply
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Drug Therapy, Combination
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Humans
- Kidney Neoplasms/blood supply
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lysophospholipids/antagonists & inhibitors
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Sphingosine/analogs & derivatives
- Sphingosine/antagonists & inhibitors
- Sphingosine-1-Phosphate Receptors/antagonists & inhibitors
- Sunitinib/pharmacology
- Treatment Outcome
- Tumor Burden/drug effects
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Xiaoen Wang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Rupal S Bhatt
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
20
|
Semrad TJ, Groshen S, Luo C, Pal S, Vaishampayan U, Joshi M, Quinn DI, Mack PC, Gandara DR, Lara PN. Randomized Phase 2 Study of Trebananib (AMG 386) with or without Continued Anti-Vascular Endothelial Growth Factor Therapy in Patients with Renal Cell Carcinoma Who Have Progressed on Bevacizumab, Pazopanib, Sorafenib, or Sunitinib - Results of NCI/CTEP Protocol 9048. KIDNEY CANCER 2019; 3:51-61. [PMID: 30854497 PMCID: PMC6400131 DOI: 10.3233/kca-180041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: In renal cell carcinoma (RCC), angiopoietin (Ang) 2 is elevated at the time of progression on anti-vascular endothelial growth factor (VEGF) therapy and may contribute to resistance. Objective: We tested trebananib, an Ang 1 and 2 neutralizing peptibody in patients with RCC progressing on anti-VEGF treatment. Methods: Patients with measurable RCC progressing despite an anti-VEGF agent within 12 weeks, any number of prior treatments, and good PS were randomized to trebananib 15 mg/kg IV weekly without (Arm A) or with (Arm B) continuation of the prior anti-VEGF agent. The primary endpoint for each arm was tumor response (RECIST 1.1). Secondary endpoints included progression free survival and adverse events. Results: Of 41 enrolled patients, 35 were eligible and started treatment (17 Arm A, 18 Arm B) with median age 60 (46–76) and 3 prior treatments (1–8). Four died prior to documented progression and 27 progressed as their first event. Both arms were stopped after interim analysis, 2 responses (11%; 95% C.I. 1–35%) were observed in Arm B. Median PFS of 2.7 (95% C.I. 2.3–4.7) months in Arm A and 5.2 (95% C.I. 2.7–10.8) months in Arm B did not support continued study. Common adverse events including fatigue, nausea, and increased creatinine were generally grade 1–2 and numerically higher in Arm B. The most common grade 3 or higher adverse events were hypertension and dyspnea. Conclusions: While tolerable, trebananib either without or with continued anti-VEGF therapy did not show promising activity in RCC patients who recently progressed on anti-VEGF therapy alone.
Collapse
Affiliation(s)
- Thomas J Semrad
- Gene Upshaw Memorial Tahoe Forest Cancer Center, Truckee, CA, USA.,University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Susan Groshen
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Chunqiao Luo
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Sumanta Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Monika Joshi
- Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - David I Quinn
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Philip C Mack
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - David R Gandara
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Primo N Lara
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
21
|
Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest 2019; 129:442-451. [PMID: 30614813 DOI: 10.1172/jci120855] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of hereditary kidney cancer has begun to mature following the identification of several germline syndromes that define genetic and molecular features of this cancer. Molecular defects within these hereditary syndromes demonstrate consistent deficits in angiogenesis and metabolic signaling, largely driven by altered hypoxia signaling. The classical mutation, loss of function of the von Hippel-Lindau (VHL) tumor suppressor, provides a human pathogenesis model for critical aspects of pseudohypoxia. These features are mimicked in a less common hereditary renal tumor syndrome, known as hereditary leiomyomatosis and renal cell carcinoma. Here, we review renal tumor angiogenesis and metabolism from a HIF-centric perspective, considering alterations in the hypoxic landscape, and molecular deviations resulting from high levels of HIF family members. Mutations underlying HIF deregulation drive multifactorial aberrations in angiogenic signals and metabolism. The mechanisms by which these defects drive tumor growth are still emerging. However, the distinctive patterns of angiogenesis and glycolysis-/glutamine-dependent bioenergetics provide insight into the cellular environment of these cancers. The result is a scenario permissive for aggressive tumorigenesis especially within the proximal renal tubule. These features of tumorigenesis have been highly actionable in kidney cancer treatments, and will likely continue as central tenets of kidney cancer therapeutics.
Collapse
Affiliation(s)
- John C Chappell
- Center for Heart and Regenerative Medicine, Departments of Biomedical Sciences and Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Laura Beth Payne
- Center for Heart and Regenerative Medicine, Departments of Biomedical Sciences and Biomedical Engineering and Mechanics, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Departments of Medicine and Biochemistry, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Abstract
Tumor blood vessel formation (angiogenesis) is essential for tumor growth and metastasis. Two main endothelial ligand–receptor pathways regulating angiogenesis are vascular endothelial growth factor (VEGF) receptor and angiopoietin-TIE receptor pathways. The angiopoietin-TIE pathway is required for the remodeling and maturation of the blood and lymphatic vessels during embryonic development after VEGF and VEGF-C mediated development of the primary vascular plexus. Angiopoietin-1 (ANGPT1) stabilizes the vasculature after angiogenic processes, via tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) activation. In contrast, ANGPT2 is upregulated at sites of vascular remodeling. ANGPT2 is secreted by activated endothelial cells in inflammation, promoting vascular destabilization. ANGPT2 has been found to be expressed in many human cancers. Intriguingly, in preclinical models inhibition of ANGPT2 has provided promising results in preventing tumor angiogenesis, tumor growth, and metastasis, making it an attractive candidate to target in tumors. However, until now the first ANGPT2 targeting therapies have been less effective in clinical trials than in experimental models. Additionally, in preclinical models combined therapy against ANGPT2 and VEGF or immune checkpoint inhibitors has been superior to monotherapies, and these pathways are also targeted in early clinical trials. In order to improve current anti-angiogenic therapies and successfully exploit ANGPT2 as a target for cancer treatment, the biology of the angiopoietin-TIE pathway needs to be profoundly clarified.
Collapse
Affiliation(s)
- Dieter Marmé
- Tumor Biology Center, Freiburg, Baden-Württemberg Germany
| |
Collapse
|
23
|
Yin J, Wang B, Zhu C, Sun C, Liu X. [Local injection of angiopoietin 2 promotes angiogenesis in tissue engineered bone and repair of bone defect with autophagy induction in vivo]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1150-1156. [PMID: 30129346 PMCID: PMC8413973 DOI: 10.7507/1002-1892.201804105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Indexed: 01/07/2023]
Abstract
Objective To investigate the mechanism of early vascularization of the tissue engineered bone in the treatment of rabbit radial bone defect by local injection of angiopoietin 2 (Ang-2). Methods A single 1.5 cm long radius defect model (left and right sides randomised) was constructed from 48 New Zealand white rabbits. After implantation of hydroxyapatite/collagen scaffolds in bone defects, the rabbits were randomly divided into 2 groups: control group (group A) and Ang-2 group (group B) were injected with 1 mL normal saline and 1 mL saline-soluble 400 ng/mL Ang-2 daily at the bone defect within 2 weeks after operation, respectively. Western blot was used to detect the expressions of autophagy related protein [microtubule associated protein 1 light chain 3 (LC3), Beclin-1], angiogenesis related protein [vascular endothelial growth factor (VEGF)], and autophagy degradable substrate protein (SQSTMl/p62) in callus. X-ray films examination and Lane-Sandhu X-ray scoring were performed to evaluate the bone defect repair at 4, 8, and 12 weeks after operation. The rabbits were sacrificed at 12 weeks after operation for gross observation, and the angiogenesis of bone defect was observed by HE staining. Results Western blot assay showed that the relative expression of LC3-II/LC3-I, Beclin-1, and VEGF in group B was significantly higher than that in group A, and the relative expression of SQSTMl/p62 was significantly lower than that in group A ( P<0.05). Radiographic and gross observation of specimens showed that only a small number of callus were formed in group A, the bone defect was not repaired; more callus were formed and complete repair of bone defect was observed in group B. The Lane-Sandhu scores in group B were significantly higher than those in group A at 4, 8, and 12 weeks after operation ( P<0.05). HE staining showed that the Harvard tubes in group B were well arranged and the number of new vessels was significantly higher than that in group A ( t=-11.879, P=0.000). Conclusion Local injection of appropriate concentration of Ang-2 may promote early vascularization and bone defect repair of rabbit tissue engineered bone by enhancing autophagy.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Bin Wang
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Chao Zhu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Chao Sun
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100, P.R.China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing Jiangsu, 211100,
| |
Collapse
|
24
|
Angiopoietins bind thrombomodulin and inhibit its function as a thrombin cofactor. Sci Rep 2018; 8:505. [PMID: 29323190 PMCID: PMC5765006 DOI: 10.1038/s41598-017-18912-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Angiopoietin-1 (Ang1) and Angiopoietin-2 (Ang2) are ligands for Tie2, an endothelial-specific receptor tyrosine kinase that is an essential regulator of angiogenesis. Here we report the identification, via expression cloning, of thrombomodulin (TM) as another receptor for Ang1 and Ang2. Thrombomodulin is an endothelial cell surface molecule that plays an essential role as a coagulation inhibitor via its function as a cofactor in the thrombin-mediated activation of protein C, an anticoagulant protein, as well as thrombin-activatable fibrinolysis inhibitor (TAFI). Ang1 and Ang2 inhibited the thrombin/TM-mediated generation of activated protein C and TAFI in cultured endothelial cells, and inhibited the binding of thrombin to TM in vitro. Ang2 appears to bind TM with higher affinity than Ang1 and is a more potent inhibitor of TM function. Consistent with a potential role for angiopoietins in coagulation, administration of thrombin to mice rapidly increased plasma Ang1 levels, presumably reflecting release from activated platelets (previously shown to contain high levels of Ang1). In addition, Ang1 levels were significantly elevated in plasma prepared from wound blood, suggesting that Ang1 is released from activated platelets at sites of vessel injury. Our results imply a previously undescribed role for angiopoietins in the regulation of hemostasis.
Collapse
|
25
|
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 2017; 16:635-661. [PMID: 28529319 DOI: 10.1038/nrd.2016.278] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endothelial angiopoietin (ANG)-TIE growth factor receptor pathway regulates vascular permeability and pathological vascular remodelling during inflammation, tumour angiogenesis and metastasis. Drugs that target the ANG-TIE pathway are in clinical development for oncological and ophthalmological applications. The aim is to complement current vascular endothelial growth factor (VEGF)-based anti-angiogenic therapies in cancer, wet age-related macular degeneration and macular oedema. The unique function of the ANG-TIE pathway in vascular stabilization also renders this pathway an attractive target in sepsis, organ transplantation, atherosclerosis and vascular complications of diabetes. This Review covers key aspects of the function of the ANG-TIE pathway in vascular disease and describes the recent development of novel therapeutics that target this pathway.
Collapse
Affiliation(s)
- Pipsa Saharinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 5A, University of Oulu, 90220 Oulu, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| |
Collapse
|
26
|
Siska PJ, Beckermann KE, Rathmell WK, Haake SM. Strategies to overcome therapeutic resistance in renal cell carcinoma. Urol Oncol 2017; 35:102-110. [PMID: 28089416 PMCID: PMC5318278 DOI: 10.1016/j.urolonc.2016.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Renal cell cancer (RCC) is a prevalent and lethal disease. At time of diagnosis, most patients present with localized disease. For these patients, the standard of care includes nephrectomy with close monitoring thereafter. While many patients will be cured, 5-year recurrence rates range from 30% to 60%. Furthermore, nearly one-third of patients present with metastatic disease at time of diagnosis. Metastatic disease is rarely curable and typically lethal. Cytotoxic chemotherapy and radiation alone are incapable of controlling the disease. Extensive effort was expended in the development of cytokine therapies but response rates remain low. Newer agents targeting angiogenesis and mTOR signaling emerged in the 2000s and revolutionized patient care. While these agents improve progression free survival, the development of resistance is nearly universal. A new era of immunotherapy is now emerging, led by the checkpoint inhibitors. However, therapeutic resistance remains a complex issue that is likely to persist. METHODS AND PURPOSE In this review, we systematically evaluate preclinical research and clinical trials that address resistance to the primary RCC therapies, including anti-angiogenesis agents, mTOR inhibitors, and immunotherapies. As clear cell RCC is the most common adult kidney cancer and has been the focus of most studies, it will be the focus of this review.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/antagonists & inhibitors
- Cytotoxicity, Immunologic/drug effects
- Disease Progression
- Disease-Free Survival
- Drug Resistance, Neoplasm
- Humans
- Immunotherapy/methods
- Kidney/blood supply
- Kidney/pathology
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Nephrectomy
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Peter J Siska
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 646, Nashville, TN 37232. TEL: (615) 936-2003; FAX: (615) 343-7602.
| | - Kathryn E Beckermann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 646, Nashville, TN 37232. TEL: (615) 936-2003; FAX: (615) 343-7602.
| | - W Kimryn Rathmell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 777, Nashville, TN 37232. TEL: (615) 322-4967; FAX: (615) 343-7602.
| | - Scott M Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 777, Nashville, TN 37232. TEL: (615) 322-4967; FAX: (615) 343-7602.
| |
Collapse
|
27
|
Wu FTH, Man S, Xu P, Chow A, Paez-Ribes M, Lee CR, Pirie-Shepherd SR, Emmenegger U, Kerbel RS. Efficacy of Cotargeting Angiopoietin-2 and the VEGF Pathway in the Adjuvant Postsurgical Setting for Early Breast, Colorectal, and Renal Cancers. Cancer Res 2016; 76:6988-7000. [PMID: 27651308 PMCID: PMC5633081 DOI: 10.1158/0008-5472.can-16-0888] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Antiangiogenic tyrosine kinase inhibitors (TKI) that target VEGF receptor-2 (VEGFR2) have not been effective as adjuvant treatments for micrometastatic disease in phase III clinical trials. Angiopoietin-2 (Ang2) is a proangiogenic and proinflammatory vascular destabilizer that cooperates with VEGF. The purpose of this study was to test whether CVX-060 (an Ang2-specific CovX-body) can be combined with VEGFR2-targeting TKIs (sunitinib or regorafenib) to successfully treat postsurgical metastatic disease in multiple orthotopically implanted human tumor xenograft and syngeneic murine tumor models. In the MDA-MB-231.LM2-4 human breast cancer model, adjuvant sunitinib was ineffective, whereas adjuvant CVX-060 delayed the progression of pulmonary or distant lymphatic metastases; however, overall survival was only improved with the adjuvant use of a VEGF-A/Ang2-bispecific CovX-body (CVX-241) but not when CVX-060 is combined with sunitinib. Adjuvant CVX-241 also showed promise in the EMT-6/CDDP murine breast cancer model, with or without an immune checkpoint inhibitor (anti-PD-L1). In the RENCA model of mouse renal cancer, however, combining CVX-060 with sunitinib in the adjuvant setting was superior to CVX-241 as treatment for postsurgical lung metastases. In the HCT116 and HT29 xenograft models of colorectal cancer, both CVX-060 and regorafenib inhibited liver metastases. Overall, our preclinical findings suggest differential strategies by which Ang2 blockers can be successfully combined with VEGF pathway targeting in the adjuvant setting to treat micrometastatic disease-particularly, in combination with VEGF-A blockers (but not VEGFR2 TKIs) in resected breast cancer; in combination with VEGFR2 TKIs in resected kidney cancer; and as single agents or with VEGFR2 TKIs in resected colorectal cancer. Cancer Res; 76(23); 6988-7000. ©2016 AACR.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Marta Paez-Ribes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Steven R Pirie-Shepherd
- Oncology and Rinat Research Unit, Pfizer Worldwide Research and Development, La Jolla, California
| | - Urban Emmenegger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
28
|
Glen H. Lenvatinib therapy for the treatment of patients with advanced renal cell carcinoma. Future Oncol 2016; 12:2195-204. [DOI: 10.2217/fon-2016-0215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite advances in metastatic renal cell carcinoma (mRCC) treatments, patients eventually progress and develop resistance to therapies targeting a single pathway. Lenvatinib inhibits VEGFR1–3, FGFR1–4, PDGFRβ, RET and KIT proto-oncogenes. In a randomized, Phase II trial evaluating patients with mRCC who had progressed after one prior VEGF-targeted therapy, progression-free survival was significantly improved with lenvatinib alone or in combination with everolimus versus everolimus alone. This review summarizes the clinical development of lenvatinib in mRCC, and how simultaneous targeting of multiple pathways involved in carcinogenesis and/or therapeutic resistance may improve patient outcomes. Lenvatinib plus everolimus may be a promising second-line treatment in patients with mRCC.
Collapse
Affiliation(s)
- Hilary Glen
- Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow, G12 OYN, UK
| |
Collapse
|
29
|
Lampinen AM, Virman JP, Bono P, Luukkaala TH, Sunela KL, Kujala PM, Saharinen P, Kellokumpu-Lehtinen PLI. Novel Angiogenesis Markers as Long-Term Prognostic Factors in Patients With Renal Cell Cancer. Clin Genitourin Cancer 2016; 15:e15-e24. [PMID: 27554585 DOI: 10.1016/j.clgc.2016.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate Ang-2 expression alone and in combination with expression of cell proliferation and cell survival markers (MIB-1 and Bcl-2) and angiogenesis markers (VEGFR3 and CD31), and the associations of these markers with renal cell cancer (RCC) in long-term survival. PATIENTS AND METHODS Our study included 224 patients with RCC who were treated before the availability of antiangiogenic agents between 1985 and 1995, at the Pirkanmaa Hospital District in Finland. All tumor samples were reclassified and reevaluated by an experienced uropathologist, and parallel tissue microarrays (TMA) were performed for immunohistochemical analysis. Kaplan-Meier's survival estimation method and Cox proportional hazards models were used for survival analysis. RESULTS The percentage of Ang-2 expression in the tumor area varied from 0.07 to 25.65. Ang-2 expression was significantly associated with the tumor grade and stage, as well as the MIB-1, Bcl-2, and VEGFR3 expression (P = .042, P = .019, P = .039, P = .013, and P = .005, respectively). The highest Ang-2 expression predicted better survival, P < .05. High Bcl-2 and low MIB-1 expression combined with Ang-2 expression was associated with better survival. Multivariate analysis showed poorer survival in patients with low Ang-2 or high MIB-1 expressions: HR 1.89, 95% CI 1.16 to 3.08, P = .010 and HR 2.20, 95% CI 1.36 to 3.54, P = .001, respectively. CONCLUSIONS Very high Ang-2 expression was associated with better survival in patients with RCC. Ang-2 expression correlated with tumor stage and grade, but it was still an independent prognostic factor in a multivariate analysis.
Collapse
Affiliation(s)
- Anita M Lampinen
- Translational Cancer Biology Program, Research Program's Unit and Department of Virology, University of Helsinki and Wihuri Research Institute, Helsinki, Finland
| | - Juha P Virman
- University of Tampere, School of Medicine, Tampere, Finland; Department of Anesthesia, Tampere University Hospital, Tampere, Finland
| | - Petri Bono
- Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Tiina H Luukkaala
- Science Center, Pirkanmaa Hospital District and School of Health Sciences, University of Tampere, Tampere, Finland
| | - Kaisa L Sunela
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Paula M Kujala
- Department of Pathology, Tampere University Hospital, Fimlab Laboratories, Tampere, Finland
| | - Pipsa Saharinen
- Translational Cancer Biology Program, Research Program's Unit and Department of Virology, University of Helsinki and Wihuri Research Institute, Helsinki, Finland
| | | |
Collapse
|
30
|
Rautiola J, Lampinen A, Mirtti T, Ristimäki A, Joensuu H, Bono P, Saharinen P. Association of Angiopoietin-2 and Ki-67 Expression with Vascular Density and Sunitinib Response in Metastatic Renal Cell Carcinoma. PLoS One 2016; 11:e0153745. [PMID: 27100185 PMCID: PMC4839598 DOI: 10.1371/journal.pone.0153745] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
The Angiopoietin-2 (Ang2, Angpt2) growth factor is a context-dependent antagonist/agonist ligand of the endothelial Tie2 receptor tyrosine kinase and known to promote tumour angiogenesis and metastasis. Angiopoietin antagonists have been tested in clinical cancer trials in combination with VEGF-based anti-angiogenic therapy, including sunitinib, which is widely used as a first-line therapy for metastatic renal cell carcinoma (mRCC). However, little is known about Ang2 protein expression in human tumours and the correlation of tumour Ang2 expression with tumour vascularization, tumour cell proliferation and response to anti-angiogenic therapies. Here, we evaluated, using immunohistochemistry, the expression of Ang2, CD31 and the cell proliferation marker Ki-67 in the primary kidney cancer from 136 mRCC patients, who received first-line sunitinib after nephrectomy. Ang2 protein expression was restrained to RCC tumour vessels, and correlated with tumour vascularization and response to sunitinib. High pre-therapeutic Ang2 expression, and more strongly, combined high expression of both Ang2 and CD31, were associated with a high clinical benefit rate (CBR). Low cancer Ki-67 expression, but not Ang2 or CD31 expression, was associated with favourable progression-free (PFS) and overall survival (OS) as compared to patients with high Ki-67 expression (PFS 6.5 vs. 10.6 months, P = 0.009; OS, 15.7 vs. 28.5 months, P = 0.015). In summary, in this study to investigate endothelial Ang2 in mRCC patients treated with first-line sunitinib, high cancer Ang2 expression was associated with the CBR, but not PFS or OS, whereas low Ki-67 expression was significantly associated with long PFS and OS.
Collapse
Affiliation(s)
- Juhana Rautiola
- Comprehensive Cancer Center, Helsinki University Hospital, P.O.B. 180, 00029 HUS, Finland and University of Helsinki, Finland
| | - Anita Lampinen
- Translational Cancer Biology Program, Research Programs Unit, and Department of Virology, Haartman Institute, Biomedicum Helsinki, Haartmaninkatu 8, P.O.B. 63, FI-00014, University of Helsinki, Finland
| | - Tuomas Mirtti
- Institute for Molecular Medicine Finland, Haartmaninkatu 8, P.O.B. 63, FI-00014, University of Helsinki, Finland.,Pathology, Research Programs Unit and HUSLAB, University of Helsinki and Helsinki University Hospital, P.O.B. 400, FI-00029, HUS, Helsinki, Finland
| | - Ari Ristimäki
- Pathology, Research Programs Unit and HUSLAB, University of Helsinki and Helsinki University Hospital, P.O.B. 400, FI-00029, HUS, Helsinki, Finland
| | - Heikki Joensuu
- Comprehensive Cancer Center, Helsinki University Hospital, P.O.B. 180, 00029 HUS, Finland and University of Helsinki, Finland
| | - Petri Bono
- Comprehensive Cancer Center, Helsinki University Hospital, P.O.B. 180, 00029 HUS, Finland and University of Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Biology Program, Research Programs Unit, and Department of Virology, Haartman Institute, Biomedicum Helsinki, Haartmaninkatu 8, P.O.B. 63, FI-00014, University of Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| |
Collapse
|
31
|
Liu X, Sun G, Sun X. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells. Onco Targets Ther 2016; 9:2393-402. [PMID: 27143934 PMCID: PMC4846068 DOI: 10.2147/ott.s91097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte-macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05). The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular matrix organization signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| | - Guiling Sun
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| | - Xiuju Sun
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| |
Collapse
|
32
|
Zhang L, Wang X, Bullock AJ, Callea M, Shah H, Song J, Moreno K, Visentin B, Deutschman D, Alsop DC, Atkins MB, Mier JW, Signoretti S, Bhasin M, Sabbadini RA, Bhatt RS. Anti-S1P Antibody as a Novel Therapeutic Strategy for VEGFR TKI-Resistant Renal Cancer. Clin Cancer Res 2015; 21:1925-1934. [PMID: 25589614 DOI: 10.1158/1078-0432.ccr-14-2031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/13/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE VEGFR2 tyrosine kinase inhibition (TKI) is a valuable treatment approach for patients with metastatic renal cell carcinoma (RCC). However, resistance to treatment is inevitable. Identification of novel targets could lead to better treatment for patients with TKI-naïve or -resistant RCC. EXPERIMENTAL DESIGN In this study, we performed transcriptome analysis of VEGFR TKI-resistant tumors in a murine model and discovered that the SPHK-S1P pathway is upregulated at the time of resistance. We tested sphingosine-1-phosphate (S1P) pathway inhibition using an anti-S1P mAb (sphingomab), in two mouse xenograft models of RCC, and assessed tumor SPHK expression and S1P plasma levels in patients with metastatic RCC. RESULTS Resistant tumors expressed several hypoxia-regulated genes. The SPHK1 pathway was among the most highly upregulated pathways that accompanied resistance to VEGFR TKI therapy. SPHK1 was expressed in human RCC, and the product of SPHK1 activity, S1P, was elevated in patients with metastatic RCC, suggesting that human RCC behavior could, in part, be due to overproduction of S1P. Sphingomab neutralization of extracellular S1P slowed tumor growth in both mouse models. Mice bearing tumors that had developed resistance to sunitinib treatment also exhibited tumor growth suppression with sphingomab. Sphingomab treatment led to a reduction in tumor blood flow as measured by MRI. CONCLUSIONS Our findings suggest that S1P inhibition may be a novel therapeutic strategy in patients with treatment-naïve RCC and also in the setting of resistance to VEGFR TKI therapy.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Xiaoen Wang
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America.,Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Andrea J Bullock
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Marcella Callea
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Harleen Shah
- Division of Interdisciplinary Medicine and Biotechnology, and Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Kelli Moreno
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Barbara Visentin
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Douglas Deutschman
- Department of Biology, San Diego State University, 5500 Campanile Dr. San Diego, CA. 92182-4614, United States of America
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Michael B Atkins
- Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, 3970 Reservoir Road, NW, Washington, DC. United States of America
| | - James W Mier
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, and Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Roger A Sabbadini
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Rupal S Bhatt
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| |
Collapse
|
33
|
Stubenrauch K, Wessels U, Essig U, Vogel R, Waltenberger H, Hansbauer A, Koehler A, Heinrich J. An immunodepletion procedure advances free angiopoietin-2 determination in human plasma samples during anti-cancer therapy with bispecific anti-Ang2/VEGF CrossMab. J Pharm Biomed Anal 2015; 102:459-67. [DOI: 10.1016/j.jpba.2014.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
|