1
|
Andrés CMC, Lobo F, Pérez de la Lastra JM, Munguira EB, Juan CA, Pérez-Lebeña E. Cysteine Alkylation in Enzymes and Transcription Factors: A Therapeutic Strategy for Cancer. Cancers (Basel) 2025; 17:1876. [PMID: 40507356 PMCID: PMC12153576 DOI: 10.3390/cancers17111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/28/2025] [Accepted: 05/31/2025] [Indexed: 06/16/2025] Open
Abstract
Metabolic enzymes and cancer-driving transcriptions factors are often overexpressed in neoplastic cells, and their exposed cysteine residues are amenable to chemical modification. This review explores cysteine alkylation as a cancer treatment strategy, focusing on Michael acceptors like curcumin and helenalin, which interact with transcription factors NF-κB, STAT3 and HIF-1α. Molecular docking studies using AutoDockFR revealed distinct binding affinities: curcumin showed strong interactions with STAT3 and NF-κB, while helenalin exhibited high affinity for STAT3 and HIF-1α. Synthetic compounds like STAT3-IN-1 and CDDO-Me demonstrated superior binding in most targets, except for CDDO-Me with HIF-1α, suggesting unique structural incompatibilities. Natural products such as zerumbone and umbelliferone displayed moderate activity, while palbociclib highlighted synthetic-drug advantages. These results underscore the importance of ligand-receptor structural complementarity, particularly for HIF-1α's confined binding site, where helenalin's terminal Michael acceptor system proved optimal. The findings advocate for integrating computational and experimental approaches to develop cysteine-targeted therapies, balancing synthetic precision with natural product versatility for context-dependent cancer treatment strategies.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Fernando Lobo
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain;
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain;
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
2
|
Esarev IV, Wu C, Kirsanova AA, Türck S, Lippmann P, Jones PG, Babak MV, Ott I. Silver N-Heterocyclic Biscarbene Complexes: Potent Inhibitors of Thioredoxin Reductase with Anticancer Activity in Vitro and in Vivo. Chem Asian J 2025; 20:e202401672. [PMID: 39824765 DOI: 10.1002/asia.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Silver N-heterocyclic carbene (NHC) complexes are known to form biscarbene species from monocarbene analogs in protic polar solvents. However, the effect of the respective species of silver NHC complexes on their biological activity against bacteria or cancer cells has not been systematically explored, either in vitro or in vivo. The direct and simple conversion of monocarbene silver N-heterocyclic carbene (NHC) halide complexes (NHC)AgX, (X=Cl, Br) 1 a/b-5 a/b to their biscarbene analogues (NHC)2AgX 1 c/d-5 c/d is reported. The biscarbenes demonstrated generally lower activity against bacteria compared to the monocarbene complexes; however, both types showed similar activity against tumor cells and a non-tumor reference cell line. Selected mono- and biscarbene complexes 3 a and 3 c showed similar strong inhibitory effects on thioredoxin reductase in vitro and in cellulo and had a similar level of metal uptake into A549 cells. The subsequent evaluation of their effects in vivo revealed relatively low toxicity and high antitumoral efficacy of both selected complexes in mice. The biscarbene silver organometallic 3 c showed the most pronounced reduction of tumor growth in animals. The results indicate that both (NHC)AgX and (NHC)2AgX complexes could trigger their anticancer activity as biscarbene complexes, making this the preferred form for future anticancer metallodrug development.
Collapse
Affiliation(s)
- Igor V Esarev
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Chengnan Wu
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Anna A Kirsanova
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Sebastian Türck
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Peter G Jones
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
4
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
5
|
Kim YS, Kimball SR, Piskounova E, Begley TJ, Hempel N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc Natl Acad Sci U S A 2024; 121:e2317846121. [PMID: 39495917 PMCID: PMC11572934 DOI: 10.1073/pnas.2317846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Elena Piskounova
- Department of Dermatology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Thomas J. Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY12222
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| |
Collapse
|
6
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Leitão MIPS, Morais TS. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J Med Chem 2024; 67:16967-16990. [PMID: 39348603 DOI: 10.1021/acs.jmedchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Innovative strategies for targeted anticancer therapies have gained significant momentum, with metal complexes emerging as tunable catalysts for more effective and safer treatments. Rational design and engineering of metal complexes enable the development of tailored molecular structures optimized for precision oncology. The strategic incorporation of metal complex catalysts within combinatorial therapies amplifies their anticancer properties. This perspective highlights the advancements in synthetic strategies and rational design since 2019, showing how tailored metal catalysts are optimized by designing structures to release or in situ synthesize active drugs, leveraging the target-specific characteristics to develop more precise cancer therapies. This review explores metal-based catalysts, including those conjugated with biomolecules, nanostructures, and metal-organic frameworks (MOFs), highlighting their catalytic activity in biological environments and their in vitro/in vivo performance. To sum up, the potential of metal complexes as catalysts to reshape the landscape of anticancer therapies and foster novel avenues for therapeutic advancement is emphasized.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
Martinez-Jaramillo E, Jamali F, Abdalbari FH, Abdulkarim B, Jean-Claude BJ, Telleria CM, Sabri S. Pro-Oxidant Auranofin and Glutathione-Depleting Combination Unveils Synergistic Lethality in Glioblastoma Cells with Aberrant Epidermal Growth Factor Receptor Expression. Cancers (Basel) 2024; 16:2319. [PMID: 39001381 PMCID: PMC11240359 DOI: 10.3390/cancers16132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS). The impact of EGFRwt or EGFRvIII overexpression on the response to a Trx/GSH co-targeting strategy is unknown. In this study, we investigated Trx/GSH co-targeting in the context of EGFR overexpression in GBM. Auranofin is a thioredoxin reductase (TrxR) inhibitor, FDA-approved for rheumatoid arthritis. L-buthionine-sulfoximine (L-BSO) inhibits GSH synthesis by targeting the glutamate-cysteine ligase catalytic (GCLC) enzyme subunit. We analyzed the mechanisms of cytotoxicity of auranofin and the interaction between auranofin and L-BSO in U87MG, U87/EGFRwt, and U87/EGFRvIII GBM isogenic GBM cell lines. ROS-dependent effects were assessed using the antioxidant N-acetylsteine. We show that auranofin decreased TrxR1 activity and increased ROS. Auranofin decreased cell vitality and colony formation and increased protein polyubiquitination through ROS-dependent mechanisms, suggesting the role of ROS in auranofin-induced cytotoxicity in the three cell lines. ROS-dependent PARP-1 cleavage was associated with EGFRvIII downregulation in U87/EGFRvIII cells. Remarkably, the auranofin and L-BSO combination induced the significant depletion of intracellular GSH and synergistic cytotoxicity regardless of EGFR overexpression. Nevertheless, molecular mechanisms associated with cytotoxicity were modulated to a different extent among the three cell lines. U87/EGFRvIII exhibited the most prominent ROS increase, P-AKT(Ser-473), and AKT decrease along with drastic EGFRvIII downregulation. U87/EGFRwt and U87/EGFRvIII displayed lower basal intracellular GSH levels and synergistic ROS-dependent DNA damage compared to U87MG cells. Our study provides evidence for ROS-dependent synergistic cytotoxicity of auranofin and L-BSO combination in GBM in vitro. Unraveling the sensitivity of EGFR-overexpressing cells to auranofin alone, and synergistic auranofin and L-BSO combination, supports the rationale to repurpose this promising pro-oxidant treatment strategy in GBM.
Collapse
Affiliation(s)
- Elvis Martinez-Jaramillo
- Experimental Pathology Unit, McGill University, Montréal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Fatemeh Jamali
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Farah H Abdalbari
- Experimental Pathology Unit, McGill University, Montréal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Bassam Abdulkarim
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Oncology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Bertrand J Jean-Claude
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H4A 3J1, Canada
- Cancer Drug Research Laboratory, Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, McGill University, Montréal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Siham Sabri
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
9
|
Patwardhan RS, Rai A, Sharma D, Sandur SK, Patwardhan S. Txnrd1 as a prognosticator for recurrence, metastasis and response to neoadjuvant chemotherapy and radiotherapy in breast cancer patients. Heliyon 2024; 10:e27011. [PMID: 38524569 PMCID: PMC10958228 DOI: 10.1016/j.heliyon.2024.e27011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Thioredoxin reductase 1 (Txnrd1) is known to have prognostic significance in a subset of breast cancer patients. Despite the pivotal role of Txnrd1 in regulating several cellular and physiological processes in cancer progression and metastasis, its clinical significance is largely unrecognized. Here, we undertook a retrospective comprehensive meta-analysis of 13,322 breast cancer patients from 43 independent cohorts to assess prognostic and predictive roles of Txnrd1. We observed that Txnrd1 has a positive correlation with tumor grade and size and it is over-expressed in higher-grade and larger tumors. Further, hormone receptor-negative and HER2-positive tumors exhibit elevated Txnrd1 gene expression. Patients with elevated Txnrd1 expression exhibit significant hazards for shorter disease-specific and overall survival. While Txnrd1 has a positive correlation with tumor recurrence and metastasis, it has a negative correlation with time to recurrence and metastasis. Txnrd1High patients exhibit 2.5 years early recurrence and 1.3 years early metastasis as compared to Txnrd1Low cohort. Interestingly, patients with high Txnrd1 gene expression exhibit a pathologic complete response (pCR) to neoadjuvant chemotherapy, but they experience early recurrence after radiotherapy. Txnrd1High MDA-MB-231 cells exhibit significant ROS generation and reduced viability after doxorubicin treatment compared to Txnrd1Low MCF7 cells. Corroborating with findings from meta-analysis, Txnrd1 depletion leads to decreased survival, enhanced sensitivity to radiation induced killing, poor scratch-wound healing, and reduced invasion potential in MDA-MB-231 cells. Thus, Txnrd1 appears to be a potential predictor of recurrence, metastasis and therapy response in breast cancer patients.
Collapse
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Archita Rai
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Santosh K. Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Mumbai, 400094, India
- Patwardhan Lab, Advanced Centre for Treatment Research & Education in Cancer, (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| |
Collapse
|
10
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Qin H, Guo C, Chen B, Huang H, Tian Y, Zhong L. The C-terminal selenenylsulfide of extracellular/non-reduced thioredoxin reductase endows this protein with selectivity to small-molecule electrophilic reagents under oxidative conditions. Front Mol Biosci 2024; 11:1274850. [PMID: 38523661 PMCID: PMC10957665 DOI: 10.3389/fmolb.2024.1274850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Mammalian cytosolic thioredoxin reductase (TrxR1) serves as an antioxidant protein by transferring electrons from NADPH to various substrates. The action of TrxR1 is achieved via reversible changes between NADPH-reduced and non-reduced forms, which involves C-terminal selenolthiol/selenenylsulfide exchanges. TrxR1 may be released into extracellular environment, where TrxR1 is present mainly in the non-reduced form with active-site disulfide and selenenylsulfide bonds. The relationships between extracellular TrxR1 and tumor metastasis or cellular signaling have been discovered, but there are few reports on small-molecule compounds in targeted the non-reduced form of TrxR1. Using eight types of small-molecule thiol-reactive reagents as electrophilic models, we report that the selenenylsulfide bond in the non-reduced form of TrxR1 functions as a selector for the thiol-reactive reagents at pH 7.5. The non-reduced form of TrxR1 is resistant to hydrogen peroxide/oxidized glutathione, but is sensitive to certain electrophilic reagents in different ways. With 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and S-nitrosoglutathione (GSNO), the polarized selenenylsulfide bond breaks, and selenolate anion donates electron to the dynamic covalent bond in DTNB or GSNO, forming TNB-S-Se-TrxR1 complex or ON-Se-TrxR1 complex. The both complexes lose the ability to transfer electrons from NADPH to substrate. For diamide, the non-reduced TrxR1 actually prevents irreversible damage by this oxidant. This is consistent with the regained activity of TrxR1 through removal of diamide via dialysis. Diamide shows effective in the presence of human cytosolic thioredoxin (hTrx1), Cys residue(s) of which is/are preferentially affected by diamide to yield disulfide, hTrx1 dimer and the mixed disulfide between TrxR1-Cys497/Sec498 and hTrx1-Cys73. In human serum samples, the non-reduced form of TrxR1 exists as dithiothreitol-reducible polymer/complexes, which might protect the non-reduced TrxR1 from inactivation by certain electrophilic reagents under oxidative conditions, because cleavage of these disulfides can lead to regain the activity of TrxR1. The details of the selective response of the selenenylsulfide bond to electrophilic reagents may provide new information for designing novel small-molecule inhibitors (drugs) in targeted extracellular/non-reduced TrxR1.
Collapse
Affiliation(s)
- Huijun Qin
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenchen Guo
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bozhen Chen
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Huang
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Tian
- Chinese PLA General Hospital (301 Hospital), Beijing, China
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Richter S, Steenblock C, Fischer A, Lemm S, Ziegler CG, Bechmann N, Nölting S, Pietzsch J, Ullrich M. Improving susceptibility of neuroendocrine tumors to radionuclide therapies: personalized approaches towards complementary treatments. Theranostics 2024; 14:17-32. [PMID: 38164150 PMCID: PMC10750207 DOI: 10.7150/thno.87345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/30/2023] [Indexed: 01/03/2024] Open
Abstract
Radionuclide therapies are an important tool for the management of patients with neuroendocrine neoplasms (NENs). Especially [131I]MIBG and [177Lu]Lu-DOTA-TATE are routinely used for the treatment of a subset of NENs, including pheochromocytomas, paragangliomas and gastroenteropancreatic tumors. Some patients suffering from other forms of NENs, such as medullary thyroid carcinoma or neuroblastoma, were shown to respond to radionuclide therapy; however, no general recommendations exist. Although [131I]MIBG and [177Lu]Lu-DOTA-TATE can delay disease progression and improve quality of life, complete remissions are achieved rarely. Hence, better individually tailored combination regimes are required. This review summarizes currently applied radionuclide therapies in the context of NENs and informs about recent advances in the development of theranostic agents that might enable targeting subgroups of NENs that previously did not respond to [131I]MIBG or [177Lu]Lu-DOTA-TATE. Moreover, molecular pathways involved in NEN tumorigenesis and progression that mediate features of radioresistance and are particularly related to the stemness of cancer cells are discussed. Pharmacological inhibition of such pathways might result in radiosensitization or general complementary antitumor effects in patients with certain genetic, transcriptomic, or metabolic characteristics. Finally, we provide an overview of approved targeted agents that might be beneficial in combination with radionuclide therapies in the context of a personalized molecular profiling approach.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| | - Sandy Lemm
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G. Ziegler
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Hospital Würzburg, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
13
|
Natarajan D, Prasad NR, Sudharsan M, Bharathiraja P, Lakra DS. Auranofin sensitizes breast cancer cells to paclitaxel chemotherapy by disturbing the cellular redox system. Cell Biochem Funct 2023; 41:1305-1318. [PMID: 37792847 DOI: 10.1002/cbf.3865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
The intrinsic redox status of cancer cells limits the efficacy of chemotherapeutic drugs. Auranofin, a Food and Drug Administration-approved gold-containing compound, documented with effective pharmacokinetics and safety profiles in humans, has recently been repurposed for anticancer activity. This study examined the paclitaxel-sensitizing effect of auranofin by targeting redox balance in the MDA-MB-231 and MCF-7 breast cancer cell lines. Auranofin treatment depletes the activities of superoxide dismutase, catalase, and glutathione peroxidase and alters the redox ratio in the breast cancer cell lines. Furthermore, it has been noticed that auranofin augmented paclitaxel-mediated cytotoxicity in a concentration-dependent manner in both MDA-MB-231 and MCF-7 cell lines. Moreover, auranofin increased the levels of intracellular reactive oxygen species (observed using 2, 7-diacetyl dichlorofluorescein diacetate staining) and subsequently altered the mitochondrial membrane potential (rhodamine-123 staining) in a concentration-dependent manner. Further, the expression of apoptotic marker p21 was found to be higher in auranofin plus paclitaxel-treated breast cancer cells compared to paclitaxel-alone treatment. Thus, the present results illustrate the chemosensitizing property of auranofin in MDA-MB-231 and MCF-7 breast cancer cell lines via oxidative metabolism. Therefore, auranofin could be considered a chemosensitizing agent during cancer chemotherapy.
Collapse
Affiliation(s)
- Deepika Natarajan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - M Sudharsan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Deepa Swati Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
14
|
Cui G, Botuyan MV, Drané P, Hu Q, Bragantini B, Thompson JR, Schuller DJ, Detappe A, Perfetti MT, James LI, Frye SV, Chowdhury D, Mer G. An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering. Nat Commun 2023; 14:6091. [PMID: 37773238 PMCID: PMC10541411 DOI: 10.1038/s41467-023-41821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1-autoinhibited for chromatin binding-that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Benoît Bragantini
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - David J Schuller
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | | | - Michael T Perfetti
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
16
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
17
|
Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J Med Chem 2023; 66:3703-3731. [PMID: 36858050 PMCID: PMC10041541 DOI: 10.1021/acs.jmedchem.2c01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Since the beginning of history, natural products have been an abundant source of bioactive molecules for the treatment of different diseases, including cancer. Many allyl derivatives, which have shown anticancer activity both in vitro and in vivo in a large number of cancers, are bioactive molecules found in garlic, cinnamon, nutmeg, or mustard. In addition, synthetic products containing allyl fragments have been developed showing potent anticancer properties. Of particular note is the allyl derivative 17-AAG, which has been evaluated in Phase I and Phase II/III clinical trials for the treatment of multiple myeloma, metastatic melanoma, renal cancer, and breast cancer. In this Perspective, we compile extensive literature evidence with descriptions and discussions of the most recent advances in different natural and synthetic allyl derivatives that could generate cancer drug candidates in the near future.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
18
|
Viglianisi G, Tartaglia GM, Santonocito S, Amato M, Polizzi A, Mascitti M, Isola G. The Emerging Role of Salivary Oxidative Stress Biomarkers as Prognostic Markers of Periodontitis: New Insights for a Personalized Approach in Dentistry. J Pers Med 2023; 13:166. [PMID: 36836401 PMCID: PMC9964692 DOI: 10.3390/jpm13020166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is a multifactorial and infective oral disease that leads to the destruction of periodontal tissues and tooth loss. Although the treatment of periodontitis has improved recently, the effective treatment of periodontitis and the periodontitis-affected periodontal tissues is still a challenge. Therefore, exploring new therapeutic strategies for a personalized approach is urgent. For this reason, the aim of this study is to summarize recent advances and the potential of oxidative stress biomarkers in the early diagnosis and personalized therapeutic approaches in periodontitis. Recently, ROS metabolisms (ROMs) have been studied in the physiopathology of periodontitis. Different studies show that ROS plays a crucial role in periodontitis. In this regard, the reactive oxygen metabolites (ROMs) started to be searched for the measures of the oxidizing capacity of the plasma understood as the total content of oxygen free radicals (ROS). The oxidizing capacity of plasma is a significant indicator of the body's oxidant state as well as homocysteine (Hcy), sulfur amino acid, which has pro-oxidant effects as it favors the production of superoxide anion. More specifically, the thioredoxin (TRX) and peroxiredoxin (PRX) systems control reactive oxygen species (ROS), such as superoxide and hydroxyl species, to transduce redox signals and change the activities of antioxidant enzymes to remove free radicals. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), among other antioxidant enzymes, change their activity when ROS are produced in order to neutralize free radicals. The TRX system is triggered and transduces redox signals to do this.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Gianluca Martino Tartaglia
- Section of Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Department of Orthodontics, School of Dentistry, University of Milan, 20122 Milan, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, Via Tronto 10/A, 60126 Ancona, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| |
Collapse
|
19
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
22
|
Tang C, Liu J, Yang C, Ma J, Chen X, Liu D, Zhou Y, Zhou W, Lin Y, Yuan X. Curcumin and Its Analogs in Non-Small Cell Lung Cancer Treatment: Challenges and Expectations. Biomolecules 2022; 12:1636. [PMID: 36358986 PMCID: PMC9688036 DOI: 10.3390/biom12111636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2023] Open
Abstract
Researchers have made crucial advances in understanding the pathogenesis and therapeutics of non-small cell lung cancer (NSCLC), improving our understanding of lung tumor biology and progression. Although the survival of NSCLC patients has improved due to chemoradiotherapy, targeted therapy, and immunotherapy, overall NSCLC recovery and survival rates remain low. Thus, there is an urgent need for the continued development of novel NSCLC drugs or combination therapies with less toxicity. Although the anticancer effectiveness of curcumin (Cur) and some Cur analogs has been reported in many studies, the results of clinical trials have been inconsistent. Therefore, in this review, we collected the latest related reports about the anti-NSCLC mechanisms of Cur, its analogs, and Cur in combination with other chemotherapeutic agents via the Pubmed database (accessed on 18 June 2022). Furthermore, we speculated on the interplay of Cur and various molecular targets relevant to NSCLC with discovery studio and collected clinical trials of Cur against NSCLC to clarify the role of Cur and its analogs in NSCLC treatment. Despite their challenges, Cur/Cur analogs may serve as promising therapeutic agents or adjuvants for lung carcinoma treatment.
Collapse
Affiliation(s)
- Chunyin Tang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157000, China
| | - Chunsong Yang
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Ma
- Department of Pharmacy, Banan Second People’s Hospital, Banan District, Chongqing 401320, China
| | - Xuejiao Chen
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Dongwen Liu
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yao Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Wei Zhou
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yunzhu Lin
- Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157000, China
| |
Collapse
|
23
|
Zhang L, Liu J, Dai Z, Wang J, Wu M, Su R, Zhang D. Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Front Nutr 2022; 9:1003340. [PMID: 36211509 PMCID: PMC9543034 DOI: 10.3389/fnut.2022.1003340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The discovery of regulated necrosis revitalizes the understanding of necrosis from a passive and accidental cell death to a highly coordinated and genetically regulated cell death routine. Since the emergence of RIPK1 (receptor-interacting protein kinase 1)-RIPK3-MLKL (mixed lineage kinase domain-like) axis-mediated necroptosis, various other forms of regulated necrosis, including ferroptosis and pyroptosis, have been described, which enrich the understanding of pathophysiological nature of diseases and provide novel therapeutics. Micronutrients, vitamins, and minerals, position centrally in metabolism, which are required to maintain cellular homeostasis and functions. A steady supply of micronutrients benefits health, whereas either deficiency or excessive amounts of micronutrients are considered harmful and clinically associated with certain diseases, such as cardiovascular disease and neurodegenerative disease. Recent advance reveals that micronutrients are actively involved in the signaling pathways of regulated necrosis. For example, iron-mediated oxidative stress leads to lipid peroxidation, which triggers ferroptotic cell death in cancer cells. In this review, we illustrate the crosstalk between micronutrients and regulated necrosis, and unravel the important roles of micronutrients in the process of regulated necrosis. Meanwhile, we analyze the perspective mechanism of each micronutrient in regulated necrosis, with a particular focus on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jinting Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ziyan Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Zhang,
| |
Collapse
|
24
|
Hasan AA, Kalinina E, Tatarskiy V, Shtil A. The Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines 2022; 10:biomedicines10071757. [PMID: 35885063 PMCID: PMC9313168 DOI: 10.3390/biomedicines10071757] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress involves the increased production and accumulation of free radicals, peroxides, and other metabolites that are collectively termed reactive oxygen species (ROS), which are produced as by-products of aerobic respiration. ROS play a significant role in cell homeostasis through redox signaling and are capable of eliciting damage to macromolecules. Multiple antioxidant defense systems have evolved to prevent dangerous ROS accumulation in the body, with the glutathione and thioredoxin/thioredoxin reductase (Trx/TrxR) systems being the most important. The Trx/TrxR system has been used as a target to treat cancer through the thiol–disulfide exchange reaction mechanism that results in the reduction of a wide range of target proteins and the generation of oxidized Trx. The TrxR maintains reduced Trx levels using NADPH as a co-substrate; therefore, the system efficiently maintains cell homeostasis. Being a master regulator of oxidation–reduction processes, the Trx-dependent system is associated with cell proliferation and survival. Herein, we review the structure and catalytic properties of the Trx/TrxR system, its role in cellular signaling in connection with other redox systems, and the factors that modulate the Trx system.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-434-62-05
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia;
| | - Alexander Shtil
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| |
Collapse
|