1
|
Liu S, Chen L, Shang Y. CEACAM5 exacerbates asthma by inducing ferroptosis and autophagy in airway epithelial cells through the JAK/STAT6-dependent pathway. Redox Rep 2025; 30:2444755. [PMID: 39844719 PMCID: PMC11758806 DOI: 10.1080/13510002.2024.2444755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology. METHODS Bioinformatics was used to identify key asthmarelated genes. An ovalbumin-sensitized mouse model and an IL-13-stimulated Beas-2B cell model were established for further investigation. RESULTS Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a crucial gene in asthma. CEACAM5 expression was elevated in asthmatic mouse lung tissues and IL-13-stimulated Beas-2B cells, primarily in bronchial epithelial cells. CEACAM5 induced reactive oxygen species (ROS), lipid peroxidation, and ferroptosis. Interfering with CEACAM5 reduced ROS, malondialdehyde levels, and enhanced antioxidant capacity, while inhibiting iron accumulation and autophagy. Overexpression of CEACAM5 in IL-13-stimulated cells activated the JAK/STAT6 pathway, which was necessary for CEACAM5-induced autophagy, ROS accumulation, lipid peroxidation, and ferroptosis. CONCLUSION CEACAM5 promotes ferroptosis and autophagy in airway epithelial cells via the JAK/STAT6 pathway, exacerbating asthma symptoms. It represents a potential target for clinical treatment.
Collapse
Affiliation(s)
- Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Li Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Li J, Lin L, Yang S, Mu Y, Zhang L, Ruan H, Xu J. Diagnostic value of CEACAM6 and HE4 in pleural fluid for malignant pleural effusion. Ann Med 2025; 57:2489748. [PMID: 40232301 PMCID: PMC12001857 DOI: 10.1080/07853890.2025.2489748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/27/2025] [Accepted: 03/29/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE This study aimed to assess the diagnostic performance of carcinoembryonic antigen-related adhesion molecule 6 (CEACAM6) and human epididymis protein 4 (HE4) in pleural fluid for the detection of malignant pleural effusion (MPE). MATERIALS AND METHODS In this prospective study, pleural levels of CEACAM6 and HE4 were measured in two independent cohorts. The test cohort included 182 patients with exudative pleural effusions (123 malignant and 59 benign), and the validation cohort comprised 117 patients with exudative pleural effusions (65 malignant and 52 benign). Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of CEACAM6 and HE4 for MPE. RESULTS Both CEACAM6 and HE4 levels were significantly elevated in MPE compared to benign pleural effusion (BPE) in both cohorts (p < .001). In the test cohort, CEACAM6 and HE4 demonstrated areas under the curve (AUC) values of 0.862 and 0.826, respectively. The combination of CEACAM6 and HE4 yielded a higher AUC of 0.938 compared to either marker alone. In the validation cohort, both CEACAM6 (AUC = 0.811) and HE4 (AUC = 0.721), along with their combination (AUC = 0.834), exhibited strong diagnostic performance for MPE. Notably, in cytology-negative cases, the combination of CEACAM6 and HE4 also demonstrated a favourable diagnostic efficacy, with an AUC of 0.800. The addition of CEA to the CEACAM6/HE4 combination further improved the AUC to 0.819 (p = .04). CONCLUSIONS Pleural CEACAM6 and HE4 are promising biomarkers for distinguishing MPE from BPE. Their combination improves diagnostic accuracy, offering a valuable tool for MPE diagnosis, especially in challenging cases with cytology-negative pleural effusion.
Collapse
Affiliation(s)
- Jie Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Liyuan Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shengrui Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuan Mu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Lixia Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Haoyu Ruan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
3
|
Zhu K, Tang S, Pan D, Wang X, Xu Y, Yan J, Wang L, Chen C, Yang M. Development and biological evaluation of a novel CEACAM6-targeted PET tracer for distinguishing malignant nodules in early-stage lung adenocarcinoma. Eur J Nucl Med Mol Imaging 2025; 52:2414-2430. [PMID: 39888423 DOI: 10.1007/s00259-025-07107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE Low-dose CT (LDCT) screening effectively reduces lung adenocarcinoma (LUAD) mortality. However, accurately evaluating the malignant potential of indeterminate lung nodules remains a challenge. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), a potential biomarker for distinguishing benign pulmonary nodules from LUAD, may be leveraged for noninvasive positron emission tomography (PET) imaging to aid LUAD diagnosis. METHODS This study utilized mRNA, protein, and survival datasets of LUAD patients, along with an animal model of malignant pulmonary nodules, to investigate CEACAM6 expression specificity and its correlation with LUAD. Targeting ligands for CEACAM6 were designed using the Rosetta platform, labeled with [68Ga]Ga, and screened through high-throughput PET imaging to identify the optimal tracer. RESULTS CEACAM6 was found to be specifically overexpressed in LUAD and was significantly associated with poor prognosis and disease progression. In vivo, [68Ga]Ga-NODA-P3 demonstrated high specificity for delineating CEACAM6-positive A549 xenografts, a LUAD model, via PET imaging, achieving a highest target-to-background ratio of 7.68 ± 0.44. Region of interest (ROI) analysis showed significantly higher tracer uptake in A549 xenografts compared to CEACAM6-negative Huh7 xenografts (a hepatocellular carcinoma model) at 30 min post-injection (1.81 ± 0.10%ID/g vs. 0.54 ± 0.06%ID/g). Pre-treatment with an excess of unlabeled NODA-P3 significantly reduced tumor uptake to 0.52 ± 0.07%ID/g. CONCLUSION These preclinical findings indicate that [68Ga]Ga-NODA-P3 is a candidate radiotracer for the non-invasive visualization of CEACAM6-positive LUAD, demonstrating favorable imaging contrast. Although the current tumor uptake limits its immediate clinical application, ongoing optimization efforts are expected to improve its efficacy, enabling earlier and more accurate diagnosis of malignant pulmonary nodules in LUAD.
Collapse
Affiliation(s)
- Keying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shimin Tang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China.
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China.
| |
Collapse
|
4
|
Sugár SN, Molnár BA, Bugyi F, Kecskeméti G, Szabó Z, Laczó I, Harkó T, Moldvay J, Turiák L. Glycoproteomics Analysis of Triple Wild-Type Lung Adenocarcinoma Tissue Samples. J Proteome Res 2025; 24:2419-2429. [PMID: 40175289 PMCID: PMC12053933 DOI: 10.1021/acs.jproteome.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
Lung cancer has both high incidence and mortality, making it the leading cause of cancer-related mortality worldwide. It is a highly heterogeneous disease, with several histological subtypes and genetic alterations that influence prognosis and available treatment options. Here, we focus on the triple wild-type (TWT) subtype of lung adenocarcinoma (LUAD) that lacks the three most common actionable genetic alterations, subsequently making targeted therapies inaccessible. In this study, our aim was the mass spectrometry-based proteomic and N-glycoproteomic characterization of tumor and adjacent normal lung tissue regions from individuals (n = 12) with TWT LUAD. We found several proteins previously identified as potential prognostic or diagnostic biomarkers in LUAD and described dysregulated biological processes, giving an overview of the general differences between healthy and tumor tissue. Also, we highlight specific signatures detected using N-glycoproteomics and discuss their potential and importance based on data from databases and literature. To the best of our knowledge, this is the first N-glycoproteomics-focused study on TWT LUAD, and it could provide a valuable resource for further studies into this less well characterized subtype of lung cancer. For instance, we report altered N-glycosylation for several glycoproteins implicated in LUAD and other cancers that could have functional importance connected to the disease.
Collapse
Affiliation(s)
- Simon Nándor Sugár
- MTA-HUN-REN
TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja
2, Budapest H-1117, Hungary
| | - Balázs András Molnár
- MTA-HUN-REN
TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja
2, Budapest H-1117, Hungary
| | - Fanni Bugyi
- MTA-HUN-REN
TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja
2, Budapest H-1117, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter Sétány
1/A, Budapest H-1117, Hungary
| | - Gábor Kecskeméti
- Department
of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Square 8, Szeged H-6720, Hungary
| | - Zoltán Szabó
- Department
of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Square 8, Szeged H-6720, Hungary
| | - Ibolya Laczó
- Békés
County Central Hospital, Semmelweis Utca 1, Gyula, H-5700, Hungary
| | - Tünde Harkó
- National
Korányi Institute of Pulmonology, Korányi Frigyes Street 1, Budapest, H-1121, Hungary
| | - Judit Moldvay
- National
Korányi Institute of Pulmonology, Korányi Frigyes Street 1, Budapest, H-1121, Hungary
- Pulmonology
Clinic, Albert Szent-Györgyi Medical School, University of Szeged, Alkotmány Street 36, Deszk H-6771, Hungary
| | - Lilla Turiák
- MTA-HUN-REN
TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja
2, Budapest H-1117, Hungary
| |
Collapse
|
5
|
陶 露, 韦 卓, 王 月, 项 平. [CEACAM6 inhibits proliferation and migration of nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:566-576. [PMID: 40159971 PMCID: PMC11955888 DOI: 10.12122/j.issn.1673-4254.2025.03.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To investigate CEACAM6 expression in nasopharyngeal carcinoma (NPC) and its regulatory effects on tumor cell proliferation, migration, and epithelial-mesenchymal transition (EMT). METHODS CEACAM6 expression in NPC was analyzed using GEO datasets and validated by immunohistochemistry in NPC tissues and by Western blotting and RT-qPCR in NPC cell lines (HNE1, C666-1, HK1, 5-8F and CNE2Z) and normal nasopharyngeal epithelial NP69 cells. In the NPC cell lines, the effects of lentivirus-mediated CEACAM6 overexpression and knockdown on cell proliferation, migration, invasion and cytoskeletal structures were evaluated using CCK-8 assay, Edu staining, wound healing assay, Transwell assay, and phalloidin staining. Western blotting was performed to determine the expressions of EMT-related proteins (FN1, ITGA5, ITGB1, E-cadherin, N-cadherin and vimentin) in the NPC cells and the effect of FN1 overexpression on ITGA5 and ITGB1 protein expressions. RESULTS Analysis of the data from the GEO datasets suggested that CEACAM6 was significantly downregulated in NPC, which was associated with poor patient prognosis. Immunohistochemistry also showed low expressions of CEACAM6 in clinical NPC tissues (P<0.05). In NPC cells, CEACAM6 overexpression significantly suppressed cell proliferation, migration and invasion and reduced the fluorescence intensity of actin. CEACAM6 overexpression also resulted in significant downregulation of FN1, ITGA5, ITGB1, N-cadherin and vimentin expressions and upregulation of E-cadherin expression, and FN1 overexpression obviously attenuated the inhibitory effect of CEACAM6 overexpression on ITGA5 and ITGB1 expressions. CONCLUSIONS CEACAM6 inhibits NPC cell migration and invasion by inhibiting EMT via regulating FN1, ITGA5 and ITGB1 expressions.
Collapse
|
6
|
Chen C, Wang M, Tu D, Cao J, Zhang C, Bai D. Roles of anoikis in hepatocellular carcinoma: mechanisms and therapeutic potential. Med Oncol 2025; 42:58. [PMID: 39885089 DOI: 10.1007/s12032-025-02612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a highly aggressive malignancy with limited viable therapeutic options. For early HCC, resection surgery is currently the most effective treatment. However, in advanced stages, resection alone does not sufficiently address the disease, so finding a method with a better prognosis is necessary. Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. HCC cells often acquire resistance to anoikis, allowing them to survive after detaching from the extracellular matrix and contributing to tumor spread. This review discusses the mechanisms of anoikis in HCC, exploring the potential of drug-induced anoikis and targeting anoikis resistance as promising therapeutic strategies for treating HCC, analyzing the value of anoikis in the immune of HCC, and propose potential pathways in oncotherapy, which can provide background knowledge for subsequent related research.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Mengyao Wang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
7
|
McMahon R, Lucas N, Hill C, Pascovici D, Herbert B, Karsten E. Investigating the Use of Novel Blood Processing Methods to Boost the Identification of Biomarkers for Non-Small Cell Lung Cancer: A Proof of Concept. J Proteome Res 2025; 24:344-355. [PMID: 39642266 DOI: 10.1021/acs.jproteome.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Diagnosis of non-small cell lung cancer (NSCLC) currently relies on imaging; however, these methods are not effective for detecting early stage disease. Investigating blood-based protein biomarkers aims to simplify the diagnostic process and identify disease-associated changes before they can be seen by using imaging techniques. In this study, plasma and frozen whole blood cell pellets from NSCLC patients and healthy controls were processed using both classical and novel techniques to produce a unique set of four sample types from a single blood draw. These samples were analyzed using 12 immunoassays and liquid chromatography-mass spectrometry to collectively screen 3974 proteins. Analysis of all fractions produced a set of 522 differentially expressed proteins, with conventional blood analysis (proteomic analysis of plasma) accounting for only 7 of the total. Boosted regression tree analysis of the differentially expressed proteins produced a panel of 13 proteins that were able to discriminate between controls and NSCLC patients, with an area under the ROC curve (AUC) of 0.864 for the set. Our rapid and reproducible (<10% CV for technical replicates) blood preparation and analysis methods enabled the production of high-quality data from only 30 μL of complex samples that typically require significant fractionation prior to proteomic analysis. With our methods, almost 4000 proteins were identified from a single fraction over a 62.5 min gradient by LC-MS/MS.
Collapse
Affiliation(s)
- Rosalee McMahon
- Sangui Bio Pty Ltd, Sydney 2065, Australia
- The Kolling Institute, Sydney 2065, Australia
| | - Natasha Lucas
- Sangui Bio Pty Ltd, Sydney 2065, Australia
- The Kolling Institute, Sydney 2065, Australia
- University of Sydney, Sydney 2050, Australia
| | - Cameron Hill
- Sangui Bio Pty Ltd, Sydney 2065, Australia
- The Kolling Institute, Sydney 2065, Australia
| | - Dana Pascovici
- Insight Stats, Sydney 2133, Australia
- Current: CSIRO Health &Biosecurity, Westmead 2145, Australia
| | - Ben Herbert
- Sangui Bio Pty Ltd, Sydney 2065, Australia
- The Kolling Institute, Sydney 2065, Australia
| | - Elisabeth Karsten
- Sangui Bio Pty Ltd, Sydney 2065, Australia
- The Kolling Institute, Sydney 2065, Australia
- University of Sydney, Sydney 2050, Australia
| |
Collapse
|
8
|
Fang X, Wei M, Liu X, Lu L, Liu G. Identification of anoikis-related long non-coding RNA signature as a novel prognostic model in lung adenocarcinoma. Transl Cancer Res 2024; 13:5458-5472. [PMID: 39525036 PMCID: PMC11543027 DOI: 10.21037/tcr-24-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Background Anoikis, as a specific form of programmed cell death, involves in tumor metastasis. However, there is still lacking of anoikis-related long non-coding RNA (lncRNA) risk signature in the diagnosis and prognosis of lung adenocarcinoma (LUAD). This study constructed a prognostic risk model by comprehensively analyzing anoikis-related lncRNAs which could effectively diagnose and predict the outcomes of LUAD patients. Methods A list of anoikis-related genes (ARGs) was retrieved from literatures. Anoikis-related lncRNAs were selected using co-expression analysis from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate regression analyses were used to construct a prognostic model. The performance of the risk signature in predicting the prognosis and clinical significance were determined by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, univariate and multivariate regression analyses. Moreover, the differences of tumor immune microenvironment between the high- and low-risk groups were explored. Finally, a novel nomogram was developed by combining the signature and clinicopathological factors, and the association between lncRNAs and differential N6-methyladenosine (m6A) genes was analyzed by Spearman's analysis. Results A total of 1,694 anoikis-related lncRNAs were identified from 479 cases of LUAD. According to the univariate and multivariate Cox analyses, we established a prognostic risk model consisting of seven lncRNAs (AC026355.2, AL606489.1, AL031667.3, LINC02802, LINC01116, AC018529.1, and AP000844.2). This prognostic risk model could efficiently classify low- and high-risk patients. The area under the curve (AUC) value was 0.717, which indicated more powerful predictive capability than commonly used clinicopathological factors. The high- and low-risk groups demonstrated different immune microenvironment. Moreover, the nomogram also demonstrated good performance in predicting the prognosis. Twelve differential m6A regulators were identified, and RBM15 was found to be correlated positively with the hub lncRNA AL606489.1. Conclusions Our study constructed a prognostic risk model based on anoikis-related lncRNAs, which could provide novel perspective on the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Xisheng Fang
- Department of Medical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Mei Wei
- Department of Nursing, Guangzhou Health Science College, Guangzhou, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Guolong Liu
- Department of Medical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Kim CY, Lee EH, Kwak SH, Lee SH, Kim EY, Park MK, Cha YJ, Chang YS. UCHL1 Overexpression Is Related to the Aggressive Phenotype of Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2024; 87:494-504. [PMID: 39362830 PMCID: PMC11468449 DOI: 10.4046/trd.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ubiquitin C-terminal hydrolase L1 (UCHL1), which encodes thiol protease that hydrolyzes a peptide bond at the C-terminal glycine residue of ubiquitin, regulates cell differentiation, proliferation, transcriptional regulation, and numerous other biological processes and may be involved in lung cancer progression. UCHL1 is mainly expressed in the brain and plays a tumor-promoting role in a few cancer types; however, there are limited reports regarding its role in lung cancer. METHODS Single-cell RNA (scRNA) sequencing using 10X chromium v3 was performed on a paired normal-appearing and tumor tissue from surgical specimens of a patient who showed unusually rapid progression. To validate clinical implication of the identified biomarkers, immunohistochemical (IHC) analysis was performed on 48 non-small cell lung cancer (NSCLC) tissue specimens, and the correlation with clinical parameters was evaluated. RESULTS We identified 500 genes overexpressed in tumor tissue compared to those in normal tissue. Among them, UCHL1, brain expressed X-linked 3 (BEX3), and midkine (MDK), which are associated with tumor growth and progression, exhibited a 1.5-fold increase in expression compared to that in normal tissue. IHC analysis of NSCLC tissues showed that only UCHL1 was specifically overexpressed. Additionally, in 48 NSCLC specimens, UCHL1 was specifically upregulated in the cytoplasm and nuclear membrane of tumor cells. Multivariable logistic analysis identified several factors, including smoking, tumor size, and high-grade dysplasia, to be typically associated with UCHL1 overexpression. Survival analyses using The Cancer Genome Atlas (TCGA) datasets revealed that UCHL1 overexpression is substantially associated with poor survival outcomes. Furthermore, a strong association was observed between UCHL1 expression and the clinicopathological features of patients with NSCLC. CONCLUSION UCHL1 overexpression was associated with smoking, tumor size, and high-grade dysplasia, which are typically associated with a poor prognosis and survival outcome. These findings suggest that UCHL1 may serve as an effective biomarker of NSCLC.
Collapse
Affiliation(s)
- Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hyun Kwak
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyoung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Dong X, Shao C, Xu S, Tu J, Xu W, Chen D, Tang Y. Construction and validation of a prognostic signature based on anoikis-related lncRNAs in lung adenocarcinoma. Aging (Albany NY) 2024; 16:9899-9917. [PMID: 38850527 PMCID: PMC11210241 DOI: 10.18632/aging.205905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer and is characterized by a high death rate and a poor prospect for survival. Anoikis, which is a kind of programmed cell apoptosis, is an important factor in the advancement of tumors. Nonetheless, the function of anoikis-related lncRNAs (ARLRs) in LUAD is still not well understood. The TCGA database was queried for genomic and clinical information. A prognostic signature for ARLRs was established via the use of coexpression analysis and Cox regression. Validation of the model's accuracy was conducted utilizing K-M curves and receiver operating characteristic (ROC) curves, and the signature was utilized to develop a nomogram. LncRNAs were implicated in the progression of tumors, as determined by functional enrichment analysis. There was an improvement in prognosis, increased immune cell infiltration, and higher immune scores among the low-risk patients. Additionally, we found that the two groups had varied anticancer drug sensitivities, which could help guide treatment. The impact of one ARLR, AC026355.2, on migration and invasion was validated by in vitro experiments in LUAD cells. Herein, a new lncRNA signature associated with anoikis was identified and estimated, potentially serving as a prognostic indicator for LUAD patients.
Collapse
Affiliation(s)
- Xiaoqi Dong
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to Ningbo University), Ningbo, China
| | - Chuan Shao
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to Ningbo University), Ningbo, China
| | - Shuguang Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to Ningbo University), Ningbo, China
| | - Jinjing Tu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to Ningbo University), Ningbo, China
| | - Wenjing Xu
- Ningbo University Health Science Center, Ningbo, China
| | - Dahua Chen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to Ningbo University), Ningbo, China
| | - Yaodong Tang
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital Affiliated to Ningbo University), Ningbo, China
| |
Collapse
|
11
|
Su MC, Hsu CH, Chen KC, Lin JR, Li HY, Fang YT, Huang RYJ, Jeng YM. Identification of Early Events in Serrated Pathway Colorectal Tumorigenesis by Using Digital Spatial Profiling. Pathobiology 2024; 91:393-410. [PMID: 38830348 PMCID: PMC11614314 DOI: 10.1159/000539612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION The colorectal serrated pathway involves precursor lesions known as sessile serrated lesions (SSL) and traditional serrated adenomas (TSA). Mutations in BRAF or KRAS are crucial early events in this pathway. Additional genetic and epigenetic changes contribute to the progression of these lesions into high-grade lesions and, eventually, invasive carcinoma. METHODS We employed digital spatial profiling to investigate the transcriptional changes associated with SSL and TSA. The genes identified are confirmed by immunohistochemical (IHC) staining. Colorectal cancer (CRC) cell lines with CEACAM6 overexpression and knockdown were established to study the roles of CEACAM6 on tumorigenesis of CRC. RESULTS Ten genes were upregulated in SSL and TSA, and seven were upregulated in both types of lesions. IHC staining confirmed overexpression of CEACAM6, LCN2, KRT19, and lysozyme in SSL and TSA. CEACAM6 expression is an early event in the serrated pathway but a late event in the conventional pathway. Using cell line models, we confirmed that CEACAM6 promotes CRC cells' proliferation, migration, and invasion abilities. CONCLUSION These results highlight that the transcriptional changes in the early stages of tumorigenesis exhibit relative uniformity. Identifying these early events may hold significant promise in elucidating the mechanisms behind tumor initiation.
Collapse
Affiliation(s)
- Min-Cheng Su
- Department of Pathology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Ching-Hsiang Hsu
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Ko-Chen Chen
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun-Ru Lin
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Fang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Zhao D, Cai F, Liu X, Li T, Zhao E, Wang X, Zheng Z. CEACAM6 expression and function in tumor biology: a comprehensive review. Discov Oncol 2024; 15:186. [PMID: 38796667 PMCID: PMC11127906 DOI: 10.1007/s12672-024-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an immunoglobulin superfamily protein primarily expressed on epithelial surfaces and myeloid cells. It plays a significant role in cancer progression by inhibiting apoptosis, promoting drug resistance, and facilitating cancer cell invasion and metastasis. Overexpression of CEACAM6 has been observed in various cancers, including lung, breast, colorectal, and hepatocellular cancers, and is associated with poorer overall survival and disease-free survival. Its differential expression on tumor cell surfaces makes it a promising cancer marker. This review aims to provide a comprehensive summary of CEACAM6's role in different cancer types, its involvement in signaling pathways, and recent advancements in CEACAM6-targeted treatments.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ershu Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinlong Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
13
|
Rinchai D, Chaussabel D. Assessing the potential relevance of CEACAM6 as a blood transcriptional biomarker. F1000Res 2024; 11:1294. [PMID: 39239252 PMCID: PMC11375406 DOI: 10.12688/f1000research.126721.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 09/07/2024] Open
Abstract
Background Changes in blood transcript abundance levels have been associated with pathogenesis in a wide range of diseases. While next generation sequencing technology can measure transcript abundance on a genome-wide scale, downstream clinical applications often require small sets of genes to be selected for inclusion in targeted panels. Here we set out to gather information from the literature and transcriptome datasets that would help researchers determine whether to include the gene CEACAM6 in such panels. Methods We employed a workflow to systematically retrieve, structure, and aggregate information derived from both the literature and public transcriptome datasets. It consisted of profiling the CEACAM6 literature to identify major diseases associated with this candidate gene and establish its relevance as a biomarker. Accessing blood transcriptome datasets identified additional instances where CEACAM6 transcript levels differ in cases vs controls. Finally, the information retrieved throughout this process was captured in a structured format and aggregated in interactive circle packing plots. Results Although it is not routinely used clinically, the relevance of CEACAM6 as a biomarker has already been well established in the cancer field, where it has invariably been found to be associated with poor prognosis. Focusing on the blood transcriptome literature, we found studies reporting elevated levels of CEACAM6 abundance across a wide range of pathologies, especially diseases where inflammation plays a dominant role, such as asthma, psoriasis, or Parkinson's disease. The screening of public blood transcriptome datasets completed this picture, showing higher abundance levels in patients with infectious diseases caused by viral and bacterial pathogens. Conclusions Targeted assays measuring CEACAM6 transcript abundance in blood may be of potential utility for the management of patients with diseases presenting with systemic inflammation and for the management of patients with cancer, where the assay could potentially be run both on blood and tumor tissues.
Collapse
Affiliation(s)
- Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, 10065, USA
| | - Damien Chaussabel
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, 06032, USA
| |
Collapse
|
14
|
Wu G, Wang D, Xiong F, Wang Q, Liu W, Chen J, Chen Y. The emerging roles of CEACAM6 in human cancer (Review). Int J Oncol 2024; 64:27. [PMID: 38240103 PMCID: PMC10836497 DOI: 10.3892/ijo.2024.5615] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Carcinoembryonic antigen (CEA)‑related cell adhesion molecule 6 (CEACAM6) is a cell adhesion protein of the CEA family of glycosyl phosphatidyl inositol anchored cell surface glycoproteins. A wealth of research has demonstrated that CEACAM6 is generally upregulated in pancreatic adenocarcinoma, breast cancer, non‑small cell lung cancer, gastric cancer, colon cancer and other cancers and promotes tumor progression, invasion and metastasis. The transcriptional expression of CEACAM6 is regulated by various factors, including the CD151/TGF‑β1/Smad3 axis, microRNA (miR)‑146, miR‑26a, miR‑29a/b/c, miR‑128, miR‑1256 and DNA methylation. In addition, the N‑glycosylation of CEACAM6 protein at Asn256 is mediated by α‑1,6‑mannosylglycoptotein 6‑β‑N‑acetylglucosaminyltransferase. In terms of downstream signaling pathways, CEACAM6 promotes tumor proliferation by increasing levels of cyclin D1 and cyclin‑dependent kinase 4 proteins. CEACAM6 can activate the ERK1/2/MAPK or SRC/focal adhesion kinase/PI3K/AKT pathways directly or through EGFR, leading to stimulation of tumor proliferation, invasion, migration, resistance to anoikis and chemotherapy, as well as angiogenesis. This article provides a review of the expression pattern, biological function and relationship with prognosis of CEACAM6 in cancer. In summary, CEACAM6 may be a valuable diagnostic biomarker and potential therapeutic target for human cancers exhibiting overexpression of CEACAM6.
Collapse
Affiliation(s)
- Guanhua Wu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Da Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Fei Xiong
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Qi Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Wenzheng Liu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Junsheng Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yongjun Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
15
|
Cardenas KCA, Enos CW, Spear MR, Austin DE, Almofeez R, Kortchak S, Pincus L, Guo HB, Dolezal S, Pierce JM, Furth E, Gineste C, Kwon Y, Gelber C. CT109-SN-38, a Novel Antibody-drug Conjugate with Dual Specificity for CEACAM5 and 6, Elicits Potent Killing of Pancreatic Cancer Cells. Curr Cancer Drug Targets 2024; 24:720-732. [PMID: 38178674 DOI: 10.2174/0115680096260614231115192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND CEACAM5 and CEACAM6 are glycosylphosphatidylinositol (GPI)- linked members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which are frequently upregulated in epithelial cancers where they contribute to invasion, metastasis, immune evasion, and resistance to anoikis. CT109 is a novel antibody with dual specificity to both CEACAM5 and 6. OBJECTIVES In this study, we aimed to perform the preclinical characterization of CT109 and antibody- drug conjugate (ADCs) derivatives of CT109, focusing on CT109-SN-38. METHODS CT109's cognate epitope was characterized by scanning mutagenesis. CT109 specificity and internalization kinetics were assessed by immunoblot and flow cytometry, respectively. Cognate antigen expression prevalence in colorectal cancer and normal tissue arrays was determined by immunohistochemistry. CT109 conjugations were generated by the reaction of reduced CT109 cysteines with maleimide-functionalized payload linkers. In vitro cytotoxic activity of CT109 ADCs was characterized on antigen-positive and negative pancreatic ductal adenocarcinoma cell (PDAC) lines using a luminometric viability assay. In vivo efficacy of CT109-SN-38 was assessed on a PDAC tumor xenograft model at 10 and 25 mg/kg concentrations. RESULTS CT109 was shown to bind a glycoepitope centered on N309. CT109 is internalized in the CEACAM5+/CEACAM6+ double-positive PDAC line, BxPC-3, with a t1/2 of 2.3 hours. CT109 ADCs elicit a dose and antigen-dependent cytotoxic effect, with CT109-SN-38 exhibiting an IC50 value of 21 nM in BxPC-3 cells. In a BxPC-3 tumor xenograft model, CT109-SN-38 reduced tumor growth and induced regression in 3/10 mice at a concentration 25 mg/kg. CONCLUSION These data suggest that further preclinical and clinical development of CT109-SN-38 is warranted.
Collapse
Affiliation(s)
| | | | - Mark R Spear
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Dana E Austin
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Raghad Almofeez
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | | | - Lauren Pincus
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Hua-Bei Guo
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Samuel Dolezal
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - J Michael Pierce
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Emma Furth
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Yongjun Kwon
- Institute: Food and Drug Administration, CDER, MD, USA
| | - Cohava Gelber
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| |
Collapse
|
16
|
Ding, D, Wang, D, Qin Y. Development and validation of multi-omic prognostic signature of anoikis-related genes in liver hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e36190. [PMID: 37986299 PMCID: PMC10659623 DOI: 10.1097/md.0000000000036190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is characterized by high morbidity, rapid progression and early metastasis. Although many efforts have been made to improve the prognosis of LIHC, the situation is still dismal. Inability to initiate anoikis process is closely associated with cancer proliferation and metastasis, affecting patients' prognosis. In this study, a corresponding gene signature was constructed to comprehensively assess the prognostic value of anoikis-related genes (ARGs) in LIHC. Using TCGA-LIHC dataset, the mRNA levels of the differentially expressed ARGs in LIHC and normal tissues were compared by Student t test. And prognostic ARGs were identified through Cox regression analysis. Prognostic signature was established and then externally verified by ICGC-LIRI-JP dataset and GES14520 dataset via LASSO Cox regression model. Potential functions and mechanisms of ARGs in LIHC were evaluated by functional enrichment analyses. And the immune infiltration status in prognostic signature was analyzed by ESTIMATE algorithm and ssGSEA algorithm. Furthermore, ARGs expression in LIHC tissues was validated via qRT-PCR and IHC staining from the HPA website. A total of 97 differentially expressed ARGs were detected in LIHC tissues. Functional enrichment analysis revealed these genes were mainly involved in MAP kinase activity, apoptotic signaling pathway, anoikis and PI3K-Akt signaling pathway. Afterward, the prognostic signature consisting of BSG, ETV4, EZH2, NQO1, PLK1, PBK, and SPP1 had a moderate to high predictive accuracy and served as an independent prognostic indicator for LIHC. The prognostic signature was also applicable to patients with distinct clinical parameters in subgroup survival analysis. And it could reflect the specific immune microenvironment in LIHC, which indicated high-risk group tended to profit from ICI treatment. Moreover, qRT-PCR and IHC staining showed increasing expression of BSG, ETV4, EZH2, NQO1, PLK1, PBK and SPP1in LIHC tissues, which were consistent to the results from TCGA database. The current study developed a novel prognostic signature comprising of 7 ARGs, which could stratify the risk and effectively predict the prognosis of LIHC patients. Furthermore, it also offered a potential indicator for immunotherapy of LIHC.
Collapse
Affiliation(s)
- Dongxiao Ding,
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, Zhejiang, China
| | - Dianqian Wang,
- Health Science Center, Ningbo University, Zhejiang, China
| | - Yunsheng Qin
- Department of Hepatological Surgery, First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wang Z, Yang L, Wang W, Zhou H, Chen J, Ma Z, Wang X, Zhang Q, Liu H, Zhou C, Guo Z, Zhang X. Comparative immunological landscape between pre- and early-stage LUAD manifested as ground-glass nodules revealed by scRNA and scTCR integrated analysis. Cell Commun Signal 2023; 21:325. [PMID: 37957625 PMCID: PMC10644515 DOI: 10.1186/s12964-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/16/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mechanism underlying the malignant progression of precancer to early-stage lung adenocarcinoma (LUAD) as well as their indolence nature remains elusive. METHODS Single-cell RNA sequencing (scRNA) with simultaneous T cell receptor (TCR) sequencing on 5 normal lung tissues, 3 precancerous and 4 early-stage LUAD manifested as pulmonary ground-glass nodules (GGNs) were performed. RESULTS Through this integrated analysis, we have delineated five key modules that drive the malignant progression of early-stage LUAD in a disease stage-dependent manner. These modules are related to cell proliferation and metabolism, immune response, mitochondria, cilia, and cell adhesion. We also find that the tumor micro-environment (TME) of early-stage LUAD manifested as GGN are featured with regulatory T (Tregs) cells accumulation with three possible origins, and loss-functional state (decreased clonal expansion and cytotoxicity) of CD8 + T cells. Instead of exhaustion, the CD8 + T cells are featured with a shift to memory phenotype, which is significantly different from the late stage LUAD. Furthermore, we have identified monocyte-derived macrophages that undergo a lipid-phenotype transition and may contribute to the suppressive TME. Intense interaction between stromal cells, myeloid cells including lipid associated macrophages and LAMP3 + DCs, and lymphocytes were also characterized. CONCLUSIONS Our work provides new insight into the molecular and cellular mechanism underlying malignant progression of LUAD manifested as GGN, and pave way for novel immunotherapies for GGN. Video Abstract.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Wenqiang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Huanhuan Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeheng Ma
- Department of Thoracic Surgery Department, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Xiaoyan Wang
- Department of Pathological Department, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Haiyang Liu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Zhiping Guo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China.
- Henan Provincial Key Laboratory of Chronic Diseases and Health Management, Zhengzhou, 450003, Henan, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
18
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
20
|
Wang X, Tang X, Gu J, Sun Z, Yang S, Mu Y, Guan M, Chen K, Liu W, Ruan H, Xu J. CEACAM6 serves as a biomarker for leptomeningeal metastasis in lung adenocarcinoma. Cancer Med 2023; 12:4521-4529. [PMID: 36082960 PMCID: PMC9972070 DOI: 10.1002/cam4.5221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIMS Diagnosis of leptomeningeal metastasis (LM) is challenging. In our previous study, CEACAM6 mRNA was found to be highly expressed in the circulating tumor cells of cerebrospinal fluid (CSF) from patients with lung adenocarcinoma with LM (LUAD-LM). The aim of this study was to identify whether CEACAM6 could be used as a biomarker for LUAD-LM. MATERIALS AND METHODS The level of CEACAM6 was determined by enzyme-linked immunosorbent assay (ELISA) in CSF from 40 LUAD-LM and 44 normal controls, and additional serum samples from 138 LUAD patients, including 12 LUAD-LM patients, and 30 healthy controls. Carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA 21-1) and neuron-specific enolase (NSE) levels in the CSF and sera were detected by chemiluminescent immunoassay. Receiver operating characteristic curve was plotted to evaluate the diagnostic performance for LUAD-LM. RESULTS CSF CEACAM6 level was higher in LUAD-LM than that in normal controls. In serum, LUAD patients had a higher level of CAECAM6 than healthy controls, and LM patients had the highest level among them. Serum CEACAM6 had a higher AUC than CEA in differentiating LM from non-LM in LUAD patients (0.95 vs. 0.64, p < 0.001). CONCLUSION CEACAM6 may serve as a potential biomarker in diagnosing LUAD-LM.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuemei Tang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahui Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziwei Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengrui Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Mu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ming Guan
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Liu
- School of Internet of Things Engineering, Wuxi University, Wuxi, China
| | - Haoyu Ruan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
21
|
Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, Zhang R, Zhao Z, Zhu Q, An B, Wang Q, Chen B, Leung ELH, Wu Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 2022; 14:cancers14194791. [PMID: 36230714 PMCID: PMC9564242 DOI: 10.3390/cancers14194791] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Anoikis is a programmed cell death process resulting from the loss of interaction between cells and the extracellular matrix. Therefore, it is necessary to overcome anoikis when tumor cells acquire metastatic potential. In lung cancer, the composition of the extracellular matrix, cell adhesion-related membrane proteins, cytoskeletal regulators, and epithelial–mesenchymal transition are involved in the process of anoikis, and the initiation of apoptosis signals is a critical step in anoikis. Inversely, activation of growth signals counteracts anoikis. This review summarizes the regulators of lung cancer-related anoikis and explores potential drug applications targeting anoikis. Abstract Tumor metastasis occurs in lung cancer, resulting in tumor progression and therapy failure. Anoikis is a mechanism of apoptosis that combats tumor metastasis; it inhibits the escape of tumor cells from the native extracellular matrix to other organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat lung cancer. Several natural and synthetic products exhibit the pro-anoikis potential in lung cancer cells and in vivo models. These products include artonin E, imperatorin, oroxylin A, lupalbigenin, sulforaphane, renieramycin M, avicequinone B, and carbenoxolone. This review summarizes the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in lung cancer metastasis and discusses the therapeutic potential of targeting anoikis in the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhijie Luo
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinbing Sui
- School of Pharmacy, Department of Medical Oncology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianru Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bo An
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| |
Collapse
|