1
|
Carton F, Malatesta M. Nanotechnological Research for Regenerative Medicine: The Role of Hyaluronic Acid. Int J Mol Sci 2024; 25:3975. [PMID: 38612784 PMCID: PMC11012323 DOI: 10.3390/ijms25073975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Hyaluronic acid (HA) is a linear, anionic, non-sulfated glycosaminoglycan occurring in almost all body tissues and fluids of vertebrates including humans. It is a main component of the extracellular matrix and, thanks to its high water-holding capacity, plays a major role in tissue hydration and osmotic pressure maintenance, but it is also involved in cell proliferation, differentiation and migration, inflammation, immunomodulation, and angiogenesis. Based on multiple physiological effects on tissue repair and reconstruction processes, HA has found extensive application in regenerative medicine. In recent years, nanotechnological research has been applied to HA in order to improve its regenerative potential, developing nanomedical formulations containing HA as the main component of multifunctional hydrogels systems, or as core component or coating/functionalizing element of nanoconstructs. This review offers an overview of the various uses of HA in regenerative medicine aimed at designing innovative nanostructured devices to be applied in various fields such as orthopedics, dermatology, and neurology.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
2
|
Li X, Ma Y, Liu C, Pu F, Zhang Y, Wang D. Platelet membrane-derived microparticles may be biomarkers in patients with hepatocellular carcinoma and can promote the invasion and metastasis of hepatoma carcinoma cells. Transfusion 2023; 63:1821-1831. [PMID: 37680187 DOI: 10.1111/trf.17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Platelet membrane-derived microparticles (PMPs) released by apheresis platelets (APs) during storage are involved in immunomodulatory and tumor processes. However, few studies have emphasized the relationship between PMPs and hepatocellular carcinoma (HCC). METHODS Enzyme-linked immunosorbent assay (ELISA) was used to detect PMPs in the plasma of HCC patients and healthy individuals. ELISA and flow cytometry were separately applied to analyze the variation in PMPs from APs prepared after 0, 3, 5, and 7 days of storage. Transwell was used to demonstrate the effects of PMPs on the invasion and migration of HCC cells. HCC-related indicators and invasion and migration-related markers were detected in vivo. RESULTS We found the amount of PMPs was significantly increased in HCC patients. There was also a significant difference in the amount of PMPs in APs with prolonged storage time. Further, the PMPs in D5 promoted the invasion and migration of HepG2 and Huh7 cells. Transcriptomics revealed striking differences in the expression of many tumor metastasis associated genes with PMPs treatment. PMPs promoted tumor growth and weight loss in HCC-bearing mice, and Western blot results showed that invasion and migration-related indicators also increase. CONCLUSION The content of PMPs in the plasma of HCC patients increases, and it can also promote the invasion and migration of HCC.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Ma
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengdi Liu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Pu
- Department of Blood Transfusion Research Laboratory, Zhongshan Blood Center, Zhongshan, China
| | - Yuan Zhang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
3
|
Wang L, Zhang K, Feng J, Wang D, Liu J. The Progress of Platelets in Breast Cancer. Cancer Manag Res 2023; 15:811-821. [PMID: 37589033 PMCID: PMC10426457 DOI: 10.2147/cmar.s418574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Breast cancer is the most common female cancer and the sixth leading cause of death, seriously affecting the quality of life of women. Platelets, one of the fragments derived from megakaryocytes, are being increasingly investigated by tumor researchers because of their anticoagulant function. According to relevant studies, platelets, as the key source of circulating angiogenesis-related factors, can regulate tumor angiogenesis and vascular integrity, and they can also affect the tumor microenvironment, thereby facilitating the proliferation and differentiation of tumor cells. By covering or transferring normal MHC I molecules to tumor cells, platelets can protect tumor cells from being killed by the immune system and facilitate tumor cell metastasis. However, details on the mechanisms involved have remained elusive. This paper reviews and analyzes studies of the role of platelets in tumorigenesis, tumor cell proliferation, tumor metastasis, and cancer treatment to provide readers with a better understanding of the relevant studies.
Collapse
Affiliation(s)
- Luchang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Laboratory, Chengdu Second People’s Hospital, Chengdu, 610017, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
4
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
5
|
Does aspirin reduce the incidence, recurrence, and mortality of hepatocellular carcinoma? A GRADE-assessed systematic review and dose-response meta-analysis. Eur J Clin Pharmacol 2023; 79:39-61. [PMID: 36334108 DOI: 10.1007/s00228-022-03414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Aspirin has been suggested to reduce the risk of cancer. However, previous studies have been inconsistent regarding the relationship between aspirin use and the risk of occurrence of hepatocellular carcinoma (HCC). The purpose of this study was to assess the effect of aspirin on clinical outcomes in patients with HCC in a meta-analysis and to explore the possible dose-response relationship. METHODS A systematic literature search was conducted in 10 electronic databases and 4 registries. The combined hazard ratios (HRs) were calculated using a random-effects model with 95% confidence interval (CIs) to assess the effect of aspirin on the risk of HCC. Relevant subgroup analyses and sensitivity analyses were performed. RESULTS The results show that aspirin use correlated with lower incidence of HCC (HR: 0.75, 95% CI: 0.71-0.80), decreased risk of HCC recurrence (HR: 0.79, 95% CI: 0.65-0.96), and reduced mortality (HR: 0.72, 95% CI: 0.60-0.87). The results of the subgroup analysis showed that aspirin use was consistently associated with reduced incidence of HCC across different regions, study designs, and populations. A linear relationship was found for both dosage and duration of aspirin use. An increased of bleeding with aspirin use among patients was also observed (HR 1.10, 95% CI: 1.02-1.20). CONCLUSIONS This meta-analysis found that aspirin use was independently associated with a reduced risk of HCC incidence, recurrence, and death. Furthermore, aspirin use influenced HCC occurrence in a dose-dependent and duration-dependent manner. However, an increased risk of bleeding with aspirin use was noted.
Collapse
|
6
|
Goubran H, Ragab G, Seghatchian J, Burnouf T. Blood transfusion in autoimmune rheumatic diseases. Transfus Apher Sci 2022; 61:103596. [PMID: 36371394 DOI: 10.1016/j.transci.2022.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Xiao G, Zhang Z, Chen Q, Wu T, Shi W, Gan L, Liu X, Huang Y, Lv M, Zhao Y, Wu P, Zhong L, He J. Platelets for cancer treatment and drug delivery. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1231-1237. [PMID: 35218523 DOI: 10.1007/s12094-021-02771-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Extensive research is currently being conducted into a variety of bio-inspired biomimetic nanoparticles (NPs) with new cell simulation functions across the fields of materials science, chemistry, biology, physics, and engineering. Cells such as erythrocytes, platelets, and stem cells have been engineered as new drug carriers. The platelet-derived drug delivery system, which is a new targeted drug delivery system (TDDS), can effectively navigate the blood circulatory system and interact with the complex tumor microenvironment; it appears to outperform traditional anticancer drugs; hence, it has attracted considerable research interest. In this review, we describe innovative studies and outline the latest progress regarding the use of platelets as tumor targeting and drug delivery vehicles; we also highlight opportunities and challenges relevant to the manufacture of tumor-related platelet TDDSs.
Collapse
Affiliation(s)
- Gaozhe Xiao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiaoying Chen
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 41500, China
| | - Wei Shi
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengyu Lv
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pan Wu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,The First People's Hospital of Changde City, Changde, 41500, China.
| |
Collapse
|
8
|
Abstract
Platelets are at the crossroads between thrombosis and inflammation. When activated, platelets can shed bioactive extracellular vesicles [pEVs] that share the hemostatic potential of their parent cells and act as bioactive shuttles of their granular contents. In a viral infection, platelets are activated, and pEVs are generated with occasional virion integration. Both platelets and pEVs are engaged in a bidirectional interaction with neutrophils and other cells of the immune system and the hemostatic pathways. Severe COVID-19 infection is characterized by a stormy thromboinflammatory response with platelets and their EVs at the center stage of this reaction. This review sheds light on the interactions of platelets, pEVS and SARS-CoV-2 infection and prognostic and potential therapeutic role of pEVs. The review also describes the role of pEVs in the rare adenovirus-based COVID-19 vaccine-induced thrombosis thrombocytopenia.
Collapse
|
9
|
Liu Z, Wang J, Liao F, Song Q, Yao Y. Tumor-Educated Platelets Facilitate Thrombus Formation Through Migration. Front Oncol 2022; 12:857865. [PMID: 35280750 PMCID: PMC8907878 DOI: 10.3389/fonc.2022.857865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Platelets are small anucleate cells that circulate in the blood and form thrombi. Tumor-educated platelets are the platelets derived from cancer patients. Although many have reported that tumor-educated platelets are associated with cancer-associated thrombosis, their function in this process is poorly understood. Here we first collect the clinical data from 100 different cancer patients, showing that cancer patients are in a hypercoagulable state. Our experiment shows that tumor-educated platelets from melanoma-burdened mouse models can migrate faster and longer, forming more clots (thrombus). However, the plasma from tumor mice can inhibit platelet migration. The RNA sequence profile of tumor-educated platelets shows that many genes associated with cell migration and cell skeleton expressed significantly higher. Our research offers a new insight into the tumor-educated platelets to better understand the thrombus formation.
Collapse
Affiliation(s)
- Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wang
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fuben Liao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wang J, Zhou P, Han Y, Zhang H. Platelet transfusion for cancer secondary thrombocytopenia: Platelet and cancer cell interaction. Transl Oncol 2021; 14:101022. [PMID: 33545547 PMCID: PMC7868729 DOI: 10.1016/j.tranon.2021.101022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
Chemoradiotherapy and autoimmune disorder often lead to secondary thrombocytopenia in cancer patients, and thus, platelet transfusion is needed to stop or prevent bleeding. However, the effect of platelet transfusion remains controversial for the lack of agreement on transfusion strategies. Before being transfused, platelets are stored in blood banks, and their activation is usually stimulated. Increasing evidence shows activated platelets may promote metastasis and the proliferation of cancer cells, while cancer cells also induce platelet activation. Such a vicious cycle of interaction between activated platelets and cancer cells is harmful for the prognosis of cancer patients, which results in an increased tumor recurrence rate and decreased five-year survival rate. Therefore, it is important to explore platelet transfusion strategies, summarize mechanisms of interaction between platelets and tumor cells, and carefully evaluate the pros and cons of platelet transfusion for better treatment and prognosis for patients with cancer with secondary thrombocytopenia.
Collapse
Affiliation(s)
- Juan Wang
- Class 2016 Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Pan Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
11
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
12
|
Shkair L, Garanina EE, Stott RJ, Foster TL, Rizvanov AA, Khaiboullina SF. Membrane Microvesicles as Potential Vaccine Candidates. Int J Mol Sci 2021; 22:1142. [PMID: 33498909 PMCID: PMC7865840 DOI: 10.3390/ijms22031142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.
Collapse
Affiliation(s)
- Layaly Shkair
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
13
|
Nazari M, Javandoost E, Talebi M, Movassaghpour A, Soleimani M. Platelet Microparticle Controversial Role in Cancer. Adv Pharm Bull 2021; 11:39-55. [PMID: 33747851 PMCID: PMC7961228 DOI: 10.34172/apb.2021.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are a group of micrometer-scale extracellular vesicles released by platelets upon activation that are responsible for the majority of microvesicles found in plasma. PMPs' physiological properties and functions have long been investigated by researchers. In this regard, a noticeable area of studies has been devoted to evaluating the potential roles and effects of PMPs on cancer progression. Clinical and experimental evidence conflictingly implicates supportive and suppressive functions for PMPs regarding cancer. Many of these functions could be deemed as a cornerstone for future considerations of PMPs usage in cancer targeted therapy. This review discusses what is currently known about PMPs and provides insights for new and possible research directions for further grasping the intricate interplay between PMPs and cancer.
Collapse
Affiliation(s)
- Mahnaz Nazari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Javandoost
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Delila L, Wu YW, Nebie O, Widyaningrum R, Chou ML, Devos D, Burnouf T. Extensive characterization of the composition and functional activities of five preparations of human platelet lysates for dedicated clinical uses. Platelets 2020; 32:259-272. [PMID: 33245683 DOI: 10.1080/09537104.2020.1849603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelet lysates (HPLs), rich in various growth factors and cell growth-promoting molecules, encompass a new range of blood products that are being used for regenerative medicine, cell therapies, and tissue engineering. Well-characterized dedicated preparations, tailor-made to best fit specific therapeutic applications, are needed for optimal clinical efficacy and safety. Here, five types of HPL were prepared from the same platelet concentrates and extensively characterized to determine and compare their proteins, growth factors, cytokines, biochemical profiles, thrombin-generating capacities, thrombin-associated proteolytic activities, phospholipid-associated procoagulant potential, contents of extracellular vesicles expressing phosphatidylserine and tissue factor, and antioxidative properties. Our results revealed that all five HPL preparations contained detectable supraphysiological levels, in the ca. 0.1 ~ 350-ng/ml range, of all growth factors assessed, except insulin-like growth factor-1 detected only in HPL containing plasma. There were significant differences observed among these HPLs in total protein content, fibrinogen, complement components C3 and C4, albumin, and immunoglobulin G, and, most importantly, in their functional coagulant and procoagulant activities and antioxidative capacities. Our data revealed that the biochemical and functional properties of HPL preparations greatly vary depending upon their mode of production, with potential impacts on the safety and efficacy for certain clinical indications. Modes of preparation of HPLs should be carefully designed, and the product properties carefully evaluated based on the intended therapeutic use to ensure optimal clinical outcomes.
Collapse
Affiliation(s)
- Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Rifa Widyaningrum
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Research Center of Biomedical Devices, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine Taipei Medical University, Taipei, Taiwan.,PhD Program in Graduate Institute of Mind Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Millar D, Hayes C, Jones J, Klapper E, Kniep JN, Luu HS, Noland DK, Petitti L, Poisson JL, Spaepen E, Ye Z, Maurer-Spurej E. Comparison of the platelet activation status of single-donor platelets obtained with two different cell separator technologies. Transfusion 2020; 60:2067-2078. [PMID: 32729161 DOI: 10.1111/trf.15934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The microparticle content (MP%) of apheresis platelets-a marker of platelet activation-is influenced by donor factors and by external stressors during collection and storage. This study assessed the impact of apheresis technology and other factors on the activation status (MP%) of single-donor apheresis platelets. STUDY DESIGN AND METHODS Data from six US hospitals that screened platelets by measuring MP% through dynamic light scattering (ThromboLUX) were retrospectively analyzed. Relative risks (RRs) were derived from univariate and multivariable regression models, with activation rate (MP% ≥15% for plasma-stored platelets; ≥10% for platelet additive solution [PAS]-stored platelets) and MP% as outcomes. Apheresis platform (Trima Accel vs Amicus), storage medium (plasma vs PAS), pathogen reduction, storage time, and testing location were used as predictors. RESULTS Data were obtained from 7511 platelet units collected using Trima (from 16 suppliers, all stored in plasma, 20.0% were pathogen-reduced) and 2456 collected using Amicus (from four different collection facilities of one supplier, 65.0% plasma-stored, 35.0% PAS-stored, none pathogen-reduced). Overall, 30.0% of Trima platelets were activated compared to 45.6% of Amicus platelets (P < .0001). Multivariable analysis identified apheresis platform as significantly associated with platelet activation, with a lower activation rate for Trima than Amicus (RR: 0.641, 95% confidence interval [CI]: 0.578; 0.711, P < .0001) and a 6.901% (95% CI: 5.926; 7.876, P < .0001) absolute reduction in MP%, when adjusting for the other variables. CONCLUSION Trima-collected platelets were significantly less likely to be activated than Amicus-collected platelets, irrespective of the storage medium, the use of pathogen reduction, storage time, and testing site.
Collapse
Affiliation(s)
- Daniel Millar
- Department of Integrated Engineering, University of British Columbia and MistyWest Research and Engineering Lab, Vancouver, British Columbia, Canada
| | - Chelsea Hayes
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jessica Jones
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ellen Klapper
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joel N Kniep
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hung S Luu
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | - Daniel K Noland
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | | | | | | | - Zhan Ye
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elisabeth Maurer-Spurej
- Department of Pathology and Laboratory Medicine and Centre for Blood Research and Canadian Blood Services, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Chen B, Xia R. Pro‐inflammatory effects after platelet transfusion: a review. Vox Sang 2020; 115:349-357. [PMID: 32293034 DOI: 10.1111/vox.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Bin‐Zhen Chen
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| | - Rong Xia
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
17
|
Gasperi V, Vangapandu C, Savini I, Ventimiglia G, Adorno G, Catani MV. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines. J Nutr Biochem 2019; 74:108242. [PMID: 31665654 DOI: 10.1016/j.jnutbio.2019.108242] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Breast cancer is one of the most frequent and malignant types of cancer in women, with an increasing morbidity and mortality rate; in particular, treatment of triple negative breast cancer remains a challenge, since the efforts made with targeted therapies were ineffective. Among surrounding cells influencing the biology of cancer cells, platelets are recognizing as novel players. Activated platelets release microvesicles (MVs) that, once delivered to cancer cells, modulate signaling pathways related to cell growth and dissemination; among factors contained in platelet-derived MVs, microRNAs are highly involved in cancer development. The growing interest in ω3 and ω6 polyunsaturated fatty acids (PUFAs) as adjuvants in anti-cancer therapy prompted us to investigate the ability of arachidonic acid (AA) and docosahexaenoic acid (DHA) to modulate MV biological functions. AA induced differential enhancement of platelet-specific microRNAs (miR-223 and miR-126), an effect further enhanced by the presence of DHA. MVs can be delivered to and microRNAs internalized by breast cancer cells, although with different efficiency; analysis of kinetics of MV delivery, indeed, suggested that tumor cells fine-tune the uptake of specific microRNA. Finally, we demonstrated that physiological delivery of platelet miR-223 and miR-126 induced cellular effects in breast cancer cells, including cell cycle arrest, inhibition of migration and sensitivity to cisplatin. These results have been confirmed by exogenous expression of miR-223 and miR-126 through transient transfection experiments. Our preliminary data suggest that ω6/ω3-PUFA supplementation, by modulating microRNA delivery, enhances platelet anti-tumor activities, thus opening new avenues for add-on therapies in cancer patients.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Chaitanya Vangapandu
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Isabella Savini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gaspare Ventimiglia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gaspare Adorno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
18
|
Hout FM, Middelburg RA, Meer PF, Pors A, Wiersum‐Osselton JC, Schipperus MR, Kerkhoffs J, Bom JG. Effect of storage of platelet concentrates in PAS‐B, PAS‐C, or plasma on transfusion reactions. Transfusion 2019; 59:3140-3145. [DOI: 10.1111/trf.15497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Fabienne M.A. Hout
- Center for Clinical Transfusion ResearchSanquin/LUMC Leiden The Netherlands
- Department of Clinical EpidemiologyLeiden University Medical Center Leiden The Netherlands
| | - Rutger A. Middelburg
- Center for Clinical Transfusion ResearchSanquin/LUMC Leiden The Netherlands
- Department of Clinical EpidemiologyLeiden University Medical Center Leiden The Netherlands
| | - Pieter F. Meer
- Center for Clinical Transfusion ResearchSanquin/LUMC Leiden The Netherlands
| | - Aad Pors
- Center for Clinical Transfusion ResearchSanquin/LUMC Leiden The Netherlands
| | - Johanna C. Wiersum‐Osselton
- Transfusion and Transplantation Reactions in Patients, Dutch National Hemovigilance and Biovigilance Office Leiden The Netherlands
| | - Martin R. Schipperus
- Transfusion and Transplantation Reactions in Patients, Dutch National Hemovigilance and Biovigilance Office Leiden The Netherlands
- Department of HematologyHaga Teaching Hospital The Hague The Netherlands
| | - Jean‐Louis Kerkhoffs
- Center for Clinical Transfusion ResearchSanquin/LUMC Leiden The Netherlands
- Department of HematologyHaga Teaching Hospital The Hague The Netherlands
| | - Johanna G. Bom
- Center for Clinical Transfusion ResearchSanquin/LUMC Leiden The Netherlands
- Department of Clinical EpidemiologyLeiden University Medical Center Leiden The Netherlands
| |
Collapse
|
19
|
Zarà M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci 2019; 20:ijms20112840. [PMID: 31212641 PMCID: PMC6600675 DOI: 10.3390/ijms20112840] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | | | - Marina Camera
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy.
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Patrizia Amadio
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Elena Tremoli
- Scientific Direction, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| |
Collapse
|
20
|
Gao M, Zhang B, Zhang Y, Chen Y, Xiong J, Wang J, Chen H, Chen G, Wei Q. The effects of apheresis, storage time, and leukofiltration on microparticle formation in apheresis platelet products. Transfusion 2018; 58:2388-2394. [PMID: 30203553 DOI: 10.1111/trf.14890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Gao
- Department of Transfusion; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Bin Zhang
- Department of Transfusion; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yue Zhang
- Department of Transfusion; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | | | - Jin Xiong
- Department of Transfusion; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | - Juan Wang
- Department of Transfusion; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| | | | | | - Qing Wei
- Department of Transfusion; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
21
|
Effects of donor age, donor sex, blood-component processing, and storage on cell-derived microparticle concentrations in routine blood-component preparation. Transfus Apher Sci 2018; 57:587-592. [PMID: 30082165 DOI: 10.1016/j.transci.2018.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND A number of factors cause increases in the number of cell-derived microparticles (MPs) in blood components. However, the overall effects of these factors on the concentration of MPs during routine blood-component preparation have not fully been elucidated. AIM To evaluate the effects of donor age, donor sex, blood-component preparation, and storage on MP concentrations. METHODS Flow cytometry was used to quantitate the number of whole blood-derived MPs. RESULTS The total MP concentration was similar in male and female donors (26,044 ± 1254 particles/μL vs. 27,696 ± 1584 particles/μL). The total MP concentration did not differ significantly among the different age groups: 18-30 years (28,730 ± 1600 particles/μL), 31-40 years (24,972 ± 5947 particles/μL), and 41-58 years (25,195 ± 1727 particles/μL). However, the total number of MPs in fresh plasma (152,110 ± 46,716 particles/μL) was significantly higher (p < 0.05) than that in unprocessed whole blood (26,752 ± 985 particles/μL), fresh packed red blood cells (PRBCs) (28,574 ± 1028 particles/μL), and platelet concentrate (PC) (33,072 ± 1858 particles/μL). Furthermore, the total numbers of MPs in stored PRBCs and fresh-frozen plasma (FFP) were significantly higher (p < 0.05) than those in fresh PRBCs and fresh plasma, respectively. CONCLUSIONS The study suggests that donor factors, blood-component processing and storage contribute to the MP concentration in routine blood-product preparation. The findings can improve quality control and management of blood-product manufacturing in routine transfusion laboratories.
Collapse
|
22
|
Gubensek J, Strobl K, Harm S, Weiss R, Eichhorn T, Buturovic-Ponikvar J, Weber V, Hartmann J. Influence of citrate concentration on the activation of blood cells in an in vitro dialysis setup. PLoS One 2018; 13:e0199204. [PMID: 29898003 PMCID: PMC5999235 DOI: 10.1371/journal.pone.0199204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 02/02/2023] Open
Abstract
Background Regional citrate anticoagulation has been associated with enhanced biocompatibility in hemodialysis, but the optimal dose of citrate remains to be established. Here, we compared parameters related to cellular activation during in vitro dialysis, using two doses of citrate. Methods Human whole blood, anticoagulated with either 3 mM or 4 mM of citrate, was recirculated in an in vitro miniaturized dialysis setup. Complement (C3a-desArg), soluble platelet factor 4 (PF4), thromboxane B2 (TXB2), myeloperoxidase (MPO), as well as platelet- and red blood cell-derived extracellular vesicles (EV) were quantified during recirculation. Dialyzer fibers were examined by scanning electron microscopy after recirculation to assess the activation of clotting and the deposition of blood cells. Results Increases in markers of platelet and leukocyte activation, PF4, TXB2, and MPO were comparable between both citrate groups. Complement activation tended to be lower at higher citrate concentration, but the difference between the two citrate groups did not reach significance. A strong increase in EVs, particularly platelet-derived EVs, was observed during in vitro dialysis for both citrate groups, which was significantly less pronounced in the high citrate group at the end of the experiment. Assessment of dialyzer clotting scores after analysis of individual fibers by scanning electron microscopy revealed significantly lower scores in the high citrate group. Conclusions Our data indicate that an increase in the citrate concentration from 3 mM to 4 mM further dampens cellular activation, thereby improving biocompatibility. A concentration of 4 mM citrate might therefore be optimal for use in clinical practice.
Collapse
Affiliation(s)
- Jakob Gubensek
- Department of Nephrology, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| | - Karin Strobl
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| | - Stephan Harm
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| | - Rene Weiss
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria
| | - Jadranka Buturovic-Ponikvar
- Department of Nephrology, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria
| | - Jens Hartmann
- Center for Biomedical Technology, Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| |
Collapse
|
23
|
Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 2018; 33:965-983. [PMID: 29657130 PMCID: PMC5997503 DOI: 10.1016/j.ccell.2018.03.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Besides their function in limiting blood loss and promoting wound healing, experimental evidence has highlighted platelets as active players in all steps of tumorigenesis including tumor growth, tumor cell extravasation, and metastasis. Additionally, thrombocytosis in cancer patients is associated with adverse patient survival. Due to the secretion of large amounts of microparticles and exosomes, platelets are well positioned to coordinate both local and distant tumor-host crosstalk. Here, we present a review of recent discoveries in the field of platelet biology and the role of platelets in cancer progression as well as challenges in targeting platelets for cancer treatment.
Collapse
Affiliation(s)
- Monika Haemmerle
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
| | - Rebecca L Stone
- Department of Obstetrics and Gynecology, Johns Hopkins Hospital, Baltimore, MD 21287-1281, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Losos M, Biller E, Li J, Blower L, Hamad D, Patel G, Scrape S, Cataland S, Chen J. Prolonged platelet storage associated with increased frequency of transfusion-related adverse events. Vox Sang 2017; 113:170-176. [DOI: 10.1111/vox.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Losos
- Department of Pathology and Immunology; Baylor College of Medicine; Houston TX USA
| | - E. Biller
- Department of Pathology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - J. Li
- College of Pharmacy; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - L. Blower
- Department of Pathology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - D. Hamad
- Department of Pathology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - G. Patel
- Department of Pathology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - S. Scrape
- Department of Pathology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - S. Cataland
- Department of Internal Medicine; Division of Hematology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - J. Chen
- Department of Pathology; The Ohio State University Wexner Medical Center; Columbus OH USA
| |
Collapse
|
25
|
Park SY, Seo KS, Karm MH. Perioperative red blood cell transfusion in orofacial surgery. J Dent Anesth Pain Med 2017; 17:163-181. [PMID: 29090247 PMCID: PMC5647818 DOI: 10.17245/jdapm.2017.17.3.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 01/28/2023] Open
Abstract
In the field of orofacial surgery, a red blood cell transfusion (RBCT) is occasionally required during double jaw and oral cancer surgery. However, the question remains whether the effect of RBCT during the perioperative period is beneficial or harmful. The answer to this question remains challenging. In the field of orofacial surgery, transfusion is performed for the purpose of oxygen transfer to hypoxic tissues and plasma volume expansion when there is bleeding. However, there are various risks, such as infectious complications (viral and bacterial), transfusion-related acute lung injury, ABO and non-ABO associated hemolytic transfusion reactions, febrile non-hemolytic transfusion reactions, transfusion associated graft-versus-host disease, transfusion associated circulatory overload, and hypersensitivity transfusion reaction including anaphylaxis and transfusion-related immune-modulation. Many studies and guidelines have suggested RBCT is considered when hemoglobin levels recorded are 7 g/dL for general patients and 8-9 g/dL for patients with cardiovascular disease or hemodynamically unstable patients. However, RBCT is occasionally an essential treatment during surgeries and it is often required in emergency cases. We need to comprehensively consider postoperative bleeding, different clinical situations, the level of intra- and postoperative patient monitoring, and various problems that may arise from a transfusion, in the perspective of patient safety. Since orofacial surgery has an especially high risk of bleeding due to the complex structures involved and the extensive vascular distribution, measures to prevent bleeding should be taken and the conditions for a transfusion should be optimized and appropriate in order to promote patient safety.
Collapse
Affiliation(s)
- So-Young Park
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwang-Suk Seo
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Myong-Hwan Karm
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Republic of Korea
| |
Collapse
|
26
|
Takahashi T, Kato A, Berdnikovs S, Stevens WW, Suh LA, Norton JE, Carter RG, Harris KE, Peters AT, Hulse KE, Grammer LC, Welch KC, Shintani-Smith S, Tan BK, Conley DB, Kern RC, Bochner BS, Schleimer RP. Microparticles in nasal lavage fluids in chronic rhinosinusitis: Potential biomarkers for diagnosis of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2017; 140:720-729. [PMID: 28238741 PMCID: PMC5568994 DOI: 10.1016/j.jaci.2017.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Microparticles (MPs) are submicron-sized shed membrane vesicles released from activated or injured cells and are detectable by flow cytometry. MP levels have been used as biomarkers to evaluate cell injury or activation in patients with pathological conditions. OBJECTIVE We sought to compare MP types and levels in nasal lavage fluids (NLFs) from controls and patients with chronic rhinosinusitis without nasal polyps (CRSsNP), chronic rhinosinusitis with nasal polyps (CRSwNP), and aspirin-exacerbated respiratory disease (AERD). METHODS We collected NLFs from patients with CRSsNP (n = 33), CRSwNP (n = 45), and AERD (n = 31) and control (n = 24) subjects. Standardized flow cytometry methods were used to characterize the following MP types: endothelial MPs, epithelial MPs (epithelial cell adhesion molecule [EpCAM](+)MPs, E-cadherin(+)MPs), platelet MPs (CD31(+)CD41(+)MPs), eosinophil MPs (EGF-like module-containing mucin-like hormone receptor-like 1[EMR1](+)MPs), mast cell MPs (high-affinity IgE receptor [FcεRI](+)c-kit(+)MPs), and basophil MPs (CD203c(+)c-kit(-)MPs). Basophil activation was evaluated by the mean fluorescence intensity of CD203c on basophil MPs. RESULTS Activated mast cell MPs (CD137(+) FcεRI(+)c-kit(+)MPs) were significantly increased in NLFs of controls compared with NLFs of patients with CRSsNP (2.3-fold; P < .02), CRSwNP (2.3-fold; P < .03), and AERD (7.4-fold; P < .0001). Platelet MPs (3.5-fold; P < .01) and basophil MPs (2.5-fold; P < .05) were increased only in patients with AERD. Mean fluorescence intensity of CD203c on MPs was increased in patients with CRSwNP (P < .002) and AERD (P < .0001), but not in patients with CRSsNP. EpCAM(+)MPs in patients with CRSwNP were no different from control (P = .91) and lower than those in patients with CRSsNP (P < .02) and AERD (P < .002). CONCLUSIONS Based on released MPs, mast cells, platelets, and basophils were more highly activated in patients with AERD than in patients with CRS. Epithelial injury was lower in patients with CRSwNP than in patients with CRSsNP and AERD. MP analysis may help identify phenotypes of CRS, and in distinguishing AERD from CRSwNP.
Collapse
Affiliation(s)
- Toru Takahashi
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sergejs Berdnikovs
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
27
|
|
28
|
Goubran H, Sheridan D, Radosevic J, Burnouf T, Seghatchian J. Transfusion-related immunomodulation and cancer. Transfus Apher Sci 2017; 56:336-340. [PMID: 28606449 DOI: 10.1016/j.transci.2017.05.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood and blood-component therapy triggers immunological reactions in recipients. Transfusion-related immunomodulation [TRIM] is an important complex biological immune reaction to transfusion culminating in immunosuppression. The mechanisms underlying TRIM include the presence of residual leukocytes and apoptotic cells, the transfusion of immunosuppressive cytokines either present in donor components or generated during blood processing, the transfer of metabolically active growth factor-loaded microparticles and extracellular vesicles and the presence of free hemoglobin or extracellular vesicle-bound hemoglobin. TRIM variables include donor-specific factors as well as processing variables. TRIM may explain, at least in part, the controversial negative clinical outcomes observed in cancer patients receiving transfusion in the context of curative-intent surgeries. The use of novel technologies including metabolomics and proteomics on stored blood may pave the way for a deeper understanding of TRIM in general and its impact on cancer progression.
Collapse
Affiliation(s)
- Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada.
| | - David Sheridan
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | | | - Thierry Burnouf
- Graduate Institute of Biological Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
29
|
Abstract
Heart failure (HF) continues to have a sufficient impact on morbidity, mortality, and disability in developed countries. Growing evidence supports the hypothesis that microparticles (MPs) might contribute to the pathogenesis of the HF development playing a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, inflammation, immunity, and metabolic memory phenomenon. Therefore, there is a large body of data clarifying the predictive value of MP numerous in circulation among subjects with HF. Although the determination of MP signature is better than measurement of single MP circulating level, there is not yet close confirmation that immune phenotype of cells produced MPs are important for HF prediction and development. The aim of the chapter is to summarize knowledge regarding the role of various MPs in diagnosis and prognosis of HF. The role of MPs as a delivery vehicle for drugs attenuated cardiac remodeling is considered.
Collapse
|
30
|
Cho CH, Yun SG, Koh YE, Lim CS. Effect of Irradiation on Microparticles in Red Blood Cell Concentrates. Ann Lab Med 2017; 36:362-6. [PMID: 27139610 PMCID: PMC4855057 DOI: 10.3343/alm.2016.36.4.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/20/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022] Open
Abstract
Changes in microparticles (MP) from red blood cell (RBC) concentrates in the context of irradiation have not been investigated. The aim of this study was to evaluate how irradiation affects the number of MPs within transfusion components. Twenty RBC concentrates, within 14 days after donation, were exposed to gamma rays (dose rate: 25 cGy) from a cesium-137 irradiator. Flow cytometry was used to determine the numbers of MPs derived from RBC concentrates before and 24 hr after irradiation. The mean number of MPs (±standard deviation) in RBC concentrates was 21.9×109/L (±22.7×109/L), and the total number of MPs ranged from 2.6×109/L to 96.9×109/L. The mean number of MPs increased to 22.6×109/L (±31.6×109/L) after irradiation. Before irradiation, the CD41-positive and CD235a-positive MPs constituted 9.5% (1.0×109/L) and 2.2% (263×106/L) of total MPs, respectively. After irradiation, CD41-positive MPs increased to 12.1% (1.5×109/L) (P=0.014), but the CD235a-positive MPs decreased to 2.0% (214×106/L) of the total MPs (P=0.369). Irradiation increases the number of CD41-positive MPs within RBC concentrates, suggesting the irradiation of RBC concentrates could be associated with thrombotic risk of circulating blood through the numerical change.
Collapse
Affiliation(s)
- Chi Hyun Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | | | - Young Eun Koh
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea.
| |
Collapse
|
31
|
Kanzler P, Mahoney A, Leitner G, Witt V, Maurer-Spurej E. Microparticle detection to guide platelet management for the reduction of platelet refractoriness in children – A study proposal. Transfus Apher Sci 2017; 56:39-44. [DOI: 10.1016/j.transci.2016.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Menter DG, Davis JS, Tucker SC, Hawk E, Crissman JD, Sood AK, Kopetz S, Honn KV. Platelets: “First Responders” in Cancer Progression and Metastasis. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017:1111-1132. [DOI: 10.1007/978-3-319-47462-5_74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function? JOURNAL OF BLOOD TRANSFUSION 2016; 2016:6140239. [PMID: 28053805 PMCID: PMC5178367 DOI: 10.1155/2016/6140239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/27/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer's point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility.
Collapse
|
34
|
Pretorius E, Akeredolu OO, Soma P, Kell DB. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp Biol Med (Maywood) 2016; 242:355-373. [PMID: 27889698 PMCID: PMC5298544 DOI: 10.1177/1535370216681549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We review the evidence that infectious agents, including those that become dormant within the host, have a major role to play in much of the etiology of rheumatoid arthritis and the inflammation that is its hallmark. This occurs in particular because they can produce cross-reactive (auto-)antigens, as well as potent inflammagens such as lipopolysaccharide that can themselves catalyze further inflammagenesis, including via β-amyloid formation. A series of observables coexist in many chronic, inflammatory diseases as well as rheumatoid arthritis. They include iron dysregulation, hypercoagulability, anomalous morphologies of host erythrocytes, and microparticle formation. Iron dysregulation may be responsible for the periodic regrowth and resuscitation of the dormant bacteria, with concomitant inflammagen production. The present systems biology analysis benefits from the philosophical idea of "coherence," that reflects the principle that if a series of ostensibly unrelated findings are brought together into a self-consistent narrative, that narrative is thereby strengthened. As such, we provide a coherent and testable narrative for the major involvement of (often dormant) bacteria in rheumatoid arthritis.
Collapse
Affiliation(s)
- Etheresia Pretorius
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Oore-Ofe Akeredolu
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Prashilla Soma
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Douglas B Kell
- 2 School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.,3 The Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.,4 Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
35
|
Maurer-Spurej E, Larsen R, Labrie A, Heaton A, Chipperfield K. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress. Transfus Apher Sci 2016; 55:35-43. [DOI: 10.1016/j.transci.2016.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Seghatchian J, Amiral J. Unresolved clinical aspects and safety hazards of blood derived- EV/MV in stored blood components: From personal memory lanes to newer perspectives on the roles of EV/MV in various biological phenomena. Transfus Apher Sci 2016; 55:10-22. [PMID: 27522103 DOI: 10.1016/j.transci.2016.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood cells generate heterogeneous populations of vesicles that are delivered, as small-specialized packages of highly active cell fragments in blood circulation, having almost similar functional activities, as the mother cells. These so called extracellular vesicles are the essential part of an energy-dependent natural apoptotic process; hence their beneficial and harmful biological functions cannot be ignored. Evidence is accumulating, that cellular derived vesicles, originate from all viable cells including: megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells, the highest in proportions from platelets. Shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement pathways, or even by shear stress in the circulation. Structurally, so called MV/EV appear to be, sometimes inside-out and sometimes outside-in cell fragments having a bilayered phospholipid structure exposing coagulant-active phosphatidylserine, expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. Ex vivo processing of blood into its components, embodying centrifugation, processing by various apheresis procedures, leukoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, also have major impacts on the generation and retention of MV content. These artificially generated small, but highly liable packages, together with the original pool of MVs collected from the donor, do exhibit differing biological activities, and are not inert elements and should be considered as a parameter of blood safety in haemovigilance programmes. Harmonization and consensus in sampling protocols, sample handling, processing, and assessment methods, in particular converting to full automation, are needed to achieve consensual interpretations. This review focuses on some of our past personal studies on the role of MV/EV focusing on characterization of platelet storage lesion and platelet therapy that shows the highest transfusion hazards [up to 25%], and loss of 25% platelet efficacy after various leukoreduction and validated platelet pathogen reduction treatments. The planned paths for the future of EV/MV involvement in immunological and viral/ non-viral transfusion hazards are also discussed. Whilst considerable advances made on the characterization of EV/MV, but disparity still exists between various surrogate markers, showing some subtle differences in the levels of MV/ EV & BRMs in platelet preparations, and the clinical outcome showing platelets derived by all current technologies are equivalents in vivo. One possible reason for such a disparity may be relatedto the fact that MVs, being the end products of apoptotic cells, have little specificity and clear rapidly from circulation [<6 h in thrombocytopoenia]. This makes their clinical usefulness rather short lived. The recent findings that pegylating smaller subsets of EV increases its circulatory life from <15 minutes to approximately about one hour is highly promising, in particular, for drug delivery on specific sides. Hence a promising clinical utility of EV/MV continues, as a journey without end, indeed. This manuscript is based mainly on the selected key readings listed below.
Collapse
Affiliation(s)
- Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| | | |
Collapse
|
37
|
Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci 2016; 54:309-18. [PMID: 27179926 DOI: 10.1016/j.transci.2016.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
38
|
Abstract
The spectrum of adverse reactions to blood product transfusion ranges from a benign clinical course to serious morbidity and mortality. There have been many advances in technologies and transfusion strategies to decrease the risk of adverse reactions. Our aim is to address a few of the advancements in increasing the safety of the blood supply, specifically pathogen reduction technologies, bacterial contamination risk reduction, and transfusion associated acute lung injury risk mitigation strategies.
Collapse
Affiliation(s)
- Thomas S Rogers
- Blood Bank & Transfusion Medicine, University of Vermont Medical Center, Burlington, Vermont, 05401, USA; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, 05401, USA
| | - Mark K Fung
- Blood Bank & Transfusion Medicine, University of Vermont Medical Center, Burlington, Vermont, 05401, USA; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, 05401, USA
| | - Sarah K Harm
- Blood Bank & Transfusion Medicine, University of Vermont Medical Center, Burlington, Vermont, 05401, USA; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, 05401, USA
| |
Collapse
|
39
|
The diagnostic usefulness of capture assays for measuring global/specific extracellular micro-particles in plasma. Transfus Apher Sci 2015; 53:127-36. [PMID: 26572801 DOI: 10.1016/j.transci.2015.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capture assays were developed and validated for measuring the global pro-coagulant activity of micro-particles (MPs, mainly originated from platelets), or specific extravascular cellular MPs (released from erythrocytes, leukocytes, monocytes, endothelial cells) as those exposing TF (MP-TF, mainly observed in patients with some cancers). Conversely to Flow Cytometry methods, these capture assays measure all coagulant activity associated with MPs, through thrombin generation (MP-Activity) or Factor Xa generation (MP-TF), and therefore they bring a complementary information, as they are more specific for the pro-coagulant activity associated with MPs. Small particles (<0.40 µ) exposing Phosphatidyl Serine (PS) exhibit a greater pro-coagulant surface than larger MPs (0.40 to >1.00 µ), those preferentially measured with flow cytometry. Activity associated with MPs is a consequence of disease but can also be a cause contributing to pathological processes and development of thrombo-embolic events. In many diseases, flow cytometry and capture assays do not totally correlate, and have different associations with disease evolution. Optimized capture based assays are presented and discussed, along with their performance characteristics and some applications. They can be performed in any technically skillful hemostasis laboratory, using a thermostated ELISA equipment, or an incubator. Dynamic ranges for MP-Activity assay is from <0.1 nM to >2.5 nM Phospholipids, expressed as Phosphatidyl Serine (PS) equivalent, in the tested dilution. For MP-TF the very sensitive bio-immunoassay reported allows measuring concentrations from <0.10 pg/ml (TF equivalent) to >5.00 pg/ml, in the assayed dilution. No measurable MP-TF was found in normals, although an important concentration was generated from whole blood treated with Lipo-Poly-Saccharides. Capture based assays are then highly useful in the laboratory setting for measuring the activities associated with pro-coagulant, or specific cellular MPs.
Collapse
|
40
|
Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J. An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful? Transfus Apher Sci 2015; 53:137-45. [PMID: 26596959 DOI: 10.1016/j.transci.2015.10.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Blood cells and tissues generate heterogeneous populations of cell-derived vesicles, ranging from approximately 50 nm to 1 µm in diameter. Under normal physiological conditions and as an essential part of an energy-dependent natural process, microparticles (MPs) are continuously shed into the circulation from membranes of all viable cells such as megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells. MP shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement systems, or even by shear stress in the circulation. Structurally, MPs have a bilayered phospholipid structure exposing coagulant-active phosphatidylserine and expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. It was established that ex vivo processing of blood into its components, involving centrifugation, processing by various apheresis procedures, leucoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, can impact MP generation and content. This is mostly due to exposure of the collected blood to anticoagulant/storage media and due to shear stresses or activation, contact with artificial surfaces, or exposure to various leucocyte-removal filters and pathogen-reduction treatments. Such artificially generated MPs, which are added to the original pool of MPs collected from the donor, may exhibit specific functional characteristics, as MPs are not an inert element of blood components. Not surprisingly, MPs' roles and functionality are therefore increasingly seen to be fully relevant to the field of transfusion medicine, and as a parameter of blood safety that must be considered in haemovigilance programmes. Continual advancements in assessment methods of MPs and storage lesions are gradually leading to a better understanding of the impacts of blood collection on MP generation, while clinical research should clarify links of MPs with transfusion reactions and certain clinical disorders. Harmonization and consensus in sampling protocols, sample handling and processing, and assessment methods are needed to achieve consensual interpretations. This review focuses on the role of MPs as an essential laboratory tool and as a most effective player in transfusion science and medicine and in health and disease.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Loire, Saint-Etienne, France; GIMAP-EA3064, Université de Lyon, Saint Etienne, France
| | - Olivier Garraud
- Etablissement Français du Sang Auvergne-Loire, Saint-Etienne, France; Institut National de Transfusion Sanguine (INTS), Paris, France
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety, Audit/Inspection and DDR Strategy, London, UK.
| |
Collapse
|
41
|
Platelet-derived microparticles trigger THP-1 monocytic cell aggregation and release of pro-coagulant tissue factor-expressing microparticles in vitro. Transfus Apher Sci 2015; 53:246-52. [PMID: 26597313 DOI: 10.1016/j.transci.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microparticles (MPs) released by blood or endothelial cells are present in plasma for transfusion. They originate from the collected donor blood or are triggered by the variable steps taking place during collection and production/storage processes of blood components. While MPs may contribute to hemostasis, their presence in transfused plasma may lead to uncontrolled thrombin generation when transfused to susceptible cancer or hypercoagulable patients. Understanding the biochemical and cellular triggers of MP-mediated thrombogenesis is therefore crucial. We isolated platelet MPs (PMPs) present in platelet concentrate supernatant plasma (N-PMPs) or prepared by activation of isolated platelets using 0.1 IU/mL thrombin (T-PMPs). N-PMPs and T-PMPs were characterized by dynamic light scattering and counted by tunable resistive pulse sensing to determine population size and number. T-MPMs, but not N-PMPs, induced immediate, long-lasting, strong aggregation of THP-1 monocytic cells in vitro. In addition, co-cultures of THP-1 cells with both N-PMPs and T-PMPs triggered the generation of pro-coagulant tissue factor (TF)-bearing MPs from THP-1 cells. Therefore, some PMPs may induce THP-1 monocytic cell aggregation in vitro and trigger immune cell-mediated thrombogenicity linked to the release of pro-coagulant tissue factor-bearing MPs. Controlling the impact of the presence of PMPs in transfused blood components in certain patient population or critically ill patients deserves in-depth consideration.
Collapse
|
42
|
|
43
|
Goubran H, Sabry W, Kotb R, Seghatchian J, Burnouf T. Platelet microparticles and cancer: An intimate cross-talk. Transfus Apher Sci 2015; 53:168-72. [DOI: 10.1016/j.transci.2015.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Platelet microparticles in cryopreserved platelets: Potential mediators of haemostasis. Transfus Apher Sci 2015; 53:146-52. [DOI: 10.1016/j.transci.2015.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Poncelet P, Robert S, Bailly N, Garnache-Ottou F, Bouriche T, Devalet B, Segatchian JH, Saas P, Mullier F. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus Apher Sci 2015; 53:110-26. [DOI: 10.1016/j.transci.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Abstract
Platelets are generated from nucleated precursors referred to as megakaryocytes. The formation of platelets is one of the most elegant and unique developmental processes in eukaryotes. Because they enter the circulation without nuclei, platelets are often considered simple, non-complex cells that have limited functions beyond halting blood flow. However, emerging evidence over the past decade demonstrates that platelets are more sophisticated than previously considered. Platelets carry a rich repertoire of messenger RNAs (mRNAs), microRNAs (miRNAs), and proteins that contribute to primary (adhesion, aggregation, secretion) and alternative (immune regulation, RNA transfer, translation) functions. It is also becoming increasingly clear that the 'genetic code' of platelets changes with race, genetic disorders, or disease. Changes in the 'genetic code' can occur at multiple points including megakaryocyte development, platelet formation, or in circulating platelets. This review focuses on regulation of the 'genetic code' in megakaryocytes and platelets and its potential contribution to health and disease.
Collapse
Affiliation(s)
- M T Rondina
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - A S Weyrich
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|