1
|
Rigotti L, Rebellato S, Lettieri A, Castiglioni S, Mariani M, Totaro S, Saitta C, Gervasini C, Fazio G, Massa V, Cazzaniga G, Selicorni A. Cohesins: Crossroad Between Cornelia de Lange Spectrum and Cancer Predisposition. Am J Med Genet A 2025:e64076. [PMID: 40186517 DOI: 10.1002/ajmg.a.64076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
The cohesin complex plays crucial roles in DNA repair, chromatid separation, and gene transcription regulation. Pathogenic variants in cohesins or dysfunctional transcriptional regulators lead to cohesinopathies, a broader group of disorders including Cornelia de Lange Spectrum (CdLSp), for which the prevalence of cancer cases remains unclear. Here, we aimed to assess the prevalence of oncological events in CdLSp and elucidate the role of cohesin variants in cancer predisposition. We developed a custom next-generation sequencing (NGS) panel targeting predisposition and pathogenic genes, which we applied on N = 120 samples of pediatric patients with acute lymphoblastic leukemia (ALL), identifying 11 out of 229 total-10 germline and 1 somatic-variants in cohesin genes. Data of N = 205 brain tumors were extracted by bioinformatic analysis of data from open-source databases carrying 19 somatic variants. In a cohort of 54 CdLSp patients, the largest cohort from a single center, with a median age of 13 years, the hypothesis of an increased prevalence of cancer in CdLSp was not confirmed. Our findings highlight a significant involvement of germline NIPBL variants in CdLSp, whereas RAD21 and STAG1/2 are predominantly found as somatic variants in neoplasms. However, a distinct genetic or molecular pattern distinguishing variants leading to CdLSp from tumors was not identified. Hence, we advocate for further investigation into the relationship between cohesin variants and cancer predisposition in a larger cohort of patients, with a longer observation time and including different types of malignancies, with more focus on epigenetic approaches.
Collapse
Affiliation(s)
- Laura Rigotti
- Department of Pediatrics, Mariani Foundation Center for Fragile Children, ASST-Lariana, Sant'Anna Hospital, Como, Italy
| | - Stefano Rebellato
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | | | - Milena Mariani
- Department of Pediatrics, Mariani Foundation Center for Fragile Children, ASST-Lariana, Sant'Anna Hospital, Como, Italy
| | - Simona Totaro
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Claudia Saitta
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Angelo Selicorni
- Department of Pediatrics, Mariani Foundation Center for Fragile Children, ASST-Lariana, Sant'Anna Hospital, Como, Italy
| |
Collapse
|
2
|
Boucher A, Murray J, Rao S. Cohesin mutations in acute myeloid leukemia. Leukemia 2024; 38:2318-2328. [PMID: 39251741 DOI: 10.1038/s41375-024-02406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The cohesin complex, encoded by SMC3, SMC1A, RAD21, and STAG2, is a critical regulator of DNA-looping and gene expression. Over a decade has passed since recurrent mutations affecting cohesin subunits were first identified in myeloid malignancies such as Acute Myeloid Leukemia (AML). Since that time there has been tremendous progress in our understanding of chromatin structure and cohesin biology, but critical questions remain because of the multiple critical functions the cohesin complex is responsible for. Recent findings have been particularly noteworthy with the identification of crosstalk between DNA-looping and chromatin domains, a deeper understanding of how cohesin establishes sister chromatid cohesion, a renewed interest in cohesin's role for DNA damage response, and work demonstrating cohesin's importance for Polycomb repression. Despite these exciting findings, the role of cohesin in normal hematopoiesis, and the precise mechanisms by which cohesin mutations promote cancer, remain poorly understood. This review discusses what is known about the role of cohesin in normal hematopoiesis, and how recent findings could shed light on the mechanisms through which cohesin mutations promote leukemic transformation. Important unanswered questions in the field, such as whether cohesin plays a role in HSC heterogeneity, and the mechanisms by which it regulates gene expression at a molecular level, will also be discussed. Particular attention will be given to the potential therapeutic vulnerabilities of leukemic cells with cohesin subunit mutations.
Collapse
Affiliation(s)
- Austin Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Josiah Murray
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology/Oncology/Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Laczko D, Poveda-Rogers C, Matthews AH, Snaith O, Luger S, Bagg A, Caponetti GC, Morrissette JJD, Yang G. RAD21 mutations in acute myeloid leukemia. Leuk Lymphoma 2024; 65:958-964. [PMID: 38506144 DOI: 10.1080/10428194.2024.2328233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
The cohesin complex is a ring-shaped protein structure involved in DNA repair and chromosomal segregation. Studies have showed that genomic alterations in the cohesin complex members are among the initial occurrences in the development of acute myeloid leukemia (AML). STAG2 is the most commonly mutated and best-studied member of the cohesin complex in AML and mutations in this gene have been associated with adverse outcomes and are diagnostically relevant. However, the exact role of mutations in other members of the cohesin complex in the development of myeloid neoplasia is controversial. In this single institution study, we retrospectively reviewed data from the molecular profiles of 1,381 AML patients and identified 14 patients with mutations in RAD21, another member of the cohesin complex. We evaluated the frequency, mutational profile, clinico-pathologic features, and prognostic impact of RAD21 in this cohort. This study showed that RAD21-mutated AML often associates with monocytic differentiation, CD7 expression, co-existing mutations in epigenetic regulators, a normal karyotype, and poor prognosis. Our findings provide additional insights into the morphologic, immunophenotypic, and genomic profile of RAD21 mutation-positive AML and suggest that RAD21 mutations should be evaluated for independent prognostic significance in AML.
Collapse
Affiliation(s)
- Dorottya Laczko
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey Poveda-Rogers
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew H Matthews
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Oraine Snaith
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Selina Luger
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adam Bagg
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel C Caponetti
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guang Yang
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Yoon I, Kim U, Jung KO, Song Y, Park T, Lee DS. 3C methods in cancer research: recent advances and future prospects. Exp Mol Med 2024; 56:788-798. [PMID: 38658701 PMCID: PMC11059347 DOI: 10.1038/s12276-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, Hi-C technology has revolutionized cancer research by elucidating the mystery of three-dimensional chromatin organization and its role in gene regulation. This paper explored the impact of Hi-C advancements on cancer research by delving into high-resolution techniques, such as chromatin loops, structural variants, haplotype phasing, and extrachromosomal DNA (ecDNA). Distant regulatory elements interact with their target genes through chromatin loops. Structural variants contribute to the development and progression of cancer. Haplotype phasing is crucial for understanding allele-specific genomic rearrangements and somatic clonal evolution in cancer. The role of ecDNA in driving oncogene amplification and drug resistance in cancer cells has also been revealed. These innovations offer a deeper understanding of cancer biology and the potential for personalized therapies. Despite these advancements, challenges, such as the accurate mapping of repetitive sequences and precise identification of structural variants, persist. Integrating Hi-C with multiomics data is key to overcoming these challenges and comprehensively understanding complex cancer genomes. Thus, Hi-C is a powerful tool for guiding precision medicine in cancer research and treatment.
Collapse
Affiliation(s)
- Insoo Yoon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Uijin Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yousuk Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesoo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
5
|
Singh AK, Chen Q, Nguyen C, Meerzaman D, Singer DS. Cohesin regulates alternative splicing. SCIENCE ADVANCES 2023; 9:eade3876. [PMID: 36857449 PMCID: PMC9977177 DOI: 10.1126/sciadv.ade3876] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cohesin, a trimeric complex that establishes sister chromatid cohesion, has additional roles in chromatin organization and transcription. We report that among those roles is the regulation of alternative splicing through direct interactions and in situ colocalization with splicing factors. Degradation of cohesin results in marked changes in splicing, independent of its effects on transcription. Introduction of a single cohesin point mutation in embryonic stem cells alters splicing patterns, demonstrating causality. In primary human acute myeloid leukemia, mutations in cohesin are highly correlated with distinct patterns of alternative splicing. Cohesin also directly interacts with BRD4, another splicing regulator, to generate a pattern of splicing that is distinct from either factor alone, documenting their functional interaction. These findings identify a role for cohesin in regulating alternative splicing in both normal and leukemic cells and provide insights into the role of cohesin mutations in human disease.
Collapse
Affiliation(s)
- Amit K. Singh
- Experimental Immunology Branch, Center for Cancer Research, Bethesda, MD, USA
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Cu Nguyen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research, Bethesda, MD, USA
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
6
|
Meyer AE, Stelloh C, Pulakanti K, Burns R, Fisher JB, Heimbruch KE, Tarima S, Furumo Q, Brennan J, Zheng Y, Viny AD, Vassiliou GS, Rao S. Combinatorial genetics reveals the Dock1-Rac2 axis as a potential target for the treatment of NPM1;Cohesin mutated AML. Leukemia 2022; 36:2032-2041. [PMID: 35778533 PMCID: PMC9357218 DOI: 10.1038/s41375-022-01632-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) is driven by mutations that occur in numerous combinations. A better understanding of how mutations interact with one another to cause disease is critical to developing targeted therapies. Approximately 50% of patients that harbor a common mutation in NPM1 (NPM1cA) also have a mutation in the cohesin complex. As cohesin and Npm1 are known to regulate gene expression, we sought to determine how cohesin mutation alters the transcriptome in the context of NPM1cA. We utilized inducible Npm1cAflox/+ and core cohesin subunit Smc3flox/+ mice to examine AML development. While Npm1cA/+;Smc3Δ/+ mice developed AML with a similar latency and penetrance as Npm1cA/+ mice, RNA-seq suggests that the Npm1cA/+; Smc3Δ/+ mutational combination uniquely alters the transcriptome. We found that the Rac1/2 nucleotide exchange factor Dock1 was specifically upregulated in Npm1cA/+;Smc3Δ/+ HSPCs. Knockdown of Dock1 resulted in decreased growth and adhesion and increased apoptosis only in Npm1cA/+;Smc3Δ/+ AML. Higher Rac activity was also observed in Npm1cA/+;Smc3Δ/+ vs. Npm1cA/+ AMLs. Importantly, the Dock1/Rac pathway is targetable in Npm1cA/+;Smc3Δ/+ AMLs. Our results suggest that Dock1/Rac represents a potential target for the treatment of patients harboring NPM1cA and cohesin mutations and supports the use of combinatorial genetics to identify novel precision oncology targets.
Collapse
Affiliation(s)
| | - Cary Stelloh
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | | | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Joseph B Fisher
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinlan Furumo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - John Brennan
- Department of Pathology and Lab Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yongwei Zheng
- Guangzhou Bio-gene Technology Co., Ltd., Guangzhou, China
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
In Pursuit of Genetic Prognostic Factors and Treatment Approaches in Secondary Acute Myeloid Leukemia—A Narrative Review of Current Knowledge. J Clin Med 2022; 11:jcm11154283. [PMID: 35893374 PMCID: PMC9332027 DOI: 10.3390/jcm11154283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Secondary acute myeloid leukemia can be divided into two categories: AML evolving from the antecedent hematological condition (AHD-AML) and therapy related AML (t-AML). AHD-AML can evolve from hematological conditions such as myelodysplastic syndromes, myeloproliferative neoplasms, MDS/MPN overlap syndromes, Fanconi anemia, and aplastic anemia. Leukemic transformation occurs as a consequence of the clonal evolution—a process of the acquisition of mutations in clones, while previous mutations are also passed on, leading to somatic mutations accumulation. Compared de novo AML, secondary AML is generally associated with poorer response to chemotherapy and poorer prognosis. The therapeutic options for patients with s-AML have been confirmed to be limited, as s-AML has often been analyzed either both with de novo AML or completely excluded from clinical trials. The treatment of s-AML was not in any way different than de novo AML, until, that is, the introduction of CPX-351—liposomal daunorubicin and cytarabine. CPX-351 significantly improved the overall survival and progression free survival in elderly patients with s-AML. The only definitive treatment in s-AML at this time is allogeneic hematopoietic cell transplantation. A better understanding of the genetics and epigenetics of s-AML would allow us to determine precise biologic drivers leading to leukogenesis and thus help to apply a targeted treatment, improving prognosis.
Collapse
|
8
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
9
|
Antić Ž, Yu J, Bornhauser BC, Lelieveld SH, van der Ham CG, van Reijmersdal SV, Morgado L, Elitzur S, Bourquin JP, Cazzaniga G, Eckert C, Camós M, Sutton R, Cavé H, Moorman AV, Sonneveld E, Geurts van Kessel A, van Leeuwen FN, Hoogerbrugge PM, Waanders E, Kuiper RP. Clonal dynamics in pediatric B-cell precursor acute lymphoblastic leukemia with very early relapse. Pediatr Blood Cancer 2022; 69:e29361. [PMID: 34597466 DOI: 10.1002/pbc.29361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION One-quarter of the relapses in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), and prognosis in these patients is worse compared to cases that relapse after treatment has ended. METHODS In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy. RESULTS We observed a dynamic clonal evolution in all cases, with relapse almost exclusively originating from a subclone at diagnosis. We identified several driver mutations that may have influenced the outgrowth of a minor clone at diagnosis to become the major clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated subclone after loss of the wildtype allele. Furthermore, two patients with TCF3-PBX1-positive leukemia that developed a very early relapse carried E1099K WHSC1 mutations at diagnosis, a hotspot mutation that was recurrently encountered in other very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in known relapse drivers, we found two cases with truncating mutations in the cohesin gene RAD21. CONCLUSION Comprehensive genomic characterization of diagnosis-relapse pairs shows that very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A detailed understanding of the therapeutic pressure driving these events may aid the development of improved therapies.
Collapse
Affiliation(s)
- Željko Antić
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jiangyan Yu
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Simon V van Reijmersdal
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lionel Morgado
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Fondazione Tettamanti, University of Milan Bicocca, Monza, Italy
| | - Cornelia Eckert
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mireia Camós
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Hematology Laboratory, Hospital Sant Joan de Deu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Hélène Cavé
- Department of Genetics, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,INSERM U1131, Saint-Louis Research Institute, University of Paris, Paris, France
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter M Hoogerbrugge
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Tena JJ, Santos-Pereira JM. Topologically Associating Domains and Regulatory Landscapes in Development, Evolution and Disease. Front Cell Dev Biol 2021; 9:702787. [PMID: 34295901 PMCID: PMC8290416 DOI: 10.3389/fcell.2021.702787] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Animal genomes are folded in topologically associating domains (TADs) that have been linked to the regulation of the genes they contain by constraining regulatory interactions between cis-regulatory elements and promoters. Therefore, TADs are proposed as structural scaffolds for the establishment of regulatory landscapes (RLs). In this review, we discuss recent advances in the connection between TADs and gene regulation, their relationship with gene RLs and their dynamics during development and differentiation. Moreover, we describe how restructuring TADs may lead to pathological conditions, which explains their high evolutionary conservation, but at the same time it provides a substrate for the emergence of evolutionary innovations that lay at the origin of vertebrates and other phylogenetic clades.
Collapse
Affiliation(s)
- Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - José M. Santos-Pereira
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
12
|
Moura‐Castro LH, Peña‐Martínez P, Castor A, Galeev R, Larsson J, Järås M, Yang M, Paulsson K. Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:410-417. [PMID: 33368842 PMCID: PMC8247877 DOI: 10.1002/gcc.22933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022] Open
Abstract
High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion-a phenomenon related to CIN-in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.
Collapse
Affiliation(s)
| | - Pablo Peña‐Martínez
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Anders Castor
- Department of Pediatrics, Skåne University HospitalLund UniversityLundSweden
| | - Roman Galeev
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell CenterLund UniversityLundSweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell CenterLund UniversityLundSweden
| | - Marcus Järås
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Minjun Yang
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| |
Collapse
|
13
|
Abstract
Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.
Collapse
|
14
|
Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH, Wargolet AJ, Meyer AE, Pulakanti K, Viny AD, Loppnow JJ, Levine RL, Pulikkan JA, Zhu N, Rao S. DOT1L inhibitors block abnormal self-renewal induced by cohesin loss. Sci Rep 2021; 11:7288. [PMID: 33790356 PMCID: PMC8012605 DOI: 10.1038/s41598-021-86646-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph B Fisher
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Cary T Stelloh
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily Phillips
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael H Reimer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adam J Wargolet
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica J Loppnow
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Anto Pulikkan
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Agrawal P, Rao S. Super-Enhancers and CTCF in Early Embryonic Cell Fate Decisions. Front Cell Dev Biol 2021; 9:653669. [PMID: 33842482 PMCID: PMC8027350 DOI: 10.3389/fcell.2021.653669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell fate decisions are the backbone of many developmental and disease processes. In early mammalian development, precise gene expression changes underly the rapid division of a single cell that leads to the embryo and are critically dependent on autonomous cell changes in gene expression. To understand how these lineage specifications events are mediated, scientists have had to look past protein coding genes to the cis regulatory elements (CREs), including enhancers and insulators, that modulate gene expression. One class of enhancers, termed super-enhancers, is highly active and cell-type specific, implying their critical role in modulating cell-type specific gene expression. Deletion or mutations within these CREs adversely affect gene expression and development and can cause disease. In this mini-review we discuss recent studies describing the potential roles of two CREs, enhancers and binding sites for CTCF, in early mammalian development.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
16
|
Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021; 23:337-347. [PMID: 33621854 PMCID: PMC7905235 DOI: 10.1016/j.neo.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) affects tens of thousands of patients a year, yet survival rates are as low as 25% in certain populations. This poor survival rate is partially due to the vast genetic diversity of the disease. Rarely do 2 patients with AML have the same mutational profile, which makes the development of targeted therapies particularly challenging. However, a set of recurrent mutations in chromatin modifiers have been identified in many patients, including mutations in the cohesin complex, which have been identified in up to 20% of cases. Interestingly, the canonical function of the cohesin complex in establishing sister chromatid cohesin during mitosis is unlikely to be the affected role in leukemogenesis. Instead, the cohesin complex's role in DNA looping and gene regulation likely facilitates disease. The epigenetic mechanisms by which cohesin complex mutations promote leukemia are not completely elucidated, but alterations of enhancer-promoter interactions and differential histone modifications have been shown to drive oncogenic gene expression changes. Such changes commonly include HoxA upregulation, which may represent a common pathway that could be therapeutically targeted. As cohesin mutations rarely occur alone, examining the impact of common co-occurring mutations, including those in NPM1, the core-binding factor complex, FLT3, and ASXL1, will yield additional insight. While further study of these mutational interactions is required, current research suggests that the use of combinatorial genetics could be the key to uncovering new targets, allowing for the treatment of AML patients based on their individual genetic profiles.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Puja Agrawal
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Carico ZM, Stefan HC, Justice M, Yimit A, Dowen JM. A cohesin cancer mutation reveals a role for the hinge domain in genome organization and gene expression. PLoS Genet 2021; 17:e1009435. [PMID: 33760811 PMCID: PMC7990204 DOI: 10.1371/journal.pgen.1009435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The cohesin complex spatially organizes interphase chromatin by bringing distal genomic loci into close physical proximity, looping out the intervening DNA. Mutation of cohesin complex subunits is observed in cancer and developmental disorders, but the mechanisms through which these mutations may contribute to disease remain poorly understood. Here, we investigate a recurrent missense mutation to the hinge domain of the cohesin subunit SMC1A, observed in acute myeloid leukemia. Engineering this mutation into murine embryonic stem cells caused widespread changes in gene expression, including dysregulation of the pluripotency gene expression program. This mutation reduced cohesin levels at promoters and enhancers, decreased DNA loops and interactions across short genomic distances, and weakened insulation at CTCF-mediated DNA loops. These findings provide insight into how altered cohesin function contributes to disease and identify a requirement for the cohesin hinge domain in three-dimensional chromatin structure.
Collapse
Affiliation(s)
- Zachary M. Carico
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Holden C. Stefan
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Megan Justice
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Askar Yimit
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jill M. Dowen
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
18
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
19
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
20
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
21
|
Smith JS, Lappin KM, Craig SG, Liberante FG, Crean CM, McDade SS, Thompson A, Mills KI, Savage KI. Chronic loss of STAG2 leads to altered chromatin structure contributing to de-regulated transcription in AML. J Transl Med 2020; 18:339. [PMID: 32883299 PMCID: PMC7469420 DOI: 10.1186/s12967-020-02500-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background The cohesin complex plays a major role in folding the human genome into 3D structural domains. Mutations in members of the cohesin complex are known early drivers of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), with STAG2 the most frequently mutated complex member. Methods Here we use functional genomics (RNA-seq, ChIP-seq and HiChIP) to investigate the impact of chronic STAG2 loss on three-dimensional genome structure and transcriptional programming in a clinically relevant model of chronic STAG2 loss. Results The chronic loss of STAG2 led to loss of smaller loop domains and the maintenance/formation of large domains that, in turn, led to altered genome compartmentalisation. These changes in genome structure resulted in altered gene expression, including deregulation of the HOXA locus and the MAPK signalling pathway, resulting in increased sensitivity to MEK inhibition. Conclusions The altered genomic architecture driven by the chronic loss of STAG2 results in altered gene expression that may contribute to leukaemogenesis and may be therapeutically targeted.
Collapse
Affiliation(s)
- James S Smith
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Katrina M Lappin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Stephanie G Craig
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Fabio G Liberante
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.,Wellcome Sanger Institute, Cambridge, UK
| | - Clare M Crean
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK
| | - Alexander Thompson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.,Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.
| | - Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland, UK.
| |
Collapse
|
22
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
23
|
|
24
|
Wurm AA, Pina C. Long Non-coding RNAs as Functional and Structural Chromatin Modulators in Acute Myeloid Leukemia. Front Oncol 2019; 9:899. [PMID: 31572684 PMCID: PMC6749032 DOI: 10.3389/fonc.2019.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia is a hematopoietic neoplasm of dismal prognosis that results from the accumulation of immature myeloid blasts in the bone marrow and the peripheral blood. It is strongly dependent on epigenetic regulation for disease onset, maintenance and in response to treatment. Epigenetic regulation refers to the multiple chemical modifications of DNA or DNA-associated proteins that alter chromatin structure and DNA accessibility in a heritable manner, without changing DNA sequence. Unlike sequence-specific transcription factors, epigenetic regulators do not necessarily bind DNA at consensus sequences, but still achieve reproducible target binding in a manner that is cell and maturation-type specific. A growing body of evidence indicates that epigenetic regulators rely, amongst other factors, on their interaction with untranslated RNA molecules for guidance to particular targets on DNA. Non (protein)-coding RNAs are the most abundant transcriptional products of the coding genome, and comprise several different classes of molecules with unique lengths, conformations and targets. Amongst these, long non-coding RNAs (lncRNAs) are species of 200 bp to >100 K bp in length, that recognize, and bind unique and largely uncharacterized DNA conformations. Some have been shown to bind epigenetic regulators, and thus constitute attractive candidates to mediate epigenetic target specificity. Herein, we postulate that lncRNAs are central players in the unique epigenetic programming of AML and review recent evidence in support of this view. We discuss the value of lncRNAs as putative diagnostic, prognostic and therapeutic targets in myeloid leukemias and indicate novel directions in this exciting research field.
Collapse
Affiliation(s)
- Alexander A Wurm
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Cristina Pina
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Romero-Pérez L, Surdez D, Brunet E, Delattre O, Grünewald TGP. STAG Mutations in Cancer. Trends Cancer 2019; 5:506-520. [PMID: 31421907 DOI: 10.1016/j.trecan.2019.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
Stromal Antigen 1 and 2 (STAG1/2) are key subunits of the cohesin complex that mediate sister chromatid cohesion, DNA repair, transcriptional regulation, and genome topology. Genetic alterations comprising any of the 11 cohesin-associated genes possibly occur in up to 26% of patients included in The Cancer Genome Atlas (TCGA) studies. STAG2 shows the highest number of putative driver truncating mutations. We provide a comprehensive review of the function of STAG1/2 in human physiology and disease and an integrative analysis of available omics data on STAG alterations in a wide array of cancers, comprising 53 691 patients and 1067 cell lines. Lastly, we discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, Munich, Germany
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC "Genetics and Biology of Pediatric Cancers", fhna PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Erika Brunet
- Institut Imagine, INSERM UMR1163, Équipe Labellisé LNCC, Dynamics of the Genome and Immune System Lab, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC "Genetics and Biology of Pediatric Cancers", fhna PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, Munich, Germany; Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Abstract
We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints- entanglement and supercoiling-impact physical and mechanical responses. Models for protein-DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein-DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.
Collapse
|
27
|
Dvořák M, Dvořáková M. Genes and Mechanisms Responsible for Expansion of Acute Myeloid Leukaemia Blasts. Folia Biol (Praha) 2019; 65:11-23. [PMID: 31171078 DOI: 10.14712/fb2019065010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Acute myeloid leukaemia (AML) is the leading form of fatal acute leukaemia in adults. AML is a heterogeneous disease with respect to responsible mutations and chromosomal abnormalities as well as to their clinicopathological image. In recent years, great progress has been made in techniques allowing detection of genetic changes in both de novo AML and in secondary AML induced by other haematological disorders or therapy, and in detection of residual disease after therapy. Accumulated knowledge allowed better understanding of the molecules and mechanisms involved not only in the formation and expansion of a primary leukaemia-founding clone, but also of a temporal order of changes leading to the fully malignant phenotype. The recent knowledge of bone marrow (BM) compartments and interrelations among various BM resident and recruited cell types helps in understanding the AML development. The progress in the techniques and knowledge will result in the development and use of molecularly targeted therapies tailored to individual patient needs.
Collapse
Affiliation(s)
- M Dvořák
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - M Dvořáková
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|
28
|
Kraft B, Lombard J, Kirsch M, Wuchter P, Bugert P, Hielscher T, Blank N, Krämer A. SMC3 protein levels impact on karyotype and outcome in acute myeloid leukemia. Leukemia 2018; 33:795-799. [PMID: 30323357 DOI: 10.1038/s41375-018-0287-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Jan Lombard
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Michael Kirsch
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Mannheim, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Mannheim, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norbert Blank
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany. .,Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Maher M, Diesch J, Casquero R, Buschbeck M. Epigenetic-Transcriptional Regulation of Fatty Acid Metabolism and Its Alterations in Leukaemia. Front Genet 2018; 9:405. [PMID: 30319689 PMCID: PMC6165860 DOI: 10.3389/fgene.2018.00405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
In recent years fatty acid metabolism has gained greater attention in haematologic cancers such as acute myeloid leukaemia. The oxidation of fatty acids provides fuel in the form of ATP and NADH, while fatty acid synthesis provides building blocks for cellular structures. Here, we will discuss how leukaemic cells differ from healthy cells in their increased reliance on fatty acid metabolism. In order to understand how these changes are achieved, we describe the main pathways regulating fatty acid metabolism at the transcriptional level and highlight the limited knowledge about related epigenetic mechanisms. We explore these mechanisms in the context of leukaemia and consider the relevance of the bone marrow microenvironment in disease management. Finally, we discuss efforts to interfere with fatty acid metabolism as a therapeutic strategy along with the use of metabolic parameters as biomarkers.
Collapse
Affiliation(s)
- Michael Maher
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeannine Diesch
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Casquero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
30
|
Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol 2018; 101:260-271. [PMID: 29742289 DOI: 10.1111/ejh.13092] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) comprise a diverse group of clonal and malignant myeloid disorders characterized by ineffective hematopoiesis, resultant peripheral cytopenias, and a meaningful increased risk of progression to acute myeloid leukemia. A wide array of recurring genetic mutations involved in RNA splicing, histone manipulation, DNA methylation, transcription factors, kinase signaling, DNA repair, cohesin proteins, and other signal transduction elements has been identified as important substrates for the development of MDS. Cytogenetic abnormalities, namely those characterized by loss of genetic material (including 5q- and 7q-), have also been strongly implicated and may influence the clonal architecture which predicts such mutations and may provoke an inflammatory bone marrow microenvironment as the substrate for clonal expansion. Other aspects of the molecular pathogenesis of MDS continue to be further elucidated, predicated upon advances in gene expression profiling and the development of new, and improved high-throughput techniques. More accurate understanding of the genetic and molecular basis for the development of MDS directly provides additional opportunity for treatment, which to date remains limited. In this comprehensive review, we examine the current understanding of the molecular pathogenesis and pathophysiology of MDS, as well as review future prospects which may enhance this understanding, treatment strategies, and hopefully outcomes.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Rami Ahmad
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Liu Y, Xu H, Van der Jeught K, Li Y, Liu S, Zhang L, Fang Y, Zhang X, Radovich M, Schneider BP, He X, Huang C, Zhang C, Wan J, Ji G, Lu X. Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer. J Clin Invest 2018; 128:2951-2965. [PMID: 29649003 PMCID: PMC6025969 DOI: 10.1172/jci98727] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/10/2018] [Indexed: 12/30/2022] Open
Abstract
A synthetic lethality-based strategy has been developed to identify therapeutic targets in cancer harboring tumor-suppressor gene mutations, as exemplified by the effectiveness of poly ADP-ribose polymerase (PARP) inhibitors in BRCA1/2-mutated tumors. However, many synthetic lethal interactors are less reliable due to the fact that such genes usually do not perform fundamental or indispensable functions in the cell. Here, we developed an approach to identifying the "essential lethality" arising from these mutated/deleted essential genes, which are largely tolerated in cancer cells due to genetic redundancy. We uncovered the cohesion subunit SA1 as a putative synthetic-essential target in cancers carrying inactivating mutations of its paralog, SA2. In SA2-deficient Ewing sarcoma and bladder cancer, further depletion of SA1 profoundly and specifically suppressed cancer cell proliferation, survival, and tumorigenic potential. Mechanistically, inhibition of SA1 in the SA2-mutated cells led to premature chromatid separation, dramatic extension of mitotic duration, and consequently, lethal failure of cell division. More importantly, depletion of SA1 rendered those SA2-mutated cells more susceptible to DNA damage, especially double-strand breaks (DSBs), due to reduced functionality of DNA repair. Furthermore, inhibition of SA1 sensitized the SA2-deficient cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with SA2-deficient tumors.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/chemistry
- Antigens, Nuclear/genetics
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- DNA Breaks, Double-Stranded
- Female
- Gene Knockdown Techniques
- Genes, Essential
- Humans
- Mice
- Mice, Nude
- Mutation
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Phthalazines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Xenograft Model Antitumor Assays
- Cohesins
Collapse
Affiliation(s)
- Yunhua Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
- Indiana University Melvin and Bren Simon Cancer Center
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
| | - Kevin Van der Jeught
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
| | - Yujing Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
| | - Sheng Liu
- Department of Medical and Molecular Genetics
| | - Lu Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
| | - Yuanzhang Fang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
| | - Xinna Zhang
- Department of Medical and Molecular Genetics
- Indiana University Melvin and Bren Simon Cancer Center
| | - Milan Radovich
- Department of Medical and Molecular Genetics
- Indiana University Melvin and Bren Simon Cancer Center
- Department of Surgery, and
| | - Bryan P. Schneider
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoming He
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Martha and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chi Zhang
- Department of Medical and Molecular Genetics
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Medical and Molecular Genetics
- Indiana University Melvin and Bren Simon Cancer Center
| |
Collapse
|
32
|
Meyer AE, Rao S, Fisher JB. Cohesin mutations: contributors to myeloid malignancies. Oncotarget 2017; 8:80107-80108. [PMID: 29113287 PMCID: PMC5655182 DOI: 10.18632/oncotarget.21050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/16/2017] [Indexed: 01/22/2023] Open
Affiliation(s)
- Alison E Meyer
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Sridhar Rao
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Joseph B Fisher
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| |
Collapse
|
33
|
Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, Huang SC, Mckinnon PJ, Aplan PD, Pommier Y, Aiden EL, Casellas R, Nussenzweig A. Genome Organization Drives Chromosome Fragility. Cell 2017; 170:507-521.e18. [PMID: 28735753 PMCID: PMC6133249 DOI: 10.1016/j.cell.2017.06.034] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/22/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seolkyoung Jung
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Aleksandra Pekowska
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Chen Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Aplan
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|