1
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Malakpour-Permlid A, Rodriguez MM, Untracht GR, Andersen PE, Oredsson S, Boisen A, Zór K. High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response. Toxicol Rep 2025; 14:101863. [PMID: 39758801 PMCID: PMC11699757 DOI: 10.1016/j.toxrep.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate in vivo cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop in vivo mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks. These models, based on human HeLa cervical cancer cells and cancer-associated fibroblasts (CAFs) cultured as mono- or co-cultures within the 3D scaffolds, revealed that anticancer drug paclitaxel (PTX) exhibited consistently higher inhibitory concentration 50 (IC50) in 3D (≥ 1000 nM) compared to 2D (≥ 100 nM), indicating reduced toxicity on cells cultured in 3D. Interestingly, the toxicity of PTX was significantly lower on mini-tumors in non-homogenous 3D (IC50: 600 or 1000 nM) than in homogenous 3D cultures (IC50 exceeding 1000 nM). Microscopic studies revealed that the non-homogenous scaffolds closely resemble the tumor collagen network than their homogeneous counterpart. Both 3D scaffolds offer optimal pore size, facilitating efficient cell infiltration into the depth of 58.1 ± 1.2 µm (homogenous) and 86.4 ± 9.8 µm (non-homogenous) within 3D cultures. Cells cultured in the 3D non-homogenous systems exhibited drug treatment responses closer to in vivo conditions, highlighting the role of scaffold structure and design on cellular response to drug treatment. The PCL-based 3D models provide a robust, tunable, and efficient approach for the HTS of anti-cancer drugs compared to conventional 2D systems.
Collapse
Affiliation(s)
- Atena Malakpour-Permlid
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Manuel Marcos Rodriguez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gavrielle R. Untracht
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter E. Andersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
- Innovation Acta S.r.l., Siena, Via delle 1-53100, Italy
| |
Collapse
|
3
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Elbeltagi S, Madkhali N, Alharbi HM, Eldin ZE. MXene-encapsulated ZIF-8@Liposomes for NIR-enhanced photothermal therapy in hepatocellular carcinoma treatment: In vitro, in vivo, and in silico study. Arch Biochem Biophys 2025; 764:110256. [PMID: 39638142 DOI: 10.1016/j.abb.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Photothermal therapy (PTT) utilizes near-infrared (NIR) light to enhance localized, non-invasive cancer treatments and drug delivery systems (DDS). Combination chemotherapy with PTT (chemo-PTT) offers multiple therapeutic advantages, involving synergistic effects, reduced side effects, and decreased drug toxicity. In this study, 2D titanium carbide (Ti3C2Tx) MXene nanosheets were encapsulated in a zeolitic imidazolate framework-8 (ZIF-8) to form (MX-ZIF-8) nanoparticles (NPs) for PTT applications. Sorafenib (SB), an anticancer drug was loaded onto MX-ZIF-8 and further modified with a liposomes (LPs) lipid bilayer to create (SB-MX-ZIF-8@LPs) nanocomposites. TEM imaging revealed that SB-MX-ZIF-8@LPs had a lamellar structure and spherical shape, with an average diameter of 75.2 nm and a zeta potential (ZP) of -8.4 ± 4.5 mV. Additionally, the PT stability, drug encapsulation, and in-vitro release kinetics of SB-MX-ZIF-8@LPs were assessed. These nanocomposites exhibited an impressive PT conversion efficiency of 55 % at 50 μg/mL under NIR irradiation. The cumulative release of SB from SB-MX-ZIF-8@LPs reached 86.15 % at pH 7.4 and 89.3 % at pH 4.8 under NIR over a period of 72 h, with an encapsulation efficiency of 87.34 %. MTT assays revealed strong cytotoxicity against HepG2 cells, with SB-MX-ZIF-8@LPs showing an IC50 value of 2.7 μg/mL and inducing approximately 96 % total apoptosis. The SB-MX-ZIF-8@lip nanocomposite demonstrated excellent biological stability in a serum environment, retaining over 98 % of sorafenib and maintaining consistent particle size (∼347 nm) over 30 days. An in vivo xenograft study in BALB/c mice further demonstrated the efficacy of SB-MX-ZIF-8@LPs, with this treatment group showing the smallest tumor volume compared to other groups and a significantly higher tumor volume reduction than SB alone. Molecular docking studies indicated that SB exhibited strong binding affinities particularly with ABL1 (-8.7 kcal/mol) and EGFR (-9.3 kcal/mol). Docking interactions between MXene and SB, conducted using the Hdock Server, resulted in a docking score of -10.53, with one bond forming at a distance of 4 Å. These findings were consistent with experimental results, highlighting the favorable interaction between MXene and SB. ADMET analysis confirmed that MX-ZIF-8@LPs possessed favorable drug carrier properties, including high intestinal absorption (96.6 %), and low toxicity supporting its potential as an effective DDS for cancer therapy.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt.
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh, 11623, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578, Giza, Egypt; Faculty of Postgraduate Studies for Advanced Sciences, Material Science and Nanotechnology Department, (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
5
|
Zhang H, Wang J, Wu H, Wang Y, Zhang S, Sun J, He Z, Luo C. On-Site Self-Penetrating Nanomedicine Enabling Dual-Priming Drug Activation and Inside-Out Thrombus Ablation. ACS NANO 2024; 18:34683-34697. [PMID: 39665339 DOI: 10.1021/acsnano.4c09986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Main conventional antithrombotic therapies often suffer from unsatisfactory treatment outcomes and the risk of undesirable tissue hemorrhage. Deep clot penetration, on-demand drug activation, and release within the clots remain significant challenges. While past efforts to develop nanomedicines and prodrugs have improved safety at the expense of therapeutic effects. Herein, we develop a self-piercing and self-activating nanoassembly composed of an oxidation-sensitive prodrug (TGL-S-Fmoc, TSF) of ticagrelor (TGL) and IR808 (a photothermal/photodynamic dual-effect photosensitizer). TSF readily coassembles with IR808 into a carrier-free hybrid nanomedicine. Upon laser irradiation, IR808 enables photothermal thrombolysis and deep clot penetration of TSF while also synergistically facilitating prodrug activation triggered by IR808-generated singlet oxygen (1O2) and the endogenous hydrogen peroxide within the clots. Following fibrin-targeting modification, the nanoassembly achieves self-indicating thrombus-targeted accumulation, self-piercing deep clot penetration, dual-priming prodrug activation, and inside-out thrombus ablation with favorable safety in vivo. This study advances the clinical translation of antithrombotic prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haonan Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Feng T, Hu J, Wen J, Qian Z, Che G, Zhou Q, Zhu L. Personalized nanovaccines for treating solid cancer metastases. J Hematol Oncol 2024; 17:115. [PMID: 39609851 PMCID: PMC11603676 DOI: 10.1186/s13045-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration. Such vaccine-like nanomedicines have the ability to eradicate the primary tumors as well as to prevent or eliminate metastases. This review examines state-of-the-art nanocarriers developed to deliver tumor vaccines to metastases, including synthetic, semi-biogenic, and biogenic nanosystems. Moreover, it highlights the physical and pharmacological properties that enhance their anti-metastasis efficiency. This review also addresses the combination of nanovaccines with cancer immunotherapy to target various steps in the metastatic cascade, drawing insights from preclinical and clinical studies. The review concludes with a critical analysis of the challenges and frameworks linked to the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Tang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Hu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Zhang X, Lou X, Qiao H, Jiang Z, Sun H, Shi X, He Z, Sun J, Sun M. Supramolecular self-sensitized dual-drug nanoassemblies potentiating chemo-photodynamic therapy for effective cancer treatment. Int J Pharm 2024; 662:124496. [PMID: 39033943 DOI: 10.1016/j.ijpharm.2024.124496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (∼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.
Collapse
Affiliation(s)
- Xu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xinyu Lou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Han Qiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhouyu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hang Sun
- Hong Kong Education University, Hong Kong SAR, 999077, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
8
|
Yang F, Li S, Ji Q, Zhang H, Zhou M, Wang Y, Zhang S, Sun J, He Z, Luo C. Modular Prodrug-Engineered Oxygen Nano-Tank With Outstanding Nanoassembly Performance, High Oxygen Loading, and Closed-Loop Tumor Hypoxia Relief. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405583. [PMID: 38984484 PMCID: PMC11425644 DOI: 10.1002/advs.202405583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The clinical translation of tumor hypoxia intervention modalities still falls short of expectation, restricted by poor biocompatibility of oxygen-carrying materials, unsatisfactory oxygen loading performance, and abnormally high cellular oxygen consumption-caused insufficient hypoxia relief. Herein, a carrier-free oxygen nano-tank based on modular fluorination prodrug design and co-assembly nanotechnology is elaborately exploited, which is facilely fabricated through the molecular nanoassembly of a fluorinated prodrug (FSSP) of pyropheophorbide a (PPa) and an oxygen consumption inhibitor (atovaquone, ATO). The nano-tank adeptly achieves sufficient oxygen enrichment while simultaneously suppressing oxygen consumption within tumors for complete tumor hypoxia alleviation. Significant, the fluorination module in FSSP not only confers favorable co-assemblage of FSSP and ATO, but also empowers the nanoassembly to readily carry oxygen. As expected, it displays excellent oxygen carrying capacity, favorable pharmacokinetics, on-demand laser-triggerable ATO release, closed-loop tumor hypoxia relief, and significant enhancement to PPa-mediated PDT in vitro and in vivo. This study provides a novel nanotherapeutic paradigm for tumor hypoxia intervention-enhanced cancer therapy.
Collapse
Affiliation(s)
- Fujun Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shumeng Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Qingyu Ji
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
9
|
Lin Z, Wang Y, Li W, Sun F, Lv Q, Zhang S, Liu X, Qin F, Luo C. A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy. Asian J Pharm Sci 2024; 19:100892. [PMID: 39246509 PMCID: PMC11374962 DOI: 10.1016/j.ajps.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 09/10/2024] Open
Abstract
Small-molecule prodrug nanoassembly technology with a unique advantage in off-target toxicity reduction has been widely used for antitumor drug delivery. However, prodrug activation remains a rate-limiting step for exerting therapeutic actions, which requires to quickly reach the minimum valid concentrations of free drugs. Fortunately, we find that a natural compound (BL-193) selectively improves the chemotherapy sensitivity of breast cancer cells to podophyllotoxin (PPT) at ineffective dose concentrations. Based on this, we propose to combine prodrug nanoassembly with chemotherapy sensitization to fully unleash the chemotherapeutic potential of PPT. Specifically, a redox-sensitive prodrug (PSSF) of PPT is synthesized by coupling 9-fluorenyl-methanol (Fmoc-OH) with PPT linked via disulfide bond. Intriguingly, PSSF with a π-conjugated structure readily co-assembles with BL-193 into stable nanoassembly. Significantly, BL-193 serves as an excellent chemosensitizer that creates an ultra-low-dose chemotherapeutic window for PPT. Moreover, prodrug design and precise hybrid nanoassembly well manage off-target toxicity. As expected, such a BL-193-empowered prodrug nanoassembly elicits potent antitumor responses. This study offers a novel paradigm to magnify chemotherapy efficacy-toxicity benefits.
Collapse
Affiliation(s)
- Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenwen Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Wang Y, Wang Y, Liu Y, Zhou M, Shi X, Pu X, He Z, Zhang S, Qin F, Luo C. Small molecule-engineered nanoassembly for lipid peroxidation-amplified photodynamic therapy. Drug Deliv Transl Res 2024; 14:1860-1871. [PMID: 38082030 DOI: 10.1007/s13346-023-01490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 06/06/2024]
Abstract
Photodynamic therapy (PDT), extensively explored as a non-invasive and spatio-temporal therapeutic modality for cancer treatment, encounters challenges related to the brief half-life and limited diffusion range of singlet oxygen. Lipid peroxides, formed through the oxidation of polyunsaturated fatty acids by singlet oxygen, exhibit prolonged half-life and potent cytotoxicity. Herein, we employed small molecule co-assembly technology to create nanoassemblies of pyropheophorbide a (PPa) and docosahexaenoic acid (DHA) to bolster PDT. DHA, an essential polyunsaturated fatty acid, co-assembled with PPa to generate nanoparticles (PPa@DHA NPs) without the need for additional excipients. To enhance the stability of these nanoassemblies, we introduced 20% DSPE-PEG2k as a stabilizing agent, leading to the formation of PPa@DHA PEG2k NPs. Upon laser irradiation, PPa-produced singlet oxygen swiftly oxidized DHA, resulting in the generation of cytotoxic lipid peroxides. This process significantly augmented the therapeutic efficiency of PDT. Consequently, tumor growth was markedly suppressed, attributed to the sensitizing and amplifying impact of DHA on PDT in a 4T1 tumor-bearing mouse model. In summary, this molecule-engineered nanoassembly introduces an innovative co-delivery approach to enhance PDT with polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Feng Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
11
|
Cai Q, He Y, Zhou Y, Zheng J, Deng J. Nanomaterial-Based Strategies for Preventing Tumor Metastasis by Interrupting the Metastatic Biological Processes. Adv Healthc Mater 2024; 13:e2303543. [PMID: 38411537 DOI: 10.1002/adhm.202303543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related deaths. The prevention of tumor metastasis has garnered notable interest and interrupting metastatic biological processes is considered a potential strategy for preventing tumor metastasis. The tumor microenvironment (TME), circulating tumor cells (CTCs), and premetastatic niche (PMN) play crucial roles in metastatic biological processes. These processes can be interrupted using nanomaterials due to their excellent physicochemical properties. However, most studies have focused on only one aspect of tumor metastasis. Here, the hypothesis that nanomaterials can be used to target metastatic biological processes and explore strategies to prevent tumor metastasis is highlighted. First, the metastatic biological processes and strategies involving nanomaterials acting on the TME, CTCs, and PMN to prevent tumor metastasis are briefly summarized. Further, the current challenges and prospects of nanomaterials in preventing tumor metastasis by interrupting metastatic biological processes are discussed. Nanomaterial-and multifunctional nanomaterial-based strategies for preventing tumor metastasis are advantageous for the long-term fight against tumor metastasis and their continued exploration will facilitate rapid progress in the prevention, diagnosis, and treatment of tumor metastasis. Novel perspectives are outlined for developing more effective strategies to prevent tumor metastasis, thereby improving the outcomes of patients with cancer.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yijia He
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
12
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
13
|
Kuang Y, Li Z, Chen H, Wang X, Wen Y, Chen J. Advances in self-assembled nanotechnology in tumor therapy. Colloids Surf B Biointerfaces 2024; 237:113838. [PMID: 38484445 DOI: 10.1016/j.colsurfb.2024.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
The emergence of nanotechnology has opened up a new way for tumor therapy. Among them, self-assembled nanotechnology has received extensive attention in medicine due to its simple preparation process, high drug-loading capacity, low toxicity, and low cost. This review mainly summarizes the preparation methods of self-assembled nano-delivery systems, as well as the self-assembled mechanism of carrier-free nanomedicine, polymer-carried nanomedicine, polypeptide, and metal drugs, and their applications in tumor therapy. In addition, we discuss the advantages and disadvantages, future challenges, and opportunities of these self-assembled nanomedicines, which provide important references for the development and application of self-assembled nanotechnology in the field of medical therapy.
Collapse
Affiliation(s)
- Yanting Kuang
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia 010059, China
| | - Zhaokai Li
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia 010059, China
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai 201707, China
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai 200003, China.
| | - Jianming Chen
- Inner Mongolia Medical University, No. 5, Xinhua Road, Hohhot, Inner Mongolia 010059, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| |
Collapse
|
14
|
Zhang X, Wang K, Zhao Z, Shan X, Wang Y, Feng Z, Li B, Luo C, Chen X, Sun J. Self-Adjuvanting Polyguanidine Nanovaccines for Cancer Immunotherapy. ACS NANO 2024; 18:7136-7147. [PMID: 38407021 DOI: 10.1021/acsnano.3c11637] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Tapping into the innate immune system's power, nanovaccines can induce tumor-specific immune responses, which is a promising strategy in cancer immunotherapy. However, traditional vaccine design, requiring simultaneous loading of antigens and adjuvants, is complex and poses challenges for mass production. Here, we developed a tumor nanovaccine platform that integrates adjuvant functions into the delivery vehicle, using branched polyguanidine (PolyGu) nanovaccines. These nanovaccines were produced by modifying polyethylenimine (PEI) with various guanidine groups, transforming PEI's cytotoxicity into innate immune activation. The PolyGu nanovaccines based on poly(phenyl biguanidine ) (Poly-PBG) effectively stimulated dendritic cells, promoted their maturation via the TLR4 and NLRP3 pathways, and displayed robust in vivo immune activity. They significantly inhibited tumor growth and extended mouse survival. The PolyGu also showed promise for constructing more potent mRNA-based nanovaccines, offering a platform for personalized cancer vaccine. This work advances cancer immunotherapy toward potential clinical application by introducing a paradigm for developing self-adjuvanting nanovaccines.
Collapse
Affiliation(s)
- Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zunyong Feng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Bingyu Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
15
|
Zhu L, Wu J, Gao H, Wang T, Xiao G, Hu C, Lin Q, Zhou Q. Tumor immune microenvironment-modulated nanostrategy for the treatment of lung cancer metastasis. Chin Med J (Engl) 2023; 136:2787-2801. [PMID: 37442772 PMCID: PMC10686602 DOI: 10.1097/cm9.0000000000002525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT As one of the most malignant tumors worldwide, lung cancer, fueled by metastasis, has shown rising mortality rates. However, effective clinical strategies aimed at preventing metastasis are lacking owing to its dynamic multi-step, complicated, and progressive nature. Immunotherapy has shown promise in treating cancer metastasis by reversing the immunosuppressive network of the tumor microenvironment. However, drug resistance inevitably develops due to inadequate delivery of immunostimulants and an uncontrolled immune response. Consequently, adverse effects occur, such as autoimmunity, from the non-specific immune activation and non-specific inflammation in off-target organs. Nanocarriers that improve drug solubility, permeability, stability, bioavailability, as well as sustained, controlled, and targeted delivery can effectively overcome drug resistance and enhance the therapeutic effect while reducing adverse effects. In particular, nanomedicine-based immunotherapy can be utilized to target tumor metastasis, presenting a promising therapeutic strategy for lung cancer. Nanotechnology strategies that boost the immunotherapy effect are classified based on the metastatic cascade related to the tumor immune microenvironment; the breaking away of primary tumors, circulating tumor cell dissemination, and premetastatic niche formation cause distant secondary site colonization. In this review, we focus on the opportunities and challenges of integrating immunotherapy with nanoparticle formulation to establish nanotechnology-based immunotherapy by modulating the tumor microenvironment for preclinical and clinical applications in the management of patients with metastatic lung cancer. We also discuss prospects for the emerging field and the clinical translation potential of these techniques.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honglin Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Wang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Guixiu Xiao
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Li S, Yang F, Wang Y, Jia L, Hou X. Self-reported and self-facilitated theranostic oxygen nano-economizer for precise and hypoxia alleviation-potentiated photodynamic therapy. MATERIALS HORIZONS 2023; 10:5734-5752. [PMID: 37807765 DOI: 10.1039/d3mh01244a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for cancer treatment by virtue of singlet oxygen-induced oxidative damage to tumors. Nevertheless, the therapeutic efficiency of PDT is still limited by the low singlet oxygen yield attributed to the improper irradiation duration and the tumor hypoxic microenvironment. To tackle these challenges, we elaborately design a theranostic oxygen nano-economizer to self-report the optimal irradiation duration and alleviate tumor hypoxia simultaneously, which is engineered by fluorescent 9,10-anthracenyl bis (benzoic acid) (DPA)-MOF, tetrakis (4-carboxyphenyl) porphyrin (TCPP), triphenyl phosphine (TPP) and redox-responsive lipid-PEG (DSPE-SS-PEG2k). Upon laser irradiation, the fluorescence of DPA-MOF could be quenched, thereby self-reporting the optimal irradiation duration for sufficient PDT. The decoration of DSPE-SS-PEG2k and TPP endows the theranostic oxygen nano-economizer with a tumor-specific response and mitochondrial targeting capability, respectively. Notably, singlet oxygen generated from TCPP reduces oxygen consumption by disrupting the entire oxidative phosphorylation (OXPHOS) pathway in the mitochondria of tumor cells, further improving the level of singlet oxygen in a self-facilitated manner for hypoxia alleviation-potentiated PDT. As expected, such a self-reported and self-facilitated theranostic oxygen nano-economizer exhibits potent antitumor activity in the 4T1 tumor-bearing mouse model. This study offers a theranostic paradigm for precise and hypoxia alleviation-potentiated cancer therapy.
Collapse
Affiliation(s)
- Shumeng Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Fujun Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yongdan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Linshan Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, P. R. China.
| |
Collapse
|
17
|
Lei J, Zhang S, Wu Z, Sun X, Zhou B, Huang P, Fang M, Li L, Luo C, He Z. Self-engineered binary nanoassembly enabling closed-loop glutathione depletion-amplified tumor ferroptosis. Biomater Sci 2023; 11:7373-7386. [PMID: 37791561 DOI: 10.1039/d3bm01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Ferroptosis has emerged as a promising target for anticancer treatment, comprising iron-dependent lipid peroxidation and excessive accumulation of reactive oxygen species. Given that glutathione (GSH) overproduced in tumor cells antagonizes the cellular oxidation system, the reduction of GSH production has been extensively explored to induce ferroptosis. However, reducing GSH production alone is insufficient to trigger an intense lipid peroxidation storm. It is highly desirable to achieve systemic GSH depletion through simultaneous production and consumption intervention. Herein, we propose a bidirectional blockage strategy for closed-loop GSH depletion-amplified tumor ferroptosis. Sorafenib (Sor) and gambogic acid (GA) were elaborately fabricated as a self-engineered carrier-free nanoassembly without any nanocarrier materials. The PEGylated dual-drug nanoassembly enables favorable co-delivery and tumor-specific release of Sor and GA. Notably, a closed-loop GSH depletion is observed as a result of a Sor-induced decrease in GSH production and GA-accelerated GSH consumption in vitro and in vivo. As expected, this uniquely engineered dual-drug nanoassembly demonstrates vigorous antitumor activity in 4T1 breast tumor-bearing mice. This study presents a novel nanotherapeutic modality for ferroptosis-driven cancer treatment.
Collapse
Affiliation(s)
- Jin Lei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Zehua Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Binghong Zhou
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Mingzhu Fang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing, 401147, China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
18
|
Wang Z, Zhang S, Kong Z, Li S, Sun J, Zheng Y, He Z, Ye H, Luo C. Self-adaptive nanoassembly enabling turn-on hypoxia illumination and periphery/center closed-loop tumor eradication. Cell Rep Med 2023; 4:101014. [PMID: 37075700 PMCID: PMC10140616 DOI: 10.1016/j.xcrm.2023.101014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Solid tumors are regarded as complex evolving systems rather than simple diseases. Self-adaptive synthetic therapeutics are required to cope with the challenges of entire tumors; however, limitations in accurate positioning and destruction of hypoxic niches seriously hinder complete tumor eradication. In this study, we engineer a molecular nanoassembly of sorafenib and a hypoxia-sensitive cyanine probe (CNO) to facilitate periphery/center synergistic cancer therapies. The self-adaptive nanoassembly with cascade drug release features not only effectively kills the peripheral tumor cells in normoxic rims but precisely illuminates hypoxic niches following the reduction of CNO by nitroreductase. More important, CNO is found to synergistically induce tumor ferroptosis with sorafenib via nicotinamide adenine dinucleotide phosphate (NADPH) depletion in hypoxic niches. As expected, the engineered nanoassembly demonstrates self-adaptive hypoxic illumination and periphery/center synergetic tumor eradication in colon and breast cancer BALB/c mouse xenograft models. This study advances turn-on hypoxia illumination and chemo-ferroptosis toward clinical applicability.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092 Zurich, Switzerland.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
19
|
Zhang Y, Wang J, Xing H, Liu C, Li X. Redox-responsive paclitaxel-pentadecanoic acid conjugate encapsulated human serum albumin nanoparticles for cancer therapy. Int J Pharm 2023; 635:122761. [PMID: 36822341 DOI: 10.1016/j.ijpharm.2023.122761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Human serum albumin (HSA) is an important nanocarrier of hydrophobic drugs due to its biocompatibility, bioresorbability, non-immunogenicity and intrinsic targetability. However, HSA/drug nanocomplexes have to experience complicated manufacturing process including multiple high-pressure homogenization and removing organic solvent under reduced pressure condition. Besides, the clinical application of these HSA/drug nanocomplexes is often limited because of their unsatisfactory stability and restricted dose. To overcome these issues, a redox-responsive paclitaxel-pentadecanoic acid prodrug conjugate embedded human serum albumin nanoparticles (NPs) was developed as a model in this report. First, PTX was activated and conjugated with 11-mercaptoundecanoic acid through a disulfide bond. The resultant disulfide bond bridged paclitaxel-pentadecanoic acid conjugate (PTX-SS-C10-COOH) was characterized by NMR and MS. After that, PTX-SS-C10-COOH dissolved in ethanol was mixed with HSA in water followed by lyophilization to generate HSA/PTX-SS-C10-COOH nanoparticles (HPTX NPs). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization indicated that the HPTX NPs have spherical structure with an average diameter of approximately 120 nm. The formation of HSA/PTX-SS-C10-COOH NPs was confirmed by fluorescence quenching technology, ascribed to electrostatic and hydrophobic interactions. The HPTX NPs displayed a highdrug loading of 29.78 % and an entrapment efficiency of 94.16 %. Their reduced responsiveness was validated by glutathione (GSH)-triggered fast release of PTX. The pharmacokinetics, antitumor efficacy and systemic toxicity of HPTX NPs were thoroughly evaluated. The results showed that the HPTX NPs had longer retention, more effective tumor growth inhibition and lower toxicity compared with commercialized Taxol®. Importantly, the HPTX NPs could be administered at much high dose to achieve a significant tumor growth inhibition compared with Abraxane®. Together, the redox-responsive HPTX NPs with high drug loading is a promising strategy to deliver PTX for cancer chemotherapy.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Hanlei Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
20
|
Zhao J, Gao N, Xu J, Zhu X, Ling G, Zhang P. Novel strategies in melanoma treatment using silver nanoparticles. Cancer Lett 2023; 561:216148. [PMID: 36990267 DOI: 10.1016/j.canlet.2023.216148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Melanoma has remarkably gained extensive attention owing to its high morbidity and mortality. Conventional treatment methods still have some problems and defects. Therefore, more and more novel methods and materials have been continuously developed. Silver nanoparticles (AgNPs) have attracted significant interest in the field of cancer research especially for melanoma treatment because of their excellent properties including antioxidant, antiproliferative, anti-inflammatory, antibacterial, antifungal, and antitumor abilities. In this review, the applications of AgNPs in the prevention, diagnosis, and treatment of cutaneous melanoma are mainly introduced. It also focuses on the therapy strategies of photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy for melanoma treatment. Taken together, AgNPs play an increasingly crucial role in cutaneous melanoma treatment, which have promising application in the future.
Collapse
|
21
|
Zhong YT, Cen Y, Xu L, Li SY, Cheng H. Recent Progress in Carrier-Free Nanomedicine for Tumor Phototherapy. Adv Healthc Mater 2023; 12:e2202307. [PMID: 36349844 DOI: 10.1002/adhm.202202307] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective strategies are urgently needed to fight against the life-threatening diseases of various cancers. However, traditional therapeutic modalities, such as radiotherapy, chemotherapy and surgery, exhibit suboptimal efficacy for malignant tumors owing to the serious side effects, drug resistance and even relapse. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are emerging therapeutic strategies for localized tumor inhibition, which can produce a large amount of reactive oxygen species (ROS) or elevate the temperature to initiate cell death by non-invasive irradiation. In consideration of the poor bioavailability of phototherapy agents (PTAs), lots of drug delivery systems have been developed to enhance the tumor targeted delivery. Nevertheless, the carriers of drug delivery systems inevitably bring biosafety concerns on account of their metabolism, degradation, and accumulation. Of note, carrier-free nanomedicine attracts great attention for clinical translation with synergistic antitumor effect, which is characterized by high drug loading, simplified synthetic method and good biocompatibility. In this review, the latest advances of phototherapy with various carrier-free nanomedicines are summarized, which may provide a new paradigm for the future development of nanomedicine and tumor precision therapy.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi Cen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
22
|
Recent Advances in Supramolecular-Macrocycle-Based Nanomaterials in Cancer Treatment. Molecules 2023; 28:molecules28031241. [PMID: 36770907 PMCID: PMC9920387 DOI: 10.3390/molecules28031241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Cancer is a severe threat to human life. Recently, various therapeutic strategies, such as chemotherapy, photodynamic therapy, and combination therapy have been extensively applied in cancer treatment. However, the clinical benefits of these therapeutics still need improvement. In recent years, supramolecular chemistry based on host-guest interactions has attracted increasing attention in biomedical applications to address these issues. In this review, we present the properties of the major macrocyclic molecules and the stimulus-response strategies used for the controlled release of therapeutic agents. Finally, the applications of supramolecular-macrocycle-based nanomaterials in cancer therapy are reviewed, and the existing challenges and prospects are discussed.
Collapse
|
23
|
Liu Y, Wang X, Wang Z, Liao R, Qiu Q, Wang Y, Luo C. Reduction-Responsive Stearyl Alcohol-Cabazitaxel Prodrug Nanoassemblies for Cancer Chemotherapy. Pharmaceutics 2023; 15:262. [PMID: 36678891 PMCID: PMC9864162 DOI: 10.3390/pharmaceutics15010262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Cabazitaxel (CTX) has distinct therapeutic merits for advanced and metastatic cancer. However, the present clinical formulation (Jevtana®) has several defects, especially for undesirable tumor-targeting and serious side effects, greatly limiting the therapeutic efficacy. Small-molecule prodrug-based nanoassemblies integrate the advantages of both prodrug strategy and nanotechnology, emerging as a promising treatment modality. Herein, disulfide bonds with different lengths were employed as linkages to elaborately synthesize three redox-sensitive stearyl alcohol (SAT)-CTX prodrug-based nanoassemblies (SAC NPs, SBC NPs and SGC NPs) for seeking optimal chemotherapeutical treatment. All the prodrug-based nanoassemblies exhibited impressive drug-loading efficiency, superior self-assembly capability and excellent colloidal stability. Interestingly, the drug release behaviors of three prodrug-nanoassemblies in the same reductive environment were different owing to tiny changes in the carbon chain length of disulfide bonds, resulting in disparate cytotoxicity effects, pharmacokinetic outcomes and in vivo antitumor efficacies. Among them, SAC NPs displayed rapid drug release, excellent cytotoxicity, long blood circulation and enhanced tumor accumulation, thus showing strong tumor inhibition in the 4T1-bearing mouse model. Our study shed light on the vital role of connecting bonds in designing high-efficiency, low-toxicity prodrug nanoassemblies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
24
|
Zhang H, Kong Z, Wang Z, Chen Y, Zhang S, Luo C. Molecularly engineering a dual-drug nanoassembly for self-sensitized photodynamic therapy via thioredoxin impairment and glutathione depletion. Drug Deliv 2022; 29:3281-3290. [PMID: 36350255 PMCID: PMC9662020 DOI: 10.1080/10717544.2022.2141920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Photodynamic therapy (PDT) has been extensively investigated as a spatiotemporally noninvasive and controllable modality for cancer treatment. However, the intracellular antioxidant systems mainly consisting of thioredoxin (Trx) and glutathione (GSH) significantly counteract and prevent reactive oxygen species (ROS) accumulation, resulting in a serious loss of PDT efficiency. To address this challenge, we propose that PDT can be improved by precisely blocking antioxidant systems. After molecular engineering and synergistic cytotoxic optimization, a DSPE-PEG2K-modified dual-drug nanoassembly (PPa@GA/DSPE-PEG2K NPs) of pyropheophorbide a (PPa) and gambogic acid (GA) is successfully constructed. Interestingly, GA can effectively destroy intracellular antioxidant systems by simultaneously inhibiting Trx and GSH. Under laser irradiation, the cell-killing effects of PPa is significantly enhanced by GA-induced inhibition of the antioxidant systems. As expected, PPa@GA/DSPE-PEG2K nanoparticles demonstrate potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Such a carrier-free self-sensitized nanotherapeutic offers a novel co-delivery strategy for effective PDT.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
25
|
Gao N, Zhao J, Zhu X, Xu J, Ling G, Zhang P. Functional two-dimensional MXenes as cancer theranostic agents. Acta Biomater 2022; 154:1-22. [PMID: 36243374 DOI: 10.1016/j.actbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Recently, MXenes, as a kind of two-dimensional (2D) layered materials with exceptional performance, have become the research hotspots owing to their unique structural, electronic, and chemical properties. They have potential applications in electrochemical storage, photocatalysis, and biosensors. Furthermore, they have certain characteristics such as large surface area, favorable biocompatibility, and ideal mechanical properties, which can expand their applications in biomedical fields, especially in cancer therapy. To date, several researchers have explored the applications of MXenes in tumor elimination, which exhibited other fantastic properties of those 2D MXenes, such as efficient in vivo photothermal ablation, low phototoxicity, high biocompatibility, etc. In this review, the structures, properties, modifications, and preparation methods are introduced respectively. More importantly, the multifunctional platforms for cancer therapy based on MXenes nanosheets (NSs) are reviewed in detail, including single-modality and combined-modality cancer therapy. Finally, the prospects and challenges of MXenes are prospected and discussed. STATEMENT OF SIGNIFICANCE: In this review, the structures, properties, modifications, and preparation methods of MXenes nanomaterials are introduced, respectively. In addition, the preparation conditions and morphological characterizations of some common MXenes for therapeutic platforms are also summarized. More importantly, the practical applications of MXenes-based nanosheets are reviewed in detail, including drug delivery, biosensing, bioimaging, and multifunctional tumor therapy platforms. Finally, the future prospects and challenges of MXenes are prospected and discussed.
Collapse
Affiliation(s)
- Nan Gao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiaqi Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
26
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
27
|
Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Yang F, Ji Q, Liao R, Li S, Wang Y, Zhang X, Zhang S, Zhang H, Kan Q, Sun J, He Z, Sun B, Luo C. Precisely engineering a dual-drug cooperative nanoassembly for proteasome inhibition-potentiated photodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022; 282:121433. [DOI: 10.1016/j.biomaterials.2022.121433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
30
|
Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022; 342:280-294. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Malignant tumor is still a leading threat to human health. Despite the rapid development of targeted therapeutic strategies, any treatment specifically acting on single target would inevitably suffer from tumor resistance, largely due to the genetic instability and variability of tumor cells. Thus, traditional therapies such as broad-spectrum chemotherapy would certainly occupy an important position in clinical cancer therapy. Nevertheless, most chemotherapeutic drugs have long been criticized for unsatisfactory therapeutic efficacy with severe off-target toxicity. Although several chemotherapeutic nanomedicines with improved therapeutic safety have been applied in clinics, the therapeutic outcomes still do not fulfill expectation. To address this challenge, enormous efforts have been devoted to developing novel nano-formulations for efficient delivery of chemotherapeutic drugs. Herein, we aim to outline the latest progression in the emerging nanomedicines of paclitaxel (PTX), with special attention to the functional nanocarriers, self-delivering prodrug-nanoassemblies and combination nanotherapeutics of PTX. Finally, the challenges and opportunities of these functional PTX nanomedicines in clinical translation are spotlighted.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China.
| | - Shu Xu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Shuo Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Yue Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| |
Collapse
|
31
|
Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B 2022; 12:92-106. [PMID: 35127374 PMCID: PMC8799886 DOI: 10.1016/j.apsb.2021.08.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.
Collapse
Key Words
- ABC, accelerated blood clearance
- ACT, adoptive cell transfer
- ATO, atovaquone
- ATP, adenosine triphosphate
- BV, Biliverdin
- Ber, berberine
- CI, combination index
- CPT, camptothecin
- CTLs, cytotoxic T lymphocytes
- Cancer treatment
- Carrier-free
- Ce6, chlorine e6
- Combination therapy
- DBNP, DOX-Ber nano-assemblies
- DBNP@CM, DBNP were cloaked with 4T1 cell membranes
- DCs, dendritic cells
- DOX, doxorubicin
- DPDNAs, dual pure drug nano-assemblies
- EGFR, epithelial growth factor receptor
- EPI, epirubicin
- EPR, enhanced permeability and retention
- FRET, Forster Resonance Energy Transfer
- GEF, gefitinib
- HCPT, hydroxycamptothecin
- HMGB1, high-mobility group box 1
- IC50, half maximal inhibitory concentration
- ICB, immunologic checkpoint blockade
- ICD, immunogenic cell death
- ICG, indocyanine green
- ITM, immunosuppressive tumor microenvironment
- MDS, molecular dynamics simulations
- MPDNAs, multiple pure drug nano-assemblies
- MRI, magnetic resonance imaging
- MTX, methotrexate
- NIR, near-infrared
- NPs, nanoparticles
- NSCLC, non-small cell lung cancer
- Nano-DDSs, nanoparticulate drug delivery systems
- Nanomedicine
- Nanotechnology
- PAI, photoacoustic imaging
- PD-1, PD receptor 1
- PD-L1, PD receptor 1 ligand
- PDNAs, pure drug nano-assemblies
- PDT, photodynamic therapy
- PPa, pheophorbide A
- PTT, photothermal therapy
- PTX, paclitaxel
- Poly I:C, polyriboinosinic:polyribocytidylic acid
- Pure drug
- QSNAP, quantitative structure-nanoparticle assembly prediction
- RBC, red blood cell
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- SPDNAs, single pure drug nano-assemblies
- Self-assembly
- TA, tannic acid
- TEM, transmission electron microscopy
- TLR4, Toll-like receptor 4
- TME, tumor microenvironment
- TNBC, triple negative breast
- TTZ, trastuzumab
- Top I & II, topoisomerase I & II
- UA, ursolic acid
- YSV, tripeptide tyroservatide
- ZHO, Z-Histidine-Obzl
- dsRNA, double-stranded RNA
- α-PD-L1, anti-PD-L1 monoclonal antibody
Collapse
Affiliation(s)
- Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenli Zang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang 110016, China
| | - Xinyu Zhou
- Bio-system Pharmacology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kexin Shi
- Department of Biomedical Engineering, School of Medical Device, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Device, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
32
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
33
|
Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy. Acta Pharm Sin B 2021; 11:3636-3647. [PMID: 34900542 PMCID: PMC8642600 DOI: 10.1016/j.apsb.2021.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-matched nanoassembly of pyropheophorbide a (PPa) for photodynamic therapy (PDT). Pure PPa molecules are found to self-assemble into nanoparticles (NPs), and an amphiphilic PEG polymer (PPa-PEG2K) is utilized to achieve core-matched PEGylating modification via the π‒π stacking effect and hydrophobic interaction between the PPa core and the PPa-PEG2K shell. Compared to PCL-PEG2K with similar molecular weight, PPa-PEG2K significantly increases the stability, prolongs the systemic circulation and improves the tumor-homing ability and ROS generation efficiency of PPa-nanoassembly. As a result, PPa/PPa-PEG2K NPs exert potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Together, such a core-matched nanoassembly of pure photosensitizer provides a new strategy for the development of imaging-guided theragnostic nanomedicines.
Collapse
Key Words
- ACQ, aggregation caused quenching
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BUN, blood urine nitrogen
- CRE, creatinine
- Core-matched
- DCFH-DA, 2′,7′-dichlorofluorescein diacetate
- DDS, drug delivery system
- FBS, fetal bovine serum
- Imaging-guided
- NPs, nanoparticles
- NaCl, sodium chloride
- Nanoassembly
- PBS, phosphate buffer solution
- PDANs, pure drug-assembled nanomedicines
- PDT, photodynamic therapy
- PPa, pyropheophorbide a
- PS, photosensitizer
- Photodynamic therapy
- Pure drug-assembled nanomedicines
- Pure photosensitizer
- Pyropheophorbide a
- ROS, reactive oxygen species
- SDS, sodium dodecyl sulfate
- SOSG, Singlet Oxygen Sensor Green Reagent
- Self-assembly
- nano-DDS, nanoparticulate drug delivery systems
Collapse
|
34
|
Burgos-Panadero R, El Moukhtari SH, Noguera I, Rodríguez-Nogales C, Martín-Vañó S, Vicente-Munuera P, Cañete A, Navarro S, Blanco-Prieto MJ, Noguera R. Unraveling the extracellular matrix-tumor cell interactions to aid better targeted therapies for neuroblastoma. Int J Pharm 2021; 608:121058. [PMID: 34461172 DOI: 10.1016/j.ijpharm.2021.121058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Valencia, Spain.
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.
| | - Adela Cañete
- Pediatric Oncology, La Fe Hospital, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, 46010 Valencia, Spain; Low Prevalence Tumors, Centro de investigación biomédica en red de cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
35
|
Shan X, Zhang X, Wang C, Zhao Z, Zhang S, Wang Y, Sun B, Luo C, He Z. Molecularly engineered carrier-free co-delivery nanoassembly for self-sensitized photothermal cancer therapy. J Nanobiotechnology 2021; 19:282. [PMID: 34544447 PMCID: PMC8454134 DOI: 10.1186/s12951-021-01037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has been extensively investigated as a tumor-localizing therapeutic modality for neoplastic disorders. However, the hyperthermia effect of PTT is greatly restricted by the thermoresistance of tumor cells. Particularly, the compensatory expression of heat shock protein 90 (HSP90) has been found to significantly accelerate the thermal tolerance of tumor cells. Thus, a combination of HSP90 inhibitor and photothermal photosensitizer is expected to significantly enhance antitumor efficacy of PTT through hyperthermia sensitization. However, it remains challenging to precisely co-deliver two or more drugs into tumors. METHODS A carrier-free co-delivery nanoassembly of gambogic acid (GA, a HSP90 inhibitor) and DiR is ingeniously fabricated based on a facile and precise molecular co-assembly technique. The assembly mechanisms, photothermal conversion efficiency, laser-triggered drug release, cellular uptake, synergistic cytotoxicity of the nanoassembly are investigated in vitro. Furthermore, the pharmacokinetics, biodistribution and self-enhanced PTT efficacy were explored in vivo. RESULTS The nanoassembly presents multiple advantages throughout the whole drug delivery process, including carrier-free fabrication with good reproducibility, high drug co-loading efficiency with convenient dose adjustment, synchronous co-delivery of DiR and GA with long systemic circulation, as well as self-tracing tumor accumulation with efficient photothermal conversion. As expected, HSP90 inhibition-augmented PTT is observed in a 4T1 tumor BALB/c mice xenograft model. CONCLUSION Our study provides a novel and facile dual-drug co-assembly strategy for self-sensitized cancer therapy.
Collapse
Affiliation(s)
- Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
36
|
Wang Y, Luo C, Zhou S, Wang X, Zhang X, Li S, Zhang S, Wang S, Sun B, He Z, Sun J. Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian J Pharm Sci 2021; 16:643-652. [PMID: 34849169 PMCID: PMC8609389 DOI: 10.1016/j.ajps.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles (PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the self-assembly capacity of disulfide bond-linked prodrugs and the in vivo delivery fate of PNPs. Herein, five disulfide bond-linked docetaxel-fatty acid prodrugs are designed and synthesized by using stearic acid, elaidic acid, oleic acid, linoleic acid and linolenic acid as the aliphatic tails, respectively. Interestingly, the cis-trans configuration of aliphatic tails significantly influences the self-assembly features of prodrugs, and elaidic acid-linked prodrug with a trans double bond show poor self-assembly capacity. Although the aliphatic tails have almost no effect on the redox-sensitive drug release and cytotoxicity, different aliphatic tails significantly influence the chemical stability of prodrugs and the colloidal stability of PNPs, thus affecting the in vivo pharmacokinetics, biodistribution and antitumor efficacy of PNPs. Our findings illustrate how aliphatic tails affect the assembly characteristic of disulfide bond-linked aliphatic prodrugs and the in vivo delivery fate of PNPs, and thus provide theoretical basis for future development of disulfide bond-bridged aliphatic prodrugs.
Collapse
Affiliation(s)
| | | | - Shuang Zhou
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinhui Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuanbo Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shumeng Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenwu Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
37
|
Zhang M, Xu N, Xu W, Ling G, Zhang P. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Pharmacol Res 2021; 175:105861. [PMID: 34464677 DOI: 10.1016/j.phrs.2021.105861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
With the rapid development of nanotechnology, organelle-targeted nano drug delivery systems (NDDSs) have emerged as a potential method which can transport drugs specifically to the subcellular compartments like nucleus, mitochondrion, lysosome, endoplasmic reticulum (ER) and Golgi apparatus (GA). GA not only plays a key role in receiving, modifying, packaging and transporting proteins and lipids, but also contributes to a set of cellular processes. Golgi-targeted NDDSs can alter the morphology of GA and will become a promising strategy with high specificity, low-dose administration and decreased occurrence of side effects. In this review, Golgi-targeted NDDSs and their applications in disease therapies and diagnosis such as cancer, metastasis, fibrosis and neurological diseases are introduced. Meanwhile, modifications of NDDSs to achieve targeting strategies, Golgi-disturbing agents to change the morphology of GA, special endocytosis to achieve endosomal/lysosomal escape strategies are also involved.
Collapse
Affiliation(s)
- Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
38
|
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021; 13:1896. [PMID: 33920840 PMCID: PMC8071188 DOI: 10.3390/cancers13081896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a key role in the assessment of nanopharmaceuticals' potential imaging analysis and for site-specific delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their properties so that they can be properly used in cancer therapy. This paper describes the role of multifunctional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be useful in modern chemotherapy, and finally, the challenges associated with the commercialization of nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marlena Szalata
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - José M. Cabeda
- ESS-FP, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia 334, 4200-253 Porto, Portugal;
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB–Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
| |
Collapse
|
39
|
Zhang S, Wang Z, Kong Z, Wang Y, Zhang X, Sun B, Zhang H, Kan Q, He Z, Luo C, Sun J. Photosensitizer-driven nanoassemblies of homodimeric prodrug for self-enhancing activation and synergistic chemo-photodynamic therapy. Theranostics 2021; 11:6019-6032. [PMID: 33897896 PMCID: PMC8058734 DOI: 10.7150/thno.59065] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Carrier-free prodrug-nanoassemblies have emerged as promising nanomedicines. In particular, the self-assembled nanoparticles (NPs) composed of homodimeric prodrugs with ultrahigh drug loading have attracted broad attention. However, most homodimeric prodrugs show poor self-assembly ability due to their symmetric structures. Herein, we developed photosensitizer-driven nanoassemblies of homodimeric prodrug for self-enhancing activation and chemo-photodynamic synergistic therapy. Methods: In this work, a pyropheophorbide a (PPa)-driven nanoassemblies of an oxidation-responsive cabazitaxel homodimer (CTX-S-CTX) was fabricated (pCTX-S-CTX/PPa NPs). The assembly mechanisms, aggregation-caused quenching (ACQ) effect alleviation, singlet oxygen generation, self-enhancing prodrug activation, cellular uptake, intracellular reactive oxygen species (ROS) generation and synergistic cytotoxicity of pCTX-S-CTX/PPa NPs were investigated in vitro. Moreover, the pharmacokinetics, ex vivo biodistribution and in vivo therapeutic efficacy of pCTX-S-CTX/PPa NPs were studied in mice bearing 4T1 tumor. Results: Interestingly, PPa was found to drive the assembly of CTX-S-CTX, which cannot self-assemble into stable NPs alone. Multiple intermolecular forces were found to be involved in the assembly process. Notably, the nanostructure was destroyed in the presence of endogenous ROS, significantly relieving the ACQ effect of PPa. In turn, ROS generated by PPa under laser irradiation together with the endogenous ROS synergistically promoted prodrug activation. As expected, the nanoassemblies demonstrated potent antitumor activity in a 4T1 breast cancer BALB/c mice xenograft model. Conclusion: Our findings offer a simple strategy to facilitate the assembly of homodimeric prodrugs and provide an efficient nanoplatform for chemo-photodynamic therapy.
Collapse
|
40
|
Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021; 271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Despite that great progression has been made in nanoparticulate drug delivery systems (nano-DDS), multiple drug delivery dilemmas still impair the delivery efficiency of nanomedicines. Rational design of smart transformable nano-DDS based on the in vivo drug delivery process represents a promising strategy for overcoming delivery obstacle of nano-DDS. In recent years, tremendous efforts have been devoted to developing smart transformable anticancer nanomedicines. Herein, we provide a review to outline the advances in this emerging field. First, smart size-reducible nanoparticles (NPs) for deep tumor penetration are summarized, including carrier degradation-induced, protonation-triggered and photobleaching-induced size reduction. Second, emerging transformable nanostructures for various therapeutic applications are discussed, including prolonging tumor retention, reversing drug-resistance, inhibiting tumor metastasis, preventing tumor recurrence and non-pharmaceutical therapy. Third, shell-detachable nanocarriers are introduced, focusing on chemical bonds breaking-initiated, charge repulsion-mediated and exogenous stimuli-triggered shell detachment approaches. Finally, the future perspectives and challenges of transformable nanomedicines in clinical cancer therapy are highlighted.
Collapse
Affiliation(s)
- Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Shumeng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xinhui Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
41
|
Zhang X, Xiong J, Wang K, Yu H, Sun B, Ye H, Zhao Z, Wang N, Wang Y, Zhang S, Zhao W, Zhang H, He Z, Luo C, Sun J. Erythrocyte membrane-camouflaged carrier-free nanoassembly of FRET photosensitizer pairs with high therapeutic efficiency and high security for programmed cancer synergistic phototherapy. Bioact Mater 2021; 6:2291-2302. [PMID: 33553816 PMCID: PMC7841442 DOI: 10.1016/j.bioactmat.2021.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Phototherapy has been intensively investigated as a non-invasive cancer treatment option. However, its clinical translation is still impeded by unsatisfactory therapeutic efficacy and severe phototoxicity. To achieve high therapeutic efficiency and high security, a nanoassembly of Forster Resonance Energy Transfer (FRET) photosensitizer pairs is developed on basis of dual-mode photosensitizer co-loading and photocaging strategy. For proof-of-concept, an erythrocyte-camouflaged FRET pair co-assembly of chlorine e6 (Ce6, FRET donor) and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR, FRET acceptor) is investigated for breast cancer treatment. Notably, Ce6 in the nanoassemby is quenched by DiR and could be unlocked for photodynamic therapy (PDT) only when DiR is photobleached by 808-nm laser. As a result, Ce6-caused phototoxicity could be well controlled. Under cascaded laser irradiation (808–660 nm), tumor-localizing temperature rise following laser irradiation on DiR not only induces tumor cell apoptosis but also facilitates the tumor penetration of NPs, relieves tumor hypoxia, and promotes the PDT efficacy of Ce6. Such FRET pair-based nanoassembly provides a new strategy for developing multimodal phototherapy nanomedicines with high efficiency and good security. Biomimetic carrier-free nanoassembly developed by FRET photosensitizer pairs. Dual-mode co-loading and photocaging strategy for programmed cancer synergistic phototherapy. Avoiding the ROS-induced off-target phototoxicity by the intelligently controlled ROS activation.
Collapse
Affiliation(s)
- Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jianchen Xiong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Han Yu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Ning Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Wutong Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| |
Collapse
|
42
|
Zhang W, Wang F, Hu C, Zhou Y, Gao H, Hu J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B 2020; 10:2037-2053. [PMID: 33304778 PMCID: PMC7714986 DOI: 10.1016/j.apsb.2020.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most serious threats to human being, cancer is hard to be treated when metastasis happens. What's worse, there are few identified targets of metastasis for drug development. Therefore, it is important to develop strategies to prevent metastasis or treat existed metastasis. This review focuses on the procedure of metastasis, and first summarizes the targeting delivery strategies, including primary tumor targeting drug delivery, tumor metastasis targeting drug delivery and hijacking circulation cells. Then, as a promising treatment, the application of immunotherapy in tumor metastasis treatment is introduced, and strategies that stimulating immune response are reviewed, including chemotherapy, photothermal therapy, photodynamic therapy, ferroptosis, sonodynamic therapy, and nanovaccines. Finally, the challenges and perspective about nanoparticle-enabled tumor metastasis treatment are discussed.
Collapse
|
43
|
Leto G, Flandina C, Crescimanno M, Giammanco M, Sepporta MV. Effects of oleuropein on tumor cell growth and bone remodelling: Potential clinical implications for the prevention and treatment of malignant bone diseases. Life Sci 2020; 264:118694. [PMID: 33130080 DOI: 10.1016/j.lfs.2020.118694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Oleuropein (Ole) is the main bioactive phenolic compound present in olive leaves, fruits and olive oil. This molecule has been shown to exert beneficial effects on several human pathological conditions. In particular, recent preclinical and observational studies have provided evidence that Ole exhibits chemo-preventive effects on different types of human tumors. Studies undertaken to elucidate the specific mechanisms underlying these effects have shown that this molecule may thwart several key steps of malignant progression, including tumor cell proliferation, survival, angiogenesis, invasion and metastasis, by modulating the expression and activity of several growth factors, cytokines, adhesion molecules and enzymes involved in these processes. Interestingly, experimental observations have highlighted the fact that most of these signalling molecules also appear to be actively involved in the homing and growth of disseminating cancer cells in bones and, ultimately, in the development of metastatic bone diseases. These findings, and the experimental and clinical data reporting the preventive activity of Ole on various pathological conditions associated with a bone loss, are indicative of a potential therapeutic role of this molecule in the prevention and treatment of cancer-related bone diseases. This paper provides a current overview regarding the molecular mechanisms and the experimental findings underpinning a possible clinical role of Ole in the prevention and development of cancer-related bone diseases.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Carla Flandina
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marilena Crescimanno
- Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
44
|
Yang X, Wu D, Yuan S. Tyrosine Kinase Inhibitors in the Combination Therapy of HER2 Positive Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820962140. [PMID: 33034269 PMCID: PMC7592330 DOI: 10.1177/1533033820962140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC)
accounts for about 20% to 30% of all BC subtypes and is characterized by
invasive disease and poor prognosis. With the emergence of anti-HER2 target
drugs, HER2-positive BC patient outcomes have changed dramatically. However,
treatment failure is mostly due to drug resistance and the special treatment
needs of different subgroups. Small molecule tyrosine kinase inhibitors can
inhibit multiple targets of the human epidermal growth factor receptor family
and activate PI3K/AKT, MAPK, PLC γ, ERK1/2, JAK/STAT, and other pathways
affecting the expression of MDM2, mTOR, p27, and other transcription factors.
This can help regulate the differentiation, apoptosis, migration, growth, and
adhesion of normal cells and reverse drug resistance to a certain extent. These
inhibitors can cross the blood-brain barrier and be administered orally. They
have a good synergistic effect with effective drugs such as trastuzumab,
pertuzumab, t-dm1, and cyclin-dependent kinase 4 and 6 inhibitors. These
advantages have resulted in small-molecule tyrosine kinase inhibitors attracting
attention. The new small-molecule tyrosine kinase inhibitor was investigated in
multi-target anti-HER2 therapy, showed a good effect in preclinical and clinical
trials, and to some extent, improved the prognosis of HER2-positive BC patients.
Its use could lead to a de-escalation of treatment in some patients, possibly
preventing unnecessary procedures along with the associated side effects and
costs.
Collapse
Affiliation(s)
- Xue Yang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Shengli Yuan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|