1
|
Liu R, Un H, Lin R, Lei J, Zhan W, Zou Z, Luo H, Zhong W, Chen L, Liang Y, Wang Z. Single-cell and bulk RNA-sequence identify an immune-derived lncRNA-mRNA signature for predicting clinical outcomes and immunotherapeutic response of prostate cancer. Int J Biol Macromol 2025; 309:143014. [PMID: 40216135 DOI: 10.1016/j.ijbiomac.2025.143014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Immunotherapy has limited effectiveness in prostate cancer (PCa), often classified as a "cold tumor" due to immune-related long non-coding RNAs (lncRNAs) and mRNAs. We developed and validated a consensus immune-related lncRNA and mRNA signature (ILMS) to enhance immunotherapy efficacy for PCa patients. By analyzing seven independent datasets, including our own, we confirmed that ILMS is a robust predictor of biochemical recurrence (BCR). Compared to 70 other published signatures, ILMS showed the highest ability to anticipate PCa prognosis. Single-cell analysis indicated that ILMS-high patients had abundant immune cell infiltration, suggesting a favorable response to immunotherapy. Additionally, ILMS was positively associated with immune checkpoints LAG3, TIM3, and TIGIT, identifying patients likely to benefit from immunotherapy. This model will be further validated and refined in subsequent studies.
Collapse
Affiliation(s)
- Ren Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hiocheng Un
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Renxuan Lin
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Lei
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhan
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongwei Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Zongren Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Chen S, Zhou Z, Ye Y, You Z, Lv Q, Dong Y, Luo J, Gong L, Zhu Y. The urinary eccDNA landscape in prostate cancer reveals associations with genome instability and vital roles in cancer progression. J Adv Res 2025:S2090-1232(25)00060-8. [PMID: 39875054 DOI: 10.1016/j.jare.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Extrachromosomal circular DNA (eccDNA) plays significant roles in cancer progression and prognosis. However, it remains unclear whether cell-free eccDNA, considered more stable than linear DNA, possesses cancer-specific genomic features. Furthermore, the biogenesis and function of eccDNAs are not yet fully understood. OBJECTIVES This study aims to characterize the genomic landscape of urinary cell-free eccDNAs in prostate cancer (PCa) and non-cancer (NC) individuals, elucidate their biogenesis and PCa-specific genomic features, and investigate their roles in PCa progression. METHODS We conducted urine Circle-seq for 21 PCa patients and 16 NC individuals, performed integrated analysis with other omics datasets, and finally validated the function of eccDNA by in vitro transfection and RNA-seq. RESULTS We pioneered the profiling of urinary cell-free eccDNAs landscape in PCa and uncovered a high association between eccDNA generation and active chromatin status as well as gene transcription. Double strand breaks and R-loops, which preferentially occur in active genomic sites and cause genome instability, can promote eccDNA generation. Genome instability frequently results in genomic mutations, and our study further established a link between eccDNA generation and oncogenic mutations. Additionally, genes specifically exhibiting high eccDNA generation frequency (HFGs) in PCa contributed to PCa progression and were associated with poorer survival outcomes in PCa patients. Finally, we demonstrated that eccDNAs derived from PCa-specific HFGs, in contrast to intergenic eccDNAs, could suppress PCa cell proliferation and migration, which was independent of their host gene expression. CONCLUSION Our study illustrated the biogenesis of eccDNAs from DSBs in active genes, revealed PCa-specific eccDNA features and suggested new mechanisms underlying eccDNA function.
Collapse
Affiliation(s)
- Shengcai Chen
- Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China
| | - Zhimin Zhou
- Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China
| | - Yangchen Ye
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China
| | - Zhen You
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China
| | - Qi Lv
- Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China
| | - Yu Dong
- Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China
| | - Jindan Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Liang Gong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yanfen Zhu
- Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China.
| |
Collapse
|
3
|
Ma W, Zhou S. Metabolic Rewiring in the Face of Genomic Assault: Integrating DNA Damage Response and Cellular Metabolism. Biomolecules 2025; 15:168. [PMID: 40001471 PMCID: PMC11852599 DOI: 10.3390/biom15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The DNA damage response (DDR) and cellular metabolism exhibit a complex, bidirectional relationship crucial for maintaining genomic integrity. Studies across multiple organisms, from yeast to humans, have revealed how cells rewire their metabolism in response to DNA damage, supporting repair processes and cellular homeostasis. We discuss immediate metabolic shifts upon damage detection and long-term reprogramming for sustained genomic stability, highlighting key signaling pathways and participating molecules. Importantly, we examine how DNA repair processes can conversely induce metabolic changes and oxidative stress through specific mechanisms, including the histone H2A variant X (H2AX)/ataxia telangiectasia mutated (ATM)/NADPH oxidase 1 (Nox1) pathway and repair-specific ROS signatures. The review covers organelle-specific responses and metabolic adaptations associated with different DNA repair mechanisms, with a primary focus on human cells. We explore the implications of this DDR-metabolism crosstalk in cancer, aging, and neurodegenerative diseases, and discuss emerging therapeutic opportunities. By integrating recent findings, this review provides a comprehensive overview of the intricate interplay between DDR and cellular metabolism, offering new perspectives on cellular resilience and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjian Ma
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| |
Collapse
|
4
|
Matta J, Ortiz-Sánchez C, Encarnación-Medina J, Torres-Caraballo S, Oliveras J, Park J, Arroyo MM, Ruiz-Deya G. DNA Repair Capacity and Clinicopathological Characteristics in Puerto Rican Hispanic/Latino Patients with Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2025; 17:279. [PMID: 39858060 PMCID: PMC11763443 DOI: 10.3390/cancers17020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) accounts for 22% of the new cases diagnosed in Hispanic/Latino (H/L) men in the US. PCa has the highest incidence (38.3%) and mortality (16.4%) among all types of cancer diagnosed in Puerto Rico. We previously showed that PCa patients (n = 41) have a significant reduction of 59% in their levels of DNA repair capacity (DRC) when compared to controls (n = 14). This study aimed to evaluate DRC levels through the nucleotide excision repair (NER) pathway for the first time in 16 Puerto Rican H/L men with metastatic castration-resistant PCa (mCRPCa) while establishing comparisons with controls and PCa patients with indolent and aggressive disease. METHODS Blood samples and clinicopathological data from PCa cases (n = 71) and controls (n = 25) were evaluated. PCa cases were stratified into mCRPCa (n = 16), aggressive (n = 31), and indolent (n = 24). DRC levels through NER were measured in lymphocytes with the CometChip assay. The stratification by Gleason score (GS) was GS6 (n = 7), GS7 (n = 23), GS ≥ 8 (n = 20), and mCRPCa patients (n = 16). RESULTS Significant statistical differences were found when comparing the DRC values of the controls with any other of the four PCa patient groups. mCRPCa patients had the lowest mean DRC level of all four patient groups studied. The mean DRC level of mCRPCa patients was 6.65%, and compared to the controls, this represented a statistically significant reduction of 62% (p < 0.0001). Further analysis was performed to evaluate the contributions of age, anthropometric measurements, and prostate-specific antigen (PSA) levels to the DRC. Kaplan-Meier curves of mCRPCa revealed that survival probability decreased by approximately 50% by 30 months. This pilot study uses a blood-based phenotypic assay to present the first report of mCRPCa in Puerto Rican men and at a global level of DRC levels of mCRPCa patients. CONCLUSIONS This study evaluated DRC levels through the NER pathway for the first time in 16 Puerto Rican H/L men with mCRPCa. Significant differences in DRC values were found between the controls and the three PCa patient groups. Kaplan-Meier curves revealed that survival probability decreased by approximately 50% by 30 months, and only 20% of the cohort was alive at 50 months, confirming the lethality of mCRPCa in this H/L population. This pilot study represents the first report of metastatic PCa in Puerto Rican men at a global level of DRC levels of mCRPCa patients using a blood-based phenotypic assay.
Collapse
Affiliation(s)
- Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716–2347, Puerto Rico; (C.O.-S.); (J.E.-M.); (S.T.-C.); (J.O.)
| | - Carmen Ortiz-Sánchez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716–2347, Puerto Rico; (C.O.-S.); (J.E.-M.); (S.T.-C.); (J.O.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716–2347, Puerto Rico; (C.O.-S.); (J.E.-M.); (S.T.-C.); (J.O.)
| | - Stephanie Torres-Caraballo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716–2347, Puerto Rico; (C.O.-S.); (J.E.-M.); (S.T.-C.); (J.O.)
| | - Jose Oliveras
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716–2347, Puerto Rico; (C.O.-S.); (J.E.-M.); (S.T.-C.); (J.O.)
| | - Jong Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Monica M. Arroyo
- Chemistry Department, Pontifical Catholic University of Puerto Rico, Ponce, PR 00717, Puerto Rico;
| | - Gilberto Ruiz-Deya
- St. Luke’s Episcopal Hospital, Ponce, PR 00733, Puerto Rico;
- Department of Surgery, Ponce Health Sciences University, Ponce, PR 00716–2347, Puerto Rico
| |
Collapse
|
5
|
Liu X, Xie S, Jiang X, Song S, Wang L, Li S, Lu D. LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS. Cells Dev 2024; 180:203976. [PMID: 39571735 DOI: 10.1016/j.cdev.2024.203976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND & OBJECTIVES LUC7L2 may be involved in the recognition of non-consensus splice donor sites in association with the U1 snRNP spliceosomal subunit. However, their detailed features and regulatory mechanisms of LUC7L2 in the development of human liver cancer have not been well characterized. RESULTS Herein, our results demonstrate that LUC7L2 promotes the proliferation of liver cancer cells in vitro and xenograft transplantation in vivo. The proliferation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (24th hour: P = 0.00043; 48th hour: P = 0.000017). The cellular colony formation ability was significantly increased in the rLV-LUC7L2 group compared to rLV group (25.18±6.94 % vs 67.63±9.57 %, P = 0.00009). The weight of transplanted tumors was significantly increased in the rLV-LUC7L2 group compared to rLV group (0.387±0.074 vs 0.958± 0.103 g, P = 0.00004). Moreover, LUC7L2 effects on epigenetic regulation based on H3K4me3 in human liver cancer cells. e,g, RRAS. Furthermore, LUC7L2 affects transcriptome and proteome in liver cancer. In particular, LUC7L2 enhances the modification ability of H3K4me3and RNAPolII on the promoter region of RRAS and then enhances the expression of RRAS in liver cancer. Strikingly, LUC7L2 increases the increases the DNA damage repair ability dependent on RRAS. Although the DNA damage repair ability was significantly increased in the rLV-LUC7L2 group compared to rLV group(1.868±0.181 vs 0.17±0.034, P = 0.0000022), it was not significantly changed in rLV-LUC7L2+rLV-shRNA RRAS group compared with rLV group(1.868±0.181 vs 1.798±0.313, P = 0.317). Importantly, LUC7L2 enhances the carcinogenic function dependent on RRAS. In particular, RRAS increased the DNA damage repair ability by enhancing the formation of DNA damage repair dependent on tri-methylation of histone H3 lysine 36 (H3K36me3). CONCLUSIONS It is implied that LUC7L2's role in liver cancer proliferation is largely dependent on RRAS. The first discovery provides a basis for the prevention and treatment of human liver cancer.
Collapse
Affiliation(s)
- Xinlei Liu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shujie Li
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Yang K, Zhu L, Liu C, Zhou D, Zhu Z, Xu N, Li W. Current status and prospect of the DNA double-strand break repair pathway in colorectal cancer development and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167438. [PMID: 39059591 DOI: 10.1016/j.bbadis.2024.167438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China
| | - Lihua Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China
| | - Chang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dayang Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhu Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Xu
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Kunming Medical University, Kunming 650500, China.
| | - Wenliang Li
- Department of Colorectal Surgery, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China; Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
7
|
Liu Z, Huang Q, Ding M, Wang T, Chen Y, Zhang K. BRCA2 mutations in familial breast cancer with prostate cancer: a case report and literature review. Front Oncol 2024; 14:1428849. [PMID: 39364320 PMCID: PMC11446893 DOI: 10.3389/fonc.2024.1428849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men globally. Its etiology has been attributed to multiple factors, including age and ethnicity, with family history identified as a significant risk factor. The role of family history in prostate cancer risk appears to be more extensive than previously thought, with evidence suggesting that prostate cancer and breast cancer may occur concurrently within families. BRCA2 mutations have been linked to an increased risk of prostate cancer, particularly in patients diagnosed with early-onset disease. It is estimated that BRCA2 mutations account for approximately 5% of familial prostate cancer cases. It is noteworthy that cases of prostate cancer in patients with BRCA2 mutations are rare in clinical practice. Here we report a case of prostatitis carcinoma with a mutation in the BRCA2 gene in a patient who underwent robotic-assisted radical prostatectomy for prostatitis carcinoma after medication was not effective. Genetic testing of him, his son, and his daughter showed that they all had mutations in this gene, and it is noteworthy that the type of BRCA2 mutation in his son has never been reported before, which is rare in clinical practice.
Collapse
Affiliation(s)
- Zhengsheng Liu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qianhao Huang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Meixuan Ding
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuedong Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Kaiyan Zhang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Clark A, Villarreal MR, Huang SB, Jayamohan S, Rivas P, Hussain SS, Ybarra M, Osmulski P, Gaczynska ME, Shim EY, Smith T, Gupta YK, Yang X, Delma CR, Natarajan M, Lai Z, Wang LJ, Michalek JE, Higginson DS, Ikeno Y, Ha CS, Chen Y, Ghosh R, Kumar AP. Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer. Cancer Lett 2024; 597:217063. [PMID: 38925361 DOI: 10.1016/j.canlet.2024.217063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In this study we have identified POLθ-S6K-p62 as a novel druggable regulator of radiation response in prostate cancer. Despite significant advances in delivery, radiotherapy continues to negatively affect treatment outcomes and quality of life due to resistance and late toxic effects to the surrounding normal tissues such as bladder and rectum. It is essential to develop new and effective strategies to achieve better control of tumor. We found that ribosomal protein S6K (RPS6KB1) is elevated in human prostate tumors, and contributes to resistance to radiation. As a downstream effector of mTOR signaling, S6K is known to be involved in growth regulation. However, the impact of S6K signaling on radiation response has not been fully explored. Here we show that loss of S6K led to formation of smaller tumors with less metastatic ability in mice. Mechanistically we found that S6K depletion reduced NFκB and SQSTM1 (p62) reporter activity and DNA polymerase θ (POLθ) that is involved in alternate end-joining repair. We further show that the natural compound berberine interacts with S6K in a in a hitherto unreported novel mode and that pharmacological inhibition of S6K with berberine reduces Polθ and downregulates p62 transcriptional activity via NFκB. Loss of S6K or pre-treatment with berberine improved response to radiation in prostate cancer cells and prevented radiation-mediated resurgence of PSA in animals implanted with prostate cancer cells. Notably, silencing POLQ in S6K overexpressing cells enhanced response to radiation suggesting S6K sensitizes prostate cancer cells to radiation via POLQ. Additionally, inhibition of autophagy with CQ potentiated growth inhibition induced by berberine plus radiation. These observations suggest that pharmacological inhibition of S6K with berberine not only downregulates NFκB/p62 signaling to disrupt autophagic flux but also decreases Polθ. Therefore, combination treatment with radiation and berberine inhibits autophagy and alternate end-joining DNA repair, two processes associated with radioresistance leading to increased radiation sensitivity.
Collapse
Affiliation(s)
- Alison Clark
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Michelle R Villarreal
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Shih-Bo Huang
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Paul Rivas
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meagan Ybarra
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Pawel Osmulski
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Maria E Gaczynska
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Tyler Smith
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Yogesh K Gupta
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Department of Biochemistry and Structural Biology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Xiaoyu Yang
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Caroline R Delma
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Joel E Michalek
- Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Epidemiology and Biostatistics, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuji Ikeno
- Departments of Pathology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Barshop Institute for Longevity and Aging Studies, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Audie L. Murphy VA Hospital (STVHCS), Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Department of Radiation Oncology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Yidong Chen
- Departments of Greehey Children's Cancer Institute, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA
| | - Rita Ghosh
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Urology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Pharmacology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA.
| | - Addanki P Kumar
- Departments of Molecular Medicine, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Urology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Pharmacology, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Departments of Mays Cancer Center, Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA; Audie L. Murphy VA Hospital (STVHCS), Long School of Medicine, The University of Texas Health San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Ruzanov P, Evdokimova V, Pachva MC, Minkovich A, Zhang Z, Langman S, Gassmann H, Thiel U, Orlic-Milacic M, Zaidi SH, Peltekova V, Heisler LE, Sharma M, Cox ME, McKee TD, Zaidi M, Lapouble E, McPherson JD, Delattre O, Radvanyi L, Burdach SE, Stein LD, Sorensen PH. Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles. J Clin Invest 2024; 134:e169470. [PMID: 38530366 PMCID: PMC11060741 DOI: 10.1172/jci169470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.
Collapse
Affiliation(s)
- Peter Ruzanov
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manideep C. Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alon Minkovich
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sofya Langman
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Syed H. Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vanya Peltekova
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manju Sharma
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Michael E. Cox
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Pathomics Inc., Toronto, Ontario, Canada
| | - Mark Zaidi
- Pathomics Inc., Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eve Lapouble
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Olivier Delattre
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
- Diversity and Plasticity of Childhood tumors, INSERM U830, Institut Curie Research Center, PSL Research University, Paris, France
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stefan E.G. Burdach
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- CCC München Comprehensive Cancer Center, DKTK German Cancer Consortium, Munich, Germany
- Institute of Pathology, Translation Pediatric Cancer Research Action, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lincoln D. Stein
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Akhoundova D, Francica P, Rottenberg S, Rubin MA. DNA Damage Response and Mismatch Repair Gene Defects in Advanced and Metastatic Prostate Cancer. Adv Anat Pathol 2024; 31:61-69. [PMID: 38008971 PMCID: PMC10846598 DOI: 10.1097/pap.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research
- Department of Medical Oncology
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Paola Francica
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Lin Y, Jin X. Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Exp Ther Med 2024; 27:33. [PMID: 38125344 PMCID: PMC10731405 DOI: 10.3892/etm.2023.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
Genomic instability is an essential hallmark of cancer, and cellular DNA damage response (DDR) defects drive tumorigenesis by disrupting genomic stability. Several studies have identified abnormalities in DDR-associated genes, and a dysfunctional ubiquitin-proteasome system (UPS) is the most common molecular event in metastatic castration-resistant prostate cancer (PCa). For example, mutations in Speckle-type BTB/POZ protein-Ser119 result in DDR downstream target activation deficiency. Skp2 excessive upregulation inhibits homologous recombination repair and promotes cell growth and migration. Abnormally high expression of a deubiquitination enzyme, ubiquitin-specific protease 12, stabilizes E3 ligase MDM2, which further leads to p53 degradation, causing DDR interruption and genomic instability. In the present review, the basic pathways of DDR, UPS dysfunction, and its induced DDR alterations mediated by genomic instability, and especially the potential application of UPS and DDR alterations as biomarkers and therapeutic targets in PCa treatment, were described.
Collapse
Affiliation(s)
- Yan Lin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
12
|
Catalano M, Lapucci A, Nobili S, De Gennaro Aquino I, Vascotto IA, Antonuzzo L, Villari D, Nesi G, Mini E, Roviello G. Platinum-based chemotherapy in metastatic prostate cancer: what possibilities? Cancer Chemother Pharmacol 2024; 93:1-9. [PMID: 37934252 PMCID: PMC10796584 DOI: 10.1007/s00280-023-04604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Metastatic prostate cancer is a major health burden worldwide, necessitating the continuous development of effective treatment strategies. Androgen deprivation therapy remains the cornerstone of prostate cancer treatment, but novel approaches are needed for metastatic castration-resistant prostate cancer (mCRPC). Recent studies have highlighted the prevalence of mutations in DNA repair genes, including BRCA1 and BRCA2, in mCRPC patients, rendering them more susceptible to platinum-based chemotherapy and Poly (ADP-ribose) polymerase (PARP) inhibitors. Platinum-based chemotherapy, particularly in combination with taxanes, has demonstrated encouraging activity in mCRPC, as well as homologous recombination gene alterations have shown increased sensitivity to platinum compounds in these patients. The combination of platinum-based chemotherapy with PARP inhibitors represents a novel and potentially effective therapeutic strategy for this subgroup of patients. However, the optimal sequence of administering these agents and the potential for cross-resistance and cross-toxicities remain areas requiring further investigation. Prospective randomized studies are essential to elucidate the most effective treatment approach for this challenging patient population. This review aims to explore the potential of platinum-based chemotherapy in the context of prostate cancer, and more in detail in homologous recombination repair (HRR) mutated patients. We discuss the synergistic effects of combining platinum compounds with PARP inhibitors and the potential benefits of adopting specific therapeutic sequences.
Collapse
Affiliation(s)
- Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy.
- University of Florence, Viale Pieraccini 6, 50134, Florence, FI, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139, Florence, Italy
| | | | | | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Donata Villari
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Gabriella Nesi
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, 50139, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| |
Collapse
|
13
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
14
|
Liu P, Deng X, Zhou H, Xie J, Kong Y, Zou Y, Yang A, Li X. Multi-omics analyses unravel DNA damage repair-related clusters in breast cancer with experimental validation. Front Immunol 2023; 14:1297180. [PMID: 38022619 PMCID: PMC10644223 DOI: 10.3389/fimmu.2023.1297180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background As one of the most common malignancies worldwide, breast cancer (BC) exhibits high heterogeneity of molecular phenotypes. The evolving view regarding DNA damage repair (DDR) is that it is context-specific and heterogeneous, but its role in BC remains unclear. Methods Multi-dimensional data of transcriptomics, genomics, and single-cell transcriptome profiling were obtained to characterize the DDR-related features of BC. We collected 276 DDR-related genes based on the Molecular Signature Database (MSigDB) database and previous studies. We acquired public datasets included the SCAN-B dataset (GEO: GSE96058), METABRIC database, and TCGA-BRCA database. Corresponding repositories such as transcriptomics, genomics, and clinical information were also downloaded. We selected scRNA-seq data from GEO: GSE176078, GSE114727, GSE161529, and GSE158724. Bulk RNA-seq data from GEO: GSE176078, GSE18728, GSE5462, GSE20181, and GSE130788 were extracted for independent analyses. Results The DDR classification was constructed in the SCAN-B dataset (GEO: GSE96058) and METABRIC database, Among BC patients, there were two clusters with distinct clinical and molecular characteristics: the DDR-suppressed cluster and the DDR-active cluster. A superior survival rate is found for tumors in the DDR-suppressed cluster, while those with the DDR-activated cluster tend to have inferior prognoses and clinically aggressive behavior. The DDR classification was validated in the TCGA-BRCA cohort and shown similar results. We also found that two clusters have different pathway activities at the genomic level. Based on the intersection of the different expressed genes among these cohorts, we found that PRAME might play a vital role in DDR. The DDR classification was then enabled by establishing a DDR score, which was verified through multilayer cohort analysis. Furthermore, our results revealed that malignant cells contributed more to the DDR score at the single-cell level than nonmalignant cells. Particularly, immune cells with immunosuppressive properties (such as FOXP3+ CD4+ T cells) displayed higher DDR scores among those with distinguishable characteristics. Conclusion Collectively, this study performs general analyses of DDR heterogeneity in BC and provides insight into the understanding of individualized molecular and clinicopathological mechanisms underlying unique DDR profiles.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huamao Zhou
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanan Kong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Giesen A, Baekelandt L, Devlies W, Devos G, Dumez H, Everaerts W, Claessens F, Joniau S. Double trouble for prostate cancer: synergistic action of AR blockade and PARPi in non-HRR mutated patients. Front Oncol 2023; 13:1265812. [PMID: 37810962 PMCID: PMC10551452 DOI: 10.3389/fonc.2023.1265812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men worldwide. Despite better and more intensive treatment options in earlier disease stages, a large subset of patients still progress to metastatic castration-resistant PCa (mCRPC). Recently, poly-(ADP-ribose)-polymerase (PARP)-inhibitors have been introduced in this setting. The TALAPRO-2 and PROpel trials both showed a marked benefit of PARPi in combination with an androgen receptor signaling inhibitor (ARSI), compared with an ARSI alone in both the homologous recombination repair (HRR)-mutated, as well as in the HRR-non-mutated subgroup. In this review, we present a comprehensive overview of how maximal AR-blockade via an ARSI in combination with a PARPi has a synergistic effect at the molecular level, leading to synthetic lethality in both HRR-mutated and HRR-non-mutated PCa patients. PARP2 is known to be a cofactor of the AR complex, needed for decompacting the chromatin and start of transcription of AR target genes (including HRR genes). The inhibition of PARP thus reinforces the effect of an ARSI. The deep androgen deprivation caused by combining androgen deprivation therapy (ADT) with an ARSI, induces an HRR-like deficient state, often referred to as "BRCA-ness". Further, PARPi will prevent the repair of single-strand DNA breaks, leading to the accumulation of DNA double-strand breaks (DSBs). Due to the induced HRR-deficient state, DSBs cannot be repaired, leading to apoptosis.
Collapse
Affiliation(s)
- Alexander Giesen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Herlinde Dumez
- Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
16
|
Hoshi S, Yaginuma K, Meguro S, Onagi A, Matsuoka K, Hata J, Sato Y, Akaihata H, Kataoka M, Ogawa S, Uemura M, Kojima Y. PSMA Targeted Molecular Imaging and Radioligand Therapy for Prostate Cancer: Optimal Patient and Treatment Issues. Curr Oncol 2023; 30:7286-7302. [PMID: 37623010 PMCID: PMC10453875 DOI: 10.3390/curroncol30080529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Theranostics (therapy + diagnosis) targeting prostate-specific membrane antigen (PSMA) is an emerging therapeutic modality that could alter treatment strategies for prostate cancer. Although PSMA-targeted radioligand therapy (PSMA-RLT) has a highly therapeutic effect on PSMA-positive tumor tissue, the efficacy of PSMA-RLT depends on PSMA expression. Moreover, predictors of treatment response other than PSMA expression are under investigation. Therefore, the optimal patient population for PSMA-RLT remains unclear. This review provides an overview of the current status of theranostics for prostate cancer, focusing on PSMA ligands. In addition, we summarize various findings regarding the efficacy and problems of PSMA-RLT and discuss the optimal patient for PSMA-RLT.
Collapse
Affiliation(s)
- Seiji Hoshi
- Departments of Urology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (K.Y.); (S.M.); (A.O.); (K.M.); (J.H.); (Y.S.); (H.A.); (M.K.); (S.O.); (M.U.); (Y.K.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xie T, Qin H, Yuan Z, Zhang Y, Li X, Zheng L. Emerging Roles of RNF168 in Tumor Progression. Molecules 2023; 28:1417. [PMID: 36771081 PMCID: PMC9920519 DOI: 10.3390/molecules28031417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
RING finger protein 168 (RNF168) is an E3 ubiquitin ligase with the RING finger domain. It is an important protein contributing to the DNA double-strand damage repair pathway. Recent studies have found that RNF168 is significantly implicated in the occurrence and development of various cancers. Additionally, RNF168 contributes to the drug resistance of tumor cells by enhancing their DNA repair ability or regulating the degradation of target proteins. This paper summarizes and prospects the research progress of the structure and main functions of RNF168, especially its roles and the underlying mechanisms in tumorigenesis.
Collapse
Affiliation(s)
- Tianyuan Xie
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, No. 206, Sixian Street, Baiyun District, Guiyang 550007, China
| | - Zhengdong Yuan
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yiwen Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lufeng Zheng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
18
|
Nindra U, Hong JH, Balakrishnar B, Pal A, Chua W. Review of Toxicities of PARP Inhibitors in Metastatic Castrate Resistant Prostate Cancer. Clin Genitourin Cancer 2023; 21:183-193. [PMID: 35927195 DOI: 10.1016/j.clgc.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023]
Abstract
There is emerging evidence for the use of poly (ADP-ribose) polymerase inhibitors (PARPi) in patients with mCRPC with patients harboring germline or somatic mutations deriving clinical benefit. However, the toxicity profile of PARPi in mCRPC is not well established. In March 2022 a literature search was conducted across 4 databases - Medline, PubMed, Cochrane Library and Embase. In total, 14 relevant studies were identified cumulating in 2066 patients that were treated with PARPi. The overall ORR to PARPi alone or in combination with other therapy was 37% (246/666). In 5trials that investigated PARPi alone, the ORR was 39% (141/361). Treatment emergent adverse events (TEAEs) of any grade were reported in 96% (1034/1080) in PARPi treatment arms. TEAEs of grade >= 3 were reported in 57% (611/1080). 45% (457/1006) experienced treatment interruption whilst 31% (310/989) required dose reductions. 11% (114/1006) of patients had their treatment discontinued directly as the result of toxicity associated with the trial medications. The most common hematological toxicity was anemia, reported in 490/1160 (42%) patients. and lowered white blood cell count were the next 2most common toxicities, reported in 186/655 (28%) and 133/729 (18%) respectively. The 3most common non-hematological toxicities reported were nausea, fatigue and anorexia reported in 440/1013 (43%), 340/1013 (34%) and 274/1013 (27%) patients respectively. Overall, TRAEs associated with individual PARPi are still emerging with hematological toxicities being most apparent. Further toxicities will be informed from future clinical trials to allow improved treatment selection, education and management of toxicities in prostate cancer.
Collapse
Affiliation(s)
- Udit Nindra
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW, Australia; School of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Jun Hee Hong
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW, Australia; School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Abhijit Pal
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW, Australia; School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wei Chua
- Department of Medical Oncology, Liverpool Hospital, Sydney, NSW, Australia; School of Medicine, University of New South Wales, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
19
|
Catalano M, Generali D, Gatti M, Riboli B, Paganini L, Nesi G, Roviello G. DNA repair deficiency as circulating biomarker in prostate cancer. Front Oncol 2023; 13:1115241. [PMID: 36793600 PMCID: PMC9922904 DOI: 10.3389/fonc.2023.1115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Deleterious aberrations in DNA repair genes are actionable in approximately 25% of metastatic castration-resistant prostate cancers (mCRPC) patients. Homology recombination repair (HRR) is the DNA damage repair (DDR) mechanism most frequently altered in prostate cancer; of note BRCA2 is the most frequently altered DDR gene in this tumor. Poly ADP-ribose polymerase inhibitors showed antitumor activity with a improvement in overall survival in mCRPC carrying somatic and/or germline alterations of HHR. Germline mutations are tested on peripheral blood samples using DNA extracted from peripheral blood leukocytes, while the somatic alterations are assessed by extracting DNA from a tumor tissue sample. However, each of these genetic tests have some limitations: the somatic tests are related to the sample availability and tumor heterogeneity, while the germline testing are mainly related to the inability to detect somatic HRR mutations. Therefore, the liquid biopsy, a non-invasive and easily repeatable test compared to tissue test, could identified somatic mutation detected on the circulating tumor DNA (ctDNA) extracted from a plasma. This approach should better represent the heterogeneity of the tumor compared to the primary biopsy and maybe helpful in monitoring the onset of potential mutations involved in treatment resistance. Furthermore, ctDNA may inform about timing and potential cooperation of multiple driver genes aberration guiding the treatment options in patients with mCRPC. However, the clinical use of ctDNA test in prostate cancer compared to blood and tissue testing are currently very limited. In this review, we summarize the current therapeutic indications in prostate cancer patients with DDR deficiency, the recommendation for germline and somatic-genomic testing in advanced PC and the advantages of the use liquid biopsy in clinical routine for mCRPC.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital Trieste, Trieste, Italy
| | - Marta Gatti
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Barbara Riboli
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Leda Paganini
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
20
|
Lei H, He A, Jiang Y, Ruan M, Han N. Targeting DNA damage response as a potential therapeutic strategy for head and neck squamous cell carcinoma. Front Oncol 2022; 12:1031944. [PMID: 36338767 PMCID: PMC9634729 DOI: 10.3389/fonc.2022.1031944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/20/2023] Open
Abstract
Cells experience both endogenous and exogenous DNA damage daily. To maintain genome integrity and suppress tumorigenesis, individuals have evolutionarily acquired a series of repair functions, termed DNA damage response (DDR), to repair DNA damage and ensure the accurate transmission of genetic information. Defects in DNA damage repair pathways may lead to various diseases, including tumors. Accumulating evidence suggests that alterations in DDR-related genes, such as somatic or germline mutations, single nucleotide polymorphisms (SNPs), and promoter methylation, are closely related to the occurrence, development, and treatment of head and neck squamous cell carcinoma (HNSCC). Despite recent advances in surgery combined with radiotherapy, chemotherapy, or immunotherapy, there has been no substantial improvement in the survival rate of patients with HNSCC. Therefore, targeting DNA repair pathways may be a promising treatment for HNSCC. In this review, we summarized the sources of DNA damage and DNA damage repair pathways. Further, the role of DNA damage repair pathways in the development of HNSCC and the application of small molecule inhibitors targeting these pathways in the treatment of HNSCC were focused.
Collapse
Affiliation(s)
- Huimin Lei
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Ading He
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Min Ruan
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Nannan Han
- School of Stomatology, Weifang Medical University, Weifang, China
- Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death Dis 2022; 13:754. [PMID: 36050295 PMCID: PMC9436997 DOI: 10.1038/s41419-022-05182-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ivermectin is a widely used antiparasitic drug and shows promising anticancer activity in various cancer types. Although multiple signaling pathways modulated by ivermectin have been identified in tumor cells, few studies have focused on the exact target of ivermectin. Herein, we report the pharmacological effects and targets of ivermectin in prostate cancer. Ivermectin caused G0/G1 cell cycle arrest, induced cell apoptosis and DNA damage, and decreased androgen receptor (AR) signaling in prostate cancer cells. Further in vivo analysis showed ivermectin could suppress 22RV1 xenograft progression. Using integrated omics profiling, including RNA-seq and thermal proteome profiling, the forkhead box protein A1 (FOXA1) and non-homologous end joining (NHEJ) repair executer Ku70/Ku80 were strongly suggested as direct targets of ivermectin in prostate cancer. The interaction of ivermectin and FOXA1 reduced the chromatin accessibility of AR signaling and the G0/G1 cell cycle regulator E2F1, leading to cell proliferation inhibition. The interaction of ivermectin and Ku70/Ku80 impaired the NHEJ repair ability. Cooperating with the downregulation of homologous recombination repair ability after AR signaling inhibition, ivermectin increased intracellular DNA double-strand breaks and finally triggered cell death. Our findings demonstrate the anticancer effect of ivermectin in prostate cancer, indicating that its use may be a new therapeutic approach for prostate cancer.
Collapse
|
22
|
Kamisawa K, Kosaka T, Nakamura K, Yasumizu Y, Hongo H, Takeda T, Matsumoto K, Nishihara H, Oya M. Influence of response to prior docetaxel on sensitivity to cabazitaxel in prostate cancer patients with PTEN alterations. Cancer Sci 2022; 113:3161-3168. [PMID: 35754315 PMCID: PMC9459256 DOI: 10.1111/cas.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate factors predicting the sensitivity to cabazitaxel therapy in metastatic castration‐resistant prostate cancer (mCRPC) patients with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) alterations. This single‐institution, retrospective study included 12 mCRPC patients with PTEN alterations who had received cabazitaxel therapy. Five patients (41%) responded to cabazitaxel therapy with a prostate‐specific antigen (PSA) level decline of ≥30% from baseline, and all of them had responded to prior docetaxel therapy with a PSA decline of ≥30%. None of the patients with a poor response to prior docetaxel therapy responded well to cabazitaxel therapy. Of the seven patients who did not respond to cabazitaxel and whose PSA declined from baseline was <30%, five (71%) were also refractory to prior docetaxel therapy. The PSA responses to docetaxel and cabazitaxel were significantly correlated (p = 0.027). Kaplan–Meier analysis revealed that progression‐free survival (PFS) for cabazitaxel was significantly shorter for prior docetaxel nonresponders (3.3 versus 9.1 months, p = 0.028). Multivariate analysis revealed that a poor response to prior docetaxel (PSA decline < 30%) (hazard ratio [HR] = 6.382, 95% confidence interval [CI] 1.172–34.750, p = 0.032) and baseline PSA of ≥20 ng/ml (HR = 33.584, 95% CI 2.332–483.671, p = 0.010) were independent prognostic factors for PFS with cabazitaxel therapy. These results demonstrate cross‐resistance between docetaxel and cabazitaxel. The response to prior docetaxel therapy can influence the sensitivity to cabazitaxel therapy in mCRPC patients with PTEN alterations.
Collapse
Affiliation(s)
- Ken Kamisawa
- Department of Urology, Keio University School of Medicine
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine
| | - Yota Yasumizu
- Department of Urology, Keio University School of Medicine
| | - Hiroshi Hongo
- Department of Urology, Keio University School of Medicine
| | | | | | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine
| |
Collapse
|
23
|
Ortiz-Sánchez C, Encarnación-Medina J, Park JY, Moreno N, Ruiz-Deya G, Matta J. Reduced DNA Repair Capacity in Prostate Cancer Patients: A Phenotypic Approach Using the CometChip. Cancers (Basel) 2022; 14:3117. [PMID: 35804887 PMCID: PMC9264934 DOI: 10.3390/cancers14133117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) accounts for 22% of the new cases diagnosed in Hispanic men in the US. Among Hispanics, Puerto Rican (PR) men show the highest PCa-specific mortality. Epidemiological studies using functional assays in lymphocytes have demonstrated that having low DRC is a significant risk factor for cancer development. The aim of this study was to evaluate variations in DRC in PR men with PCa. Lymphocytes were isolated from blood samples from PCa cases (n = 41) and controls (n = 14) recruited at a hospital setting. DRC levels through the nucleotide excision repair (NER) pathway were measured with the CometChip using UVC as a NER inductor. The mean DRC for controls and PCa cases were 20.66% (±7.96) and 8.41 (±4.88), respectively (p < 0.001). The relationship between DRC and tumor aggressiveness was also evaluated. Additional comparisons were performed to evaluate the contributions of age, anthropometric measurements, and prostate-specific antigen levels to the DRC. This is the first study to apply the CometChip in a clinical cancer study. Our results represent an innovative step in the development of a blood-based screening test for PCa based on DRC levels. Our data also suggest that DRC levels may have the potential to discriminate between aggressive and indolent cases.
Collapse
Affiliation(s)
- Carmen Ortiz-Sánchez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716-2347, Puerto Rico; (J.E.-M.); (J.M.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716-2347, Puerto Rico; (J.E.-M.); (J.M.)
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Natasha Moreno
- St. Luke’s Episcopal Hospital, Ponce, PR 00733, Puerto Rico; (N.M.); (G.R.-D.)
| | - Gilberto Ruiz-Deya
- St. Luke’s Episcopal Hospital, Ponce, PR 00733, Puerto Rico; (N.M.); (G.R.-D.)
- Department of Surgery, Ponce Health Sciences University, Ponce, PR 00716-2347, Puerto Rico
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716-2347, Puerto Rico; (J.E.-M.); (J.M.)
| |
Collapse
|
24
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
25
|
Krieger KL, Gohlke JH, Lee KJ, Piyarathna DWB, Castro PD, Jones JA, Ittmann MM, Gassman NR, Sreekumar A. Repair-Assisted Damage Detection Reveals Biological Disparities in Prostate Cancer between African Americans and European Americans. Cancers (Basel) 2022; 14:cancers14041012. [PMID: 35205762 PMCID: PMC8870190 DOI: 10.3390/cancers14041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Prostate cancer is the most diagnosed cancer among men in the United States. African American men are diagnosed with and succumb to prostate cancer at higher rates than other demographic groups. Previously published works described the biological differences in prostate tumors that may contribute to poorer outcomes in African American men compared to European American men. This study was designed to explore the DNA lesion profiles found in prostate tissues. Using tissue microarrays, we found that prostate tumors from African American patients have more uracil and pyrimidine damage, elevated UNG levels, and reduced XRCC1 levels than European American tumors, which may indicate defects in the base excision repair pathway. In addition, these men had higher UMP and lower expression of folate cycle metabolites, suggesting that metabolic rewiring may also contribute to the dysregulation of base excision repair. Abstract African Americans (AA) are two times more likely to be diagnosed with and succumb to prostate cancer (PCa) compared to European Americans (EA). There is mounting evidence that biological differences in these tumors contribute to disparities in patient outcomes. Our goal was to examine the differences in DNA damage in AA and EA prostate tissues. Tissue microarrays with matched tumor-benign adjacent pairs from 77 AA and EA PCa patients were analyzed for abasic sites, oxidative lesions, crosslinks, and uracil content using the Repair Assisted Damage Detection (RADD) assay. Our analysis revealed that AA PCa, overall, have more DNA damage than EA PCa. Increased uracil and pyrimidine lesions occurred in AA tumors, while EA tumors had more oxidative lesions. AA PCa have higher levels of UMP and folate cycle metabolites than their EA counterparts. AA PCa showed higher levels of UNG, the uracil-specific glycosylase, than EA, despite uracil lesions being retained within the genome. AA patients also had lower levels of the base excision repair protein XRCC1. These results indicate dysfunction in the base excision repair pathway in AA tumors. Further, these findings reveal how metabolic rewiring in AA PCa drives biological disparities and identifies a targetable axis for cancer therapeutics.
Collapse
Affiliation(s)
- Kimiko L. Krieger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Jie H. Gohlke
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin J. Lee
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA;
| | - Danthasinghe Waduge Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia D. Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (P.D.C.); (M.M.I.)
- Human Tissue Acquisition & Pathology Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey A. Jones
- Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX 77030, USA;
- Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; (P.D.C.); (M.M.I.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (N.R.G.); (A.S.); Tel.: +1-205-975-1904 (N.R.G.); +1-713-798-3305 (A.S.)
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (K.L.K.); (J.H.G.); (D.W.B.P.)
- Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (N.R.G.); (A.S.); Tel.: +1-205-975-1904 (N.R.G.); +1-713-798-3305 (A.S.)
| |
Collapse
|
26
|
Targeting MUS81 promotes the anticancer effect of WEE1 inhibitor and immune checkpoint blocking combination therapy via activating cGAS/STING signaling in gastric cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:315. [PMID: 34625086 PMCID: PMC8501558 DOI: 10.1186/s13046-021-02120-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Background Identification of genomic biomarkers to predict the anticancer effects of indicated drugs is considered a promising strategy for the development of precision medicine. DNA endonuclease MUS81 plays a pivotal role in various biological processes during malignant diseases, mainly in DNA damage repair and replication fork stability. Our previous study reported that MUS81 was highly expressed and linked to tumor metastasis in gastric cancer; however, its therapeutic value has not been fully elucidated. Methods Bioinformatics analysis was used to define MUS81-related differential genes, which were further validated in clinical tissue samples. Gain or loss of function MUS81 cell models were constructed to elucidate the effect and mechanism of MUS81 on WEE1 expression. Moreover, the antitumor effect of targeting MUS81 combined with WEE1 inhibitors was verified using in vivo and in vitro assays. Thereafter, the cGAS/STING pathway was evaluated, and the therapeutic value of MUS81 for immunotherapy of gastric cancer was determined. Results In this study, MUS81 negatively correlated with the expression of cell cycle checkpoint kinase WEE1. Furthermore, we identified that MUS81 regulated the ubiquitination of WEE1 via E-3 ligase β-TRCP in an enzymatic manner. In addition, MUS81 inhibition could sensitize the anticancer effect of the WEE1 inhibitor MK1775 in gastric cancer in vitro and in vivo. Interestingly, when MUS81 was targeted, it increased the accumulation of cytosolic DNA induced by MK1775 treatment and activated the DNA sensor STING-mediated innate immunity in the gastric cancer cells. Thus, the WEE1 inhibitor MK1775 specifically enhanced the anticancer effect of immune checkpoint blockade therapy in MUS81 deficient gastric cancer cells. Conclusions Our data provide rational evidence that targeting MUS81 could elevate the expression of WEE1 by regulating its ubiquitination and could activate the innate immune response, thereby enhancing the anticancer efficacy of WEE1 inhibitor and immune checkpoint blockade combination therapy in gastric cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02120-4.
Collapse
|
27
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
28
|
Considine B, Adeniran A, Hurwitz ME. Current Understanding and Management of Intraductal Carcinoma of the Prostate. Curr Oncol Rep 2021; 23:110. [PMID: 34272624 DOI: 10.1007/s11912-021-01090-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW This review will discuss current understanding and management approaches of Intraductal carcinoma of the prostate (IDC-P). IDC-P is a histological finding characterized by neoplastic cells that expand but do not invade prostate ducts. RECENT FINDINGS The presence of IDC-P on a prostate biopsy is almost always associated with an invasive disease component and is independently associated with worse clinical outcomes in both early and late disease. These tumors are enriched for mutations in homologous DNA recombination repair (HRR) leading to high genomic instability. Multiparametric MRI with targeted biopsy may aid in diagnosis. Given the poor clinical outcomes associated with this histologic entity, its presence in biopsies should warrant consideration of aggressive management.
Collapse
Affiliation(s)
- Bryden Considine
- Yale Comprehensive Cancer Center, 333 Cedar St, New Haven, CT, 06510, USA
| | - Adebowale Adeniran
- Yale Comprehensive Cancer Center, 333 Cedar St, New Haven, CT, 06510, USA
| | - Michael E Hurwitz
- Yale Comprehensive Cancer Center, 333 Cedar St, New Haven, CT, 06510, USA.
| |
Collapse
|
29
|
Bohl SR, Schmalbrock LK, Bauhuf I, Meyer T, Dolnik A, Szyska M, Blätte TJ, Knödler S, Röhner L, Miller D, Kull M, Langer C, Döhner H, Letai A, Damm F, Heckl D, Bullinger L, Krönke J. Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Adv 2021; 5:2391-2402. [PMID: 33950175 PMCID: PMC8114551 DOI: 10.1182/bloodadvances.2020003541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The introduction of new drugs in the past years has substantially improved outcome in multiple myeloma (MM). However, the majority of patients eventually relapse and become resistant to one or multiple drugs. While the genetic landscape of relapsed/ resistant multiple myeloma has been elucidated, the causal relationship between relapse-specific gene mutations and the sensitivity to a given drug in MM has not systematically been evaluated. To determine the functional impact of gene mutations, we performed combined whole-exome sequencing (WES) of longitudinal patient samples with CRISPR-Cas9 drug resistance screens for lenalidomide, bortezomib, dexamethasone, and melphalan. WES of longitudinal samples from 16 MM patients identified a large number of mutations in each patient that were newly acquired or evolved from a small subclone (median 9, range 1-55), including recurrent mutations in TP53, DNAH5, and WSCD2. Focused CRISPR-Cas9 resistance screens against 170 relapse-specific mutations functionally linked 15 of them to drug resistance. These included cereblon E3 ligase complex members for lenalidomide, structural genes PCDHA5 and ANKMY2 for dexamethasone, RB1 and CDK2NC for bortezomib, and TP53 for melphalan. In contrast, inactivation of genes involved in the DNA damage repair pathway, including ATM, FANCA, RAD54B, and BRCC3, enhanced susceptibility to cytotoxic chemotherapy. Resistance patterns were highly drug specific with low overlap and highly correlated with the treatment-dependent clonal evolution in patients. The functional association of specific genetic alterations with drug sensitivity will help to personalize treatment of MM in the future.
Collapse
Affiliation(s)
- Stephan R Bohl
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Laura K Schmalbrock
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Imke Bauhuf
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Tatjana Meyer
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Szyska
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tamara J Blätte
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Knödler
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Linda Röhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Denise Miller
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Miriam Kull
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Christian Langer
- Department of Hematology, Internal Oncology and Palliative Care, Kempten Hospital, Kempten, Germany; and
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dirk Heckl
- Department of Hematology and Oncology Children's Hospital, Halle University Hospital, Halle, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Krönke
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Nakken S, Lilleby W, Switlyk MD, Knudsen KE, Lilleby O, Zhao S, Kaveh F, Ekstrøm PO, Urbanucci A, Hovig E. The Quandary of DNA-Based Treatment Assessment in De Novo Metastatic Prostate Cancer in the Era of Precision Oncology. J Pers Med 2021; 11:330. [PMID: 33922147 PMCID: PMC8143497 DOI: 10.3390/jpm11050330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Guidelines for genetic testing have been established for multiple tumor types, frequently indicating the most confident molecularly targeted treatment options. However, considering the often-complex presentation of individual cancer patients, in addition to the combinatorial complexity and inherent uncertainties of molecular findings, deriving optimal treatment strategies frequently becomes very challenging. Here, we report a comprehensive analysis of a 68-year-old male with metastatic prostate cancer, encompassing pathology and MRI findings, transcriptomic results, and key genomics findings from whole-exome sequencing, both somatic aberrations and germline variants. We identify multiple somatic aberrations that are known to be enriched in prostate cancer, including a deletion of PTEN and a fusion transcript involving BRCA2. The gene expression patterns in the tumor biopsy were also strikingly similar to prostate tumor samples from TCGA. Furthermore, we detected multiple lines of evidence for homologous recombination repair deficiency (HRD), including a dominant contribution by mutational signature SBS3, which is specifically attributed to HRD. On the basis of the genomic and transcriptomic findings, and in light of the clinical case presentation, we discussed the personalized treatment options that exist for this patient and the various challenges that one faces in the process of translating high-throughput sequencing data towards treatment regimens.
Collapse
Affiliation(s)
- Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway; (S.N.); (S.Z.); (F.K.); (P.O.E.); (A.U.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Wolfgang Lilleby
- Department of Oncology, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway;
| | - Marta D. Switlyk
- Department of Radiology, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway;
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Oscar Lilleby
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Sen Zhao
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway; (S.N.); (S.Z.); (F.K.); (P.O.E.); (A.U.)
| | - Fatemeh Kaveh
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway; (S.N.); (S.Z.); (F.K.); (P.O.E.); (A.U.)
| | - Per O. Ekstrøm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway; (S.N.); (S.Z.); (F.K.); (P.O.E.); (A.U.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway; (S.N.); (S.Z.); (F.K.); (P.O.E.); (A.U.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital-Radium Hospital, 0424 Oslo, Norway; (S.N.); (S.Z.); (F.K.); (P.O.E.); (A.U.)
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
31
|
Breslauer KJ. The shaping of a molecular linguist: How a career studying DNA energetics revealed the language of molecular communication. J Biol Chem 2021; 296:100522. [PMID: 34237886 PMCID: PMC8058554 DOI: 10.1016/j.jbc.2021.100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
My personal and professional journeys have been far from predictable based on my early childhood. Owing to a range of serendipitous influences, I miraculously transitioned from a rebellious, apathetic teenage street urchin who did poorly in school to a highly motivated, disciplined, and ambitious academic honors student. I was the proverbial “late bloomer.” Ultimately, I earned my PhD in biophysical chemistry at Yale, followed by a postdoc fellowship at Berkeley. These two meccas of thermodynamics, coupled with my deep fascination with biology, instilled in me a passion to pursue an academic career focused on mapping the energy landscapes of biological systems. I viewed differential energetics as the language of molecular communication that would dictate and control biological structures, as well as modulate the modes of action associated with biological functions. I wanted to be a “molecular linguist.” For the next 50 years, my group and I used a combination of spectroscopic and calorimetric techniques to characterize the energy profiles of the polymorphic conformational space of DNA molecules, their differential ligand-binding properties, and the energy landscapes associated with mutagenic DNA damage recognition, repair, and replication. As elaborated below, the resultant energy databases have enabled the development of quantitative molecular biology through the rational design of primers, probes, and arrays for diagnostic, therapeutic, and molecular-profiling protocols, which collectively have contributed to a myriad of biomedical assays. Such profiling is further justified by yielding unique energy-based insights that complement and expand elegant, structure-based understandings of biological processes.
Collapse
Affiliation(s)
- Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA; The Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
32
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
33
|
STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis 2021; 12:13. [PMID: 33414452 PMCID: PMC7791051 DOI: 10.1038/s41419-020-03341-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Damaged deoxyribonucleic acid (DNA) is a primary pathologic factor for osteoarthritis (OA); however, the mechanism by which DNA damage drives OA is unclear. Previous research demonstrated that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) participates in DNA damage response. As a result, the current study aimed at exploring the role STING, which is the major effector in the cGAS-STING signaling casacde, in OA progress in vitro, as well as in vivo. In this study, the expression of STING was evaluated in the human and mouse OA tissues, and in chondrocytes exposed to interleukin-1 beta (IL-1β). The influences of STING on the metabolism of the extracellular matrix (ECM), apoptosis, and senescence, were assessed in STING overexpressing and knocking-down chondrocytes. Moreover, the NF-κB-signaling casacde and its role in the regulatory effects of STING on ECM metabolism, apoptosis, and senescence were explored. The STING knockdown lentivirus was intra-articularly injected to evaluate its therapeutic impact on OA in mice in vivo. The results showed that the expression of STING was remarkably elevated in the human and mouse OA tissues and in chondrocytes exposed to IL-1β. Overexpression of STING promoted the expression of MMP13, as well as ADAMTS5, but suppressed the expression of Aggrecan, as well as Collagen II; it also enhanced apoptosis and senescence in chondrocytes exposed to and those untreated with IL-1β. The mechanistic study showed that STING activated NF-κB signaling cascade, whereas the blockage of NF-κB signaling attenuated STING-induced apoptosis and senescence, and ameliorated STING-induced ECM metabolism imbalance. In in vivo study, it was demonstrated that STING knockdown alleviated destabilization of the medial meniscus-induced OA development in mice. In conclusion, STING promotes OA by activating the NF-κB signaling cascade, whereas suppression of STING may provide a novel approach for OA therapy.
Collapse
|