1
|
Panagopoulos A, Stout M, Kilic S, Leary P, Vornberger J, Pasti V, Galarreta A, Lezaja A, Kirschenbühler K, Imhof R, Rehrauer H, Ziegler U, Altmeyer M. Multigenerational cell tracking of DNA replication and heritable DNA damage. Nature 2025:10.1038/s41586-025-08986-0. [PMID: 40399682 DOI: 10.1038/s41586-025-08986-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/04/2025] [Indexed: 05/23/2025]
Abstract
Cell heterogeneity is a universal feature of life. Although biological processes affected by cell-to-cell variation are manifold, from developmental plasticity to tumour heterogeneity and differential drug responses, the sources of cell heterogeneity remain largely unclear1,2. Mutational and epigenetic signatures from cancer (epi)genomics are powerful for deducing processes that shaped cancer genome evolution3-5. However, retrospective analyses face difficulties in resolving how cellular heterogeneity emerges and is propagated to subsequent cell generations. Here, we used multigenerational single-cell tracking based on endogenously labelled proteins and custom-designed computational tools to elucidate how oncogenic perturbations induce sister cell asymmetry and phenotypic heterogeneity. Dual CRISPR-based genome editing enabled simultaneous tracking of DNA replication patterns and heritable endogenous DNA lesions. Cell lineage trees of up to four generations were tracked in asynchronously growing cells, and time-resolved lineage analyses were combined with end-point measurements of cell cycle and DNA damage markers through iterative staining. Besides revealing replication and repair dynamics, damage inheritance and emergence of sister cell heterogeneity across multiple cell generations, through combination with single-cell transcriptomics, we delineate how common oncogenic events trigger multiple routes towards polyploidization with distinct outcomes for genome integrity. Our study provides a framework to dissect phenotypic plasticity at the single-cell level and sheds light onto cellular processes that may resemble early events during cancer development.
Collapse
Affiliation(s)
- Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Sinan Kilic
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Peter Leary
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Virginia Pasti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Antonio Galarreta
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kyra Kirschenbühler
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- NEXUS Personalized Health, ETH Zurich, Schlieren, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
H Albehaijani S, Huynh T, Boyce KJ. Cellular and genetic changes during and after fluconazole exposure in Cryptococcus neoformans. Int J Antimicrob Agents 2025; 66:107519. [PMID: 40252781 DOI: 10.1016/j.ijantimicag.2025.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
The validity of genome replication is fundamental to fungal survival, and errors in this process can result in ploidy changes. These changes can have negative effects, such as developmental defects or reduced fitness, or positive effects such as fungal adaptation and resilience. In the fungal pathogen Cryptococcus neoformans, ploidy changes have been consistently observed in clinical populations, and isolates exposed to the antifungal drug fluconazole commonly exhibit chromosome 1 aneuploidy. Chromosomal and putative metabolic function changes due to drug exposure are not well studied and are important for understanding resistance. OBJECTIVES This study examined the fluconazole influence on C. neoformans transient aneuploidy and identified any potential genetic pathways that may be implicated. METHODS The study investigated 30 genes predicted to have a role in transient aneuploidy, which are related to chromosome organisation, DNA damage checkpoints and stress signalling. Other factors including ploidy status (haploid, diploid, polyploid) and species were also investigated to observe commonalities for a universal drug treatment strategy. RESULTS Fluconazole treatment increased DNA content, cell size and chromosomal changes in the wildtype and mutants. When fluconazole was removed, permanent changes were observed and were highly variable in the wildtypes and the 30 mutants. Additionally, some mutants lacked chromosomal changes such as tel1∆, mrc1∆ and hog1∆, highlighting the potential involvement in the aneuploidy process. CONCLUSIONS These findings highlight that fluconazole influences the entire genome rather than specific chromosomes, which increases the heterogeneity in permanent changes after fluconazole removal. This heterogeneity may result in long-term consequences, including drug resistance.
Collapse
Affiliation(s)
- Samah H Albehaijani
- School of Science, RMIT University, Melbourne, Victoria, Australia; Department of Biology, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Tien Huynh
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Kylie J Boyce
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Jyothy A, Hussain J, S SC, Chandraprabha VR, Nair MG, Vasudevan S, Sreedharan H, Abraham B, Maliekal TT, Natarajan K, Sengupta S. α-Fodrin-CENP-E interaction is critical for pancreatic cancer progression and drug response. Cell Cycle 2025:1-25. [PMID: 40211684 DOI: 10.1080/15384101.2025.2485837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/15/2025] Open
Abstract
α-Fodrin, a known scaffolding protein for cytoskeleton stabilization, performs various functions including cell adhesion, cell motility, DNA repair and apoptosis. Based on our previous results revealing its role in mitosis in glioblastoma, we have examined its effect in pancreatic cancer, which is often linked to mitotic aberrations including aneuploidy and chromosome instability. Here, we show that the expression of α-Fodrin increases in pancreatic adenocarcinoma tissues compared to its normal counterpart, suggesting its tumor promoting role. shRNA-mediated knock-down of α-Fodrin significantly reduces the xenograft growth in immunocompromised mice underscoring the importance of α-Fodrin in tumor progression. CENP-E (centromere-associated protein E) is a motor protein essential for chromosomal alignment and segregation during mitosis. We have found that α-Fodrin interacts with CENP-E to recruit it to the kinetochore and depletion of α-Fodrin has a crucial role in controlling aneuploidy. As these mitotic defects can lead to apoptosis, we have further evaluated the activation of possible upstream pathways. Paclitaxel, a chemotherapeutic agent that stabilizes microtubules, disrupts mitosis and induces apoptosis. We found that Paclitaxel triggered stronger activation of JNK, ERK, and P38 MAPKs, altered BCL2/BAX ratios, cytochrome C release causing increased apoptosis in α-Fodrin knockdown cells compared to cells with wild-type α-Fodrin. This enhanced sensitivity to paclitaxel is consistent with improved survival in pancreatic cancer patients with low α-Fodrin (SPTAN1) and low CENP-E expression compared to poor prognosis with high expressions of both the genes. Taken together, this study provides the molecular mechanism by which α-Fodrin - CENP-E axis regulates pancreatic cancer progression and drug response.
Collapse
Affiliation(s)
- Athira Jyothy
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Julfequar Hussain
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sharanya C S
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Smreti Vasudevan
- Research Department, Rajiv Gandhi Cancer Institute and Research, Delhi, India
| | - Hariharan Sreedharan
- Laboratory of Cytogenetics and Molecular Diagnostics, Regional Cancer Centre, Thiruvananthapuram, India
| | - Betty Abraham
- Department of Pathology, DDRC SRL Diagnostics private limited, Thiruvananthapuram, India
| | - Tessy Thomas Maliekal
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Suparna Sengupta
- Department of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
4
|
Souza VGP, Benard KH, Stewart GL, Enfield KSS, Lam WL. Identification of Genomic Instability-Associated LncRNAs as Potential Therapeutic Targets in Lung Adenocarcinoma. Cancers (Basel) 2025; 17:996. [PMID: 40149330 PMCID: PMC11940503 DOI: 10.3390/cancers17060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Non-small cell lung cancer (NSCLC) is the most common type of cancer, with lung adenocarcinoma (LUAD) as the predominant subtype. Despite advancements in targeted therapies, many NSCLC patients still experience poor outcomes due to treatment resistance and disease progression. Genomic instability (GI), a hallmark of cancer, defined as the increased tendency of DNA mutations and alterations, is closely linked to cancer initiation, progression, and resistance to therapy. Emerging evidence suggests that long non-coding RNAs (lncRNAs)-molecules longer than 200 nucleotides that do not encode proteins but regulate gene expression-play critical roles in cancer biology and are associated with GI. However, the relationship between GI and lncRNA expression in LUAD remains poorly understood. METHODS In this study, we analyzed the transcript profiles of lncRNAs and mRNAs from LUAD samples in The Cancer Genome Atlas (TCGA) database and classified them based on their Homologous Recombination Deficiency (HRD) score. The HRD score is an unweighted sum of three independent DNA-based measures of genomic instability: loss of heterozygosity, telomeric allelic imbalance, and large-scale transitions. We then performed a differential gene expression analysis to identify lncRNAs and mRNAs that were either upregulated or downregulated in samples with high HRD scores compared to those with low HRD scores. Following this, we conducted a correlation analysis to assess the significance of the association between HRD scores and the expression of both lncRNAs and mRNAs. RESULTS We identified 30 differentially expressed lncRNAs and 200 mRNAs associated with genomic instability. Using an RNA interactome database from sequencing experiments, we found evidence of interactions between GI-associated lncRNAs (GI-lncRNAs) and GI-associated mRNAs (GI-mRNAs). Further investigation showed that some GI-lncRNAs play regulatory and functional roles in LUAD and other diseases. We also found that GI-lncRNAs have potential as prognostic biomarkers, particularly when integrated with HRD stratification. The expression of specific GI-lncRNAs was associated with primary therapy response and immune infiltration in LUAD. Additionally, we identified existing drugs that could modulate GI-lncRNAs, offering potential therapeutic strategies to address GI in LUAD. CONCLUSIONS Our findings suggest that GI-associated lncRNAs could serve as valuable biomarkers for LUAD prognosis and therapeutic response. Furthermore, modulating these lncRNAs presents potential treatment avenues to address genomic instability in LUAD.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Katya H. Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katey S. S. Enfield
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
5
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 PMCID: PMC11876076 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Kazan HH, Acınan İS, Kandemir B, Karahan CP, Kayhan G, İşeri ÖD. Copy number variations of stepwise-selected doxorubicin-resistant MCF-7 cell lines. Gene 2025; 937:149139. [PMID: 39638013 DOI: 10.1016/j.gene.2024.149139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Elimination of cytotoxic effect in cells with multidrug resistance (MDR) phenotype is a situation that is gradually acquired over time and develops through multiple pathways resulting in global phenotypic changes of cells. Although molecular background of the resistance phenotype has widely been studied in the gene expression level, segmental and gene copy number variations (CNVs) have limitedly been documented. Thus, in the present study, we aimed to analyze the CNVs using DNA microarray in the sensitive and two doxorubicin-resistant MCF-7 breast cancer cell lines which had different resistance indices. In the present study, we performed conventional karyotyping and array comparative genomic hybridization (aCGH). Then, results of aCGH data were studied with genomic profiling, comparison analysis and ideogram plotting to evaluate genomic profiles, and the loss and gains of heterozygosity profiles. Next, gene lists for each cell line were compared with the 66-breast cancer-related genes and the multidrug resistance-related genes. aCGH analyses showed that CNV profiles and the copy number of specific genes were dramatically different between these three cell lines. Totally, 6212, 6558, and 11,201 genes were found to be altered in MCF-7, MCF-7/400DOX, and MCF-7/1000DOX genomes, respectively. Amongst the MCF-7/1000DOX had the highest number of altered genes, and doxorubicin resistance may cause differential chromosomal changes depending on the resistance status. DNA microarray would be one of the informative methods used in the studies on the cancer drug resistance in addition to transcriptomic and proteomic level high throughput analysis to define molecular mechanisms of the resistance status.
Collapse
Affiliation(s)
- Hasan Huseyin Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - İrem Sinem Acınan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara, Turkey
| | - Başak Kandemir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara, Turkey; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Ceyhan Pırıl Karahan
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gülsüm Kayhan
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Özlem Darcansoy İşeri
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara, Turkey.
| |
Collapse
|
7
|
Lv H, Zhou J, Qiu L, Tang X, Huang C. AURKB and circAURKB_288aa enhance Esophageal cancer drug resistance through inducing abnormal centrosome separation. Biochem Pharmacol 2025; 232:116691. [PMID: 39638069 DOI: 10.1016/j.bcp.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal malignancies worldwide, with a dramatic increase in incidence in the western world occurring over the past few decades. Chromosome instability (CIN) is a major contributor to EC progression, drug resistance, relapse, and the development of intratumoral heterogeneity. This study revealed a striking elevation of AURKB expression in EC patients, with a strong correlation to poor clinical outcomes. AURKB overexpression promoted cellular proliferation and induced drug resistance in both cell culture and animal models. Conversely, genetic targeting of AURKB abrogated these effects. Mechanistically, enforced AURKB expression triggered CIN, a key driver of poor EC outcomes, primarily through CEP250 phosphorylation. Interestingly, we identified a novel circular form of AURKB (circAURKB_288aa) harboring the AURKB kinase domain and encoding a 288-amino acid protein. Elevated levels of circAURKB_288aa in EC peripheral blood samples mirrored poor patient outcomes and synergistically enhanced CIN alongside AURKB. Furthermore, EC cells were capable of secreting circAURKB_288aa, influencing tumor microenvironmental cells similarly to full-length AURKB protein. Notably, AURKB siRNA targeting the shared kinase domain of both AURKB and circAURKB_288aa significantly inhibited EC malignancy. Collectively, these findings establish AURKB and circAURKB_288aa as promising targets for EC prognosis and therapy.
Collapse
Affiliation(s)
- Hongzhen Lv
- School of Basic Medical Sciences, Jiangsu Medical College, Yancheng, China
| | - Jing Zhou
- General Medicine Department, Yancheng Third People's Hospital, Yancheng, China
| | - Limin Qiu
- Thoracic Surgery Department, Yancheng NO.1 People's Hospital, Yancheng, China
| | - Xiaozhu Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Cheng Huang
- School of Traditional Chinese Medicine, Jiangsu Medical College, Yancheng, China.
| |
Collapse
|
8
|
Liao Y, Fu J, Lu X, Qian Z, Yu Y, Zhu L, Pan J, Li P, Zhu Q, Li X, Sun W, Wang X, Cao W. High chromosomal instability is associated with higher 10-year risks of recurrence for hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer patients: clinical evidence from a large-scale, multiple-site, retrospective study. J Pathol Clin Res 2024; 10:e70011. [PMID: 39545625 PMCID: PMC11565440 DOI: 10.1002/2056-4538.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Long-term survival varies among hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer patients and is seriously impaired by metastasis. Chromosomal instability (CIN) was one of the key drivers of breast cancer metastasis. Here we evaluate CIN and 10-year invasive disease-free survival (iDFS) and overall survival (OS) in HR+/HER2-- breast cancer. In this large-scale, multiple-site, retrospective study, 354 HR+/HER2- breast cancer patients were recruited. Of these, 204 patients were used for internal training, 70 for external validation, and 80 for cross-validation. All medical records were carefully reviewed to obtain the disease recurrence information. Formalin-fixed paraffin-embedded tissue samples were collected, followed by low-pass whole-genome sequencing with a median genome coverage of 1.86X using minimal 1 ng DNA input. CIN was then assessed using a customized bioinformatics workflow. Three or more instances of CIN per sample was defined as high CIN and the frequency was 42.2% (86/204) in the internal cohort. High CIN correlated significantly with increased lymph node metastasis, vascular invasion, progesterone receptor negative status, HER2 low, worse pathological type, and performed as an independent prognostic factor for HR+/- breast cancer. Patients with high CIN had shorter iDFS and OS than those with low CIN [10-year iDFS 11.1% versus 82.2%, hazard ratio (HR) = 11.12, p < 0.01; 10-year OS 45.7% versus 94.3%, HR = 14.17, p < 0.01]. These findings were validated in two external cohorts with 70 breast cancer patients. Moreover, high CIN could predict the prognosis more accurately than Adjuvant! Online score (10-year iDFS 11.1% versus 48.6%, HR = 2.71, p < 0.01). Cross-validation analysis found that high consistency (83.8%) was observed between CIN and MammaPrint score, while only 45% between CIN and Adjuvant! Online score. In conclusion, high CIN is an independent prognostic indicator for HR+/HER2- breast cancer with shorter iDFS and OS and holds promise for predicting recurrence and metastasis.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Female
- Retrospective Studies
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/analysis
- Middle Aged
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Chromosomal Instability
- Adult
- Aged
- Receptors, Progesterone/metabolism
- Receptors, Progesterone/analysis
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Disease-Free Survival
- Risk Factors
Collapse
Affiliation(s)
- Yu‐Yang Liao
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
- Postgraduate Training Base Alliance of Wenzhou Medical UniversityZhejiang Cancer HospitalHangzhouPR China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua HospitalZhejiang University School of Medicine (Jinhua Municipal Central Hospital)JinhuaPR China
| | - Xiang Lu
- Department of Breast DiseaseAffiliated Hospital of Jiaxing University (First Hospital of Jiaxing)JiaxingPR China
| | | | - Yang Yu
- Department of Breast SurgeryZhejiang Cancer HospitalHangzhouPR China
| | - Liang Zhu
- Department of PathologyZhejiang Cancer HospitalHangzhouPR China
| | - Jia‐Ni Pan
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| | - Pu‐Chun Li
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
- Postgraduate Training Base Alliance of Wenzhou Medical UniversityZhejiang Cancer HospitalHangzhouPR China
| | - Qiao‐Yan Zhu
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouPR China
| | - Xiaolin Li
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| | - Wenyong Sun
- Department of PathologyZhejiang Cancer HospitalHangzhouPR China
| | - Xiao‐Jia Wang
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| | - Wen‐Ming Cao
- Department of Breast Medical OncologyZhejiang Cancer HospitalHangzhouPR China
| |
Collapse
|
9
|
Rojas J, Hose J, Dutcher HA, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. CELL GENOMICS 2024; 4:100656. [PMID: 39317188 PMCID: PMC11602619 DOI: 10.1016/j.xgen.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74%-94% of the variance in aneuploid strains' growth rates is explained by the cumulative cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of small nucleolar RNAs (snoRNAs) and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Zheng MZ, Yang ZQ, Cai SL, Zheng LT, Xue Y, Chen L, Lin J. Blood-brain barrier and blood-brain tumor barrier penetrating peptide-drug conjugate as targeted therapy for the treatment of lung cancer brain metastasis. Lung Cancer 2024; 196:107957. [PMID: 39303402 DOI: 10.1016/j.lungcan.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Brain metastasis of lung cancer, which counts for nearly 50% of late-stage lung cancer patients, is a sign of a really poor prognosis. However, the presence of blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) limits the penetration of drugs from the blood into the brain and thus restricts their accumulation in brain tumors. Systematic delivery of drugs into brain and brain tumor lesion using BBB and BBTB penetrating vehicles represents a promising strategy to overcome the BBB and BBTB limitations. Hence, we validated one of our previously identified BBB/BBTB penetrating peptide and its drug conjugate form for the treatment of lung cancer brain metastasis. With in vitro experiment, we first validated that the receptor LRP1, which mediated the peptide penetration of the BBB, was expressed on lung cancer cells and thus can be targeted by the peptide to overcome BBTB. With this delivery peptide, we constructed peptide-paclitaxel conjugate (the PDC) and in vitro validation showed that the PDC can across the BBB and efficiently kill lung cancer cells. We therefore constructed mouse lung cancer brain metastasis xenograft. In vivo anti-tumor validations showed that the PDC efficiently inhibited the proliferation of the brain resident lung cancer cells and significantly expanded the survival of the mouse xenograft, with no visible damages to the organs. Overall, our study provided potential therapeutic drugs for the treatment of lung cancer brain metastasis that may be clinically effective in the near future.
Collapse
Affiliation(s)
- Meng-Zhu Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Song Li's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhan-Qun Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Sun-Li Cai
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, Zhejiang, China
| | - Li-Ting Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Xue
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| | - Jian Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Song Li's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
11
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Brown LM, Hagenson RA, Koklič T, Urbančič I, Qiao L, Strancar J, Sheltzer JM. An elevated rate of whole-genome duplications in cancers from Black patients. Nat Commun 2024; 15:8218. [PMID: 39300140 PMCID: PMC11413164 DOI: 10.1038/s41467-024-52554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
In the United States, Black individuals have higher rates of cancer mortality than any other racial group. Here, we examine chromosome copy number changes in cancers from more than 1800 self-reported Black patients. We find that tumors from self-reported Black patients are significantly more likely to exhibit whole-genome duplications (WGDs), a genomic event that enhances metastasis and aggressive disease, compared to tumors from self-reported white patients. This increase in WGD frequency is observed across multiple cancer types, including breast, endometrial, and lung cancer, and is associated with shorter patient survival. We further demonstrate that combustion byproducts are capable of inducing WGDs in cell culture, and cancers from self-reported Black patients exhibit mutational signatures consistent with exposure to these carcinogens. In total, these findings identify a type of genomic alteration that is associated with environmental exposures and that may influence racial disparities in cancer outcomes.
Collapse
Affiliation(s)
| | | | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Lu Qiao
- Yale University, School of Medicine, New Haven, CT, USA
| | - Janez Strancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
- Infinite d.o.o, Zagrebška cesta 20, Maribor, Slovenia
| | | |
Collapse
|
13
|
Peng Y, Zhang Y, Fang R, Jiang H, Lan G, Xu Z, Liu Y, Nie Z, Ren L, Wang F, Zhang S, Ma Y, Yang P, Ge H, Zhang W, Luo C, Li A, He W. Target Identification and Mechanistic Characterization of Indole Terpenoid Mimics: Proper Spindle Microtubule Assembly Is Essential for Cdh1-Mediated Proteolysis of CENP-A. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305593. [PMID: 38873820 PMCID: PMC11304278 DOI: 10.1002/advs.202305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Centromere protein A (CENP-A), a centromere-specific histone H3 variant, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of β-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.
Collapse
Affiliation(s)
- Yan Peng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yumeng Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Hao Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gongcai Lan
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhou Xu
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Yajie Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhaoyang Nie
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Lu Ren
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Fengcan Wang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Shou‐De Zhang
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXining810016China
| | - Yuyong Ma
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Peng Yang
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Hong‐Hua Ge
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Wei‐Dong Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Cheng Luo
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ang Li
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
14
|
Li J, Cheng C, Zhang J. An analysis of AURKB's prognostic and immunological roles across various cancers. J Cell Mol Med 2024; 28:e18475. [PMID: 38898693 PMCID: PMC11187167 DOI: 10.1111/jcmm.18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.
Collapse
Affiliation(s)
- Jun Li
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Cui Cheng
- Department of Gynaecological OncologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Jiajun Zhang
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| |
Collapse
|
15
|
Rodrigues JS, Chenlo M, Bravo SB, Perez-Romero S, Suarez-Fariña M, Sobrino T, Sanz-Pamplona R, González-Prieto R, Blanco Freire MN, Nogueiras R, López M, Fugazzola L, Cameselle-Teijeiro JM, Alvarez CV. dsRNAi-mediated silencing of PIAS2beta specifically kills anaplastic carcinomas by mitotic catastrophe. Nat Commun 2024; 15:3736. [PMID: 38744818 PMCID: PMC11094195 DOI: 10.1038/s41467-024-47751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.
Collapse
Affiliation(s)
- Joana S Rodrigues
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Susana B Bravo
- Department of Proteomics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Tomas Sobrino
- Department of NeuroAging Group - Clinical Neurosciences Research Laboratory (LINC), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- University Hospital Lozano Blesa, Institute for Health Research Aragon (IISA), ARAID Foundation, Aragon Government and CIBERESP, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Román González-Prieto
- Cell Dynamics and Signaling Department, Andalusian Center for Molecular Biology and Regenerative Medicine, Universidad de Sevilla - CSIC - Universidad Pablo de Olavide-Junta de Andalucía, 41092, Sevilla, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, 41012, Sevilla, Spain
| | - Manuel Narciso Blanco Freire
- Department of Surgery, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Molecular Metabolism, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS); Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
17
|
Rojas J, Hose J, Auguste Dutcher H, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588778. [PMID: 38645209 PMCID: PMC11030387 DOI: 10.1101/2024.04.09.588778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
18
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
19
|
Schneider MP, Cullen AE, Pangonyte J, Skelton J, Major H, Van Oudenhove E, Garcia MJ, Chaves Urbano B, Piskorz AM, Brenton JD, Macintyre G, Markowetz F. scAbsolute: measuring single-cell ploidy and replication status. Genome Biol 2024; 25:62. [PMID: 38438920 PMCID: PMC10910719 DOI: 10.1186/s13059-024-03204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Cancer cells often exhibit DNA copy number aberrations and can vary widely in their ploidy. Correct estimation of the ploidy of single-cell genomes is paramount for downstream analysis. Based only on single-cell DNA sequencing information, scAbsolute achieves accurate and unbiased measurement of single-cell ploidy and replication status, including whole-genome duplications. We demonstrate scAbsolute's capabilities using experimental cell multiplets, a FUCCI cell cycle expression system, and a benchmark against state-of-the-art methods. scAbsolute provides a robust foundation for single-cell DNA sequencing analysis across different technologies and has the potential to enable improvements in a number of downstream analyses.
Collapse
Affiliation(s)
- Michael P Schneider
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Amy E Cullen
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Justina Pangonyte
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Jason Skelton
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Harvey Major
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Elke Van Oudenhove
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Maria J Garcia
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Anna M Piskorz
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - James D Brenton
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Geoff Macintyre
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Florian Markowetz
- University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK.
| |
Collapse
|
20
|
Bhatia S, Khanna KK, Duijf PHG. Targeting chromosomal instability and aneuploidy in cancer. Trends Pharmacol Sci 2024; 45:210-224. [PMID: 38355324 DOI: 10.1016/j.tips.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
21
|
Taluri S, Oza VH, Soelter TM, Fisher JL, Lasseigne BN. Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers. Cancer Rep (Hoboken) 2023; 6:e1902. [PMID: 37680168 PMCID: PMC10728508 DOI: 10.1002/cnr2.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. AIMS Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). METHODS AND RESULTS Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. CONCLUSIONS We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.
Collapse
Affiliation(s)
- Sasha Taluri
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
22
|
Lakhani AA, Thompson SL, Sheltzer JM. Aneuploidy in human cancer: new tools and perspectives. Trends Genet 2023; 39:968-980. [PMID: 37778926 PMCID: PMC10715718 DOI: 10.1016/j.tig.2023.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.
Collapse
Affiliation(s)
- Asad A Lakhani
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring, Harbor, NY 11724, USA
| | | | | |
Collapse
|
23
|
Ragusa D, Vagnarelli P. Contribution of histone variants to aneuploidy: a cancer perspective. Front Genet 2023; 14:1290903. [PMID: 38075697 PMCID: PMC10702394 DOI: 10.3389/fgene.2023.1290903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 07/29/2024] Open
Abstract
Histone variants, which generally differ in few amino acid residues, can replace core histones (H1, H2A, H2B, and H3) to confer specific structural and functional features to regulate cellular functions. In addition to their role in DNA packaging, histones modulate key processes such as gene expression regulation and chromosome segregation, which are frequently dysregulated in cancer cells. During the years, histones variants have gained significant attention as gatekeepers of chromosome stability, raising interest in understanding how structural and functional alterations can contribute to tumourigenesis. Beside the well-established role of the histone H3 variant CENP-A in centromere specification and maintenance, a growing body of literature has described mutations, aberrant expression patterns and post-translational modifications of a variety of histone variants in several cancers, also coining the term "oncohistones." At the molecular level, mechanistic studies have been dissecting the biological mechanisms behind histones and missegregation events, with the potential to uncover novel clinically-relevant targets. In this review, we focus on the current understanding and highlight knowledge gaps of the contribution of histone variants to aneuploidy, and we have compiled a database (HistoPloidyDB) of histone gene alterations linked to aneuploidy in cancers of the The Cancer Genome Atlas project.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Paola Vagnarelli
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
24
|
Patruno L, Milite S, Bergamin R, Calonaci N, D’Onofrio A, Anselmi F, Antoniotti M, Graudenzi A, Caravagna G. A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing. PLoS Comput Biol 2023; 19:e1011557. [PMID: 37917660 PMCID: PMC10645363 DOI: 10.1371/journal.pcbi.1011557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Single-cell RNA and ATAC sequencing technologies enable the examination of gene expression and chromatin accessibility in individual cells, providing insights into cellular phenotypes. In cancer research, it is important to consistently analyze these states within an evolutionary context on genetic clones. Here we present CONGAS+, a Bayesian model to map single-cell RNA and ATAC profiles onto the latent space of copy number clones. CONGAS+ clusters cells into tumour subclones with similar ploidy, rendering straightforward to compare their expression and chromatin profiles. The framework, implemented on GPU and tested on real and simulated data, scales to analyse seamlessly thousands of cells, demonstrating better performance than single-molecule models, and supporting new multi-omics assays. In prostate cancer, lymphoma and basal cell carcinoma, CONGAS+ successfully identifies complex subclonal architectures while providing a coherent mapping between ATAC and RNA, facilitating the study of genotype-phenotype maps and their connection to genomic instability.
Collapse
Affiliation(s)
- Lucrezia Patruno
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Salvatore Milite
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
- Centre for Computational Biology, Human Technopole, Milan, Italy
| | - Riccardo Bergamin
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Nicola Calonaci
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Alberto D’Onofrio
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Fabio Anselmi
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- B4—Bicocca Bioinformatics Biostatistics and Bioimaging Centre, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- B4—Bicocca Bioinformatics Biostatistics and Bioimaging Centre, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
25
|
Watkins TBK, Colliver EC, Huska MR, Kaufmann TL, Lim EL, Duncan CB, Haase K, Van Loo P, Swanton C, McGranahan N, Schwarz RF. Refphase: Multi-sample phasing reveals haplotype-specific copy number heterogeneity. PLoS Comput Biol 2023; 19:e1011379. [PMID: 37871126 PMCID: PMC10621967 DOI: 10.1371/journal.pcbi.1011379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/02/2023] [Accepted: 07/22/2023] [Indexed: 10/25/2023] Open
Abstract
Most computational methods that infer somatic copy number alterations (SCNAs) from bulk sequencing of DNA analyse tumour samples individually. However, the sequencing of multiple tumour samples from a patient's disease is an increasingly common practice. We introduce Refphase, an algorithm that leverages this multi-sampling approach to infer haplotype-specific copy numbers through multi-sample phasing. We demonstrate Refphase's ability to infer haplotype-specific SCNAs and characterise their intra-tumour heterogeneity, to uncover previously undetected allelic imbalance in low purity samples, and to identify parallel evolution in the context of whole genome doubling in a pan-cancer cohort of 336 samples from 99 tumours.
Collapse
Affiliation(s)
- Thomas B. K. Watkins
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Matthew R. Huska
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Tom L. Kaufmann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Berlin, Germany
- BIFOLD—Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Emilia L. Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cody B. Duncan
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kerstin Haase
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Van Loo
- The Francis Crick Institute, London, United Kingdom
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, United Kingdom
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
- BIFOLD—Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Andrade JR, Gallagher AD, Maharaj J, McClelland SE. Disentangling the roles of aneuploidy, chromosomal instability and tumour heterogeneity in developing resistance to cancer therapies. Chromosome Res 2023; 31:28. [PMID: 37721639 PMCID: PMC10506951 DOI: 10.1007/s10577-023-09737-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Aneuploidy is defined as the cellular state of having a number of chromosomes that deviates from a multiple of the normal haploid chromosome number of a given organism. Aneuploidy can be present in a static state: Down syndrome individuals stably maintain an extra copy of chromosome 21 in their cells. In cancer cells, however, aneuploidy is usually present in combination with chromosomal instability (CIN) which leads to a continual generation of new chromosomal alterations and the development of intratumour heterogeneity (ITH). The prevalence of cells with specific chromosomal alterations is further shaped by evolutionary selection, for example, during the administration of cancer therapies. Aneuploidy, CIN and ITH have each been individually associated with poor prognosis in cancer, and a wealth of evidence suggests they contribute, either alone or in combination, to cancer therapy resistance by providing a reservoir of potential resistant states, or the ability to rapidly evolve resistance. A full understanding of the contribution and interplay between aneuploidy, CIN and ITH is required to tackle therapy resistance in cancer patients. However, these characteristics often co-occur and are intrinsically linked, presenting a major challenge to defining their individual contributions. Moreover, their accurate measurement in both experimental and clinical settings is a technical hurdle. Here, we attempt to deconstruct the contribution of the individual and combined roles of aneuploidy, CIN and ITH to therapy resistance in cancer, and outline emerging approaches to measure and disentangle their roles as a step towards integrating these principles into cancer therapeutic strategy.
Collapse
Affiliation(s)
- Joana Reis Andrade
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M6BQ, England
| | - Annie Dinky Gallagher
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M6BQ, England
| | - Jovanna Maharaj
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M6BQ, England
| | | |
Collapse
|
27
|
Jia W, Huang Z, Zhou L, Liou YC, Di Virgilio F, Ulrich H, Illes P, Zhang W, Huang C, Tang Y. Purinergic signalling in cancer therapeutic resistance: From mechanisms to targeting strategies. Drug Resist Updat 2023; 70:100988. [PMID: 37413937 DOI: 10.1016/j.drup.2023.100988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Purinergic signalling, consisting of extracellular purines and purinergic receptors, modulates cell proliferation, invasion and immunological reaction during cancer progression. Here, we focus on current evidence that suggests the crucial role of purinergic signalling in mediating cancer therapeutic resistance, the major obstacle in cancer treatment. Mechanistically, purinergic signalling can modulate the tumor microenvironment (TME), epithelial-mesenchymal transition (EMT) and anti-tumor immunity, thus affecting drug sensitivity of tumor cells. Currently, some agents attempting to target purinergic signalling either in tumor cells or in tumor-associated immune cells are under preclinical or clinical investigation. Moreover, nano-based delivery technologies significantly improve the efficacy of agents targeting purinergic signalling. In this review article, we summarize the mechanisms of purinergic signalling in promoting cancer therapeutic resistance and discuss the potentials and challenges of targeting purinergic signalling in future cancer treatment.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yih-Cherng Liou
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117573, Singapore
| | | | - Henning Ulrich
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Institute of TCM-Based Stress Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
28
|
Song H, Kim EH, Hong J, Gwon D, Kim JW, Bae GU, Jang CY. Hornerin mediates phosphorylation of the polo-box domain in Plk1 by Chk1 to induce death in mitosis. Cell Death Differ 2023; 30:2151-2166. [PMID: 37596441 PMCID: PMC10482915 DOI: 10.1038/s41418-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 08/20/2023] Open
Abstract
The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.
Collapse
Affiliation(s)
- Haiyu Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dasom Gwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
29
|
Taluri S, Oza VH, Soelter TM, Fisher JL, Lasseigne BN. Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542174. [PMID: 37292608 PMCID: PMC10245901 DOI: 10.1101/2023.05.24.542174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. Aims Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). Methods and results Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. Conclusions We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.
Collapse
Affiliation(s)
- Sasha Taluri
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Hou Z, Lin S, Du T, Wang M, Wang W, You S, Xue N, Liu Y, Ji M, Xu H, Chen X. S-72, a Novel Orally Available Tubulin Inhibitor, Overcomes Paclitaxel Resistance via Inactivation of the STING Pathway in Breast Cancer. Pharmaceuticals (Basel) 2023; 16:ph16050749. [PMID: 37242532 DOI: 10.3390/ph16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Microtubule-targeting agents are widely used as active anticancer drugs. However, drug resistance always emerges after their long-term use, especially in the case of paclitaxel, which is the cornerstone of all subtypes of breast cancer treatment. Hence, the development of novel agents to overcome this resistance is vital. This study reports on a novel, potent, and orally bioavailable tubulin inhibitor called S-72 and evaluated its preclinical efficacy in combating paclitaxel resistance in breast cancer and the molecular mechanisms behind it. We found that S-72 suppresses the proliferation, invasion and migration of paclitaxel-resistant breast cancer cells in vitro and displays desirable antitumor activities against xenografts in vivo. As a characterized tubulin inhibitor, S-72 typically inhibits tubulin polymerization and further triggers mitosis-phase cell cycle arrest and cell apoptosis, in addition to suppressing STAT3 signaling. Further studies showed that STING signaling is involved in paclitaxel resistance, and S-72 blocks STING activation in paclitaxel-resistant breast cancer cells. This effect further restores multipolar spindle formation and causes deadly chromosomal instability in cells. Our study offers a promising novel microtubule-destabilizing agent for paclitaxel-resistant breast cancer treatment as well as a potential strategy that can be used to improve paclitaxel sensitivity.
Collapse
Affiliation(s)
- Zhenyan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingjin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yichen Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Liu N, Liu G, Ma Q, Li X. Chromosome instability-associated prognostic signature and cluster investigation for cutaneous melanoma cases. IET Syst Biol 2023. [PMID: 37186446 DOI: 10.1049/syb2.12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Chromosomal instability (CIN) is closely associated to the early detection of several clinical tumours. In this study, the authors first established a novel prognostic model of melanoma using the hub genes of CIN, based on the datasets of The cancer genome atlas-skin cutaneous melanoma (TCGA-SKCM) and GSE65904 cohorts. Based on the risk scores of our model, the disease-specific survival (DSS) prognosis was worse in the high-risk group. Combining risk score, stage, age, ulceration, and clark factors, a Nomogram was generated to predict 1, 3, 5-year survival rates, which indicated a good clinical validity. Our finding also showed a correlation between high/low risk and tumour infiltration levels of 'activated CD8 T cells' and 'effector memory CD8 T cells'. Moreover, the authors first performed a CIN-based tumour clustering analysis using TCGA-SKCM cases, and identified two melanoma clusters, which exhibit the distinct DSS prognosis and the tumour-infiltrating levels of CD8 T cells. Taken together, a promising CIN-related prognostic signature and clustering for melanoma cases were first established in our study.
Collapse
Affiliation(s)
- Ning Liu
- Department of Plastic and Burns Surgery, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Guangjing Liu
- Department of Plastic and Burns Surgery, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qian Ma
- Department of Plastic and Burns Surgery, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xiaobing Li
- Department of Plastic and Burns Surgery, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Casotti MC, Meira DD, Zetum ASS, de Araújo BC, da Silva DRC, dos Santos EDVW, Garcia FM, de Paula F, Santana GM, Louro LS, Alves LNR, Braga RFR, Trabach RSDR, Bernardes SS, Louro TES, Chiela ECF, Lenz G, de Carvalho EF, Louro ID. Computational Biology Helps Understand How Polyploid Giant Cancer Cells Drive Tumor Success. Genes (Basel) 2023; 14:801. [PMID: 37107559 PMCID: PMC10137723 DOI: 10.3390/genes14040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Débora Dummer Meira
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Bruno Cancian de Araújo
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Danielle Ribeiro Campos da Silva
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | | | - Fernanda Mariano Garcia
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Flávia de Paula
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Lyvia Neves Rebello Alves
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Furlani Rocon Braga
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Raquel Silva dos Reis Trabach
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| | - Sara Santos Bernardes
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória 29027-502, Brazil
| | - Eduardo Cremonese Filippi Chiela
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
- Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil; (M.C.C.)
| |
Collapse
|
33
|
Winnard PT, Morsberger L, Yonescu R, Jiang L, Zou YS, Raman V. Isogenic Cell Lines Derived from Specific Organ Metastases Exhibit Divergent Cytogenomic Aberrations. Cancers (Basel) 2023; 15:cancers15051420. [PMID: 36900209 PMCID: PMC10000985 DOI: 10.3390/cancers15051420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Aneuploidy, a deviation in chromosome numbers from the normal diploid set, is now recognized as a fundamental characteristic of all cancer types and is found in 70-90% of all solid tumors. The majority of aneuploidies are generated by chromosomal instability (CIN). CIN/aneuploidy is an independent prognostic marker of cancer survival and is a cause of drug resistance. Hence, ongoing research has been directed towards the development of therapeutics aimed at targeting CIN/aneuploidy. However, there are relatively limited reports on the evolution of CIN/aneuploidies within or across metastatic lesions. In this work, we built on our previous studies using a human xenograft model system of metastatic disease in mice that is based on isogenic cell lines derived from the primary tumor and specific metastatic organs (brain, liver, lung, and spine). As such, these studies were aimed at exploring distinctions and commonalities between the karyotypes; biological processes that have been implicated in CIN; single-nucleotide polymorphisms (SNPs); losses, gains, and amplifications of chromosomal regions; and gene mutation variants across these cell lines. Substantial amounts of inter- and intra-heterogeneity were found across karyotypes, along with distinctions between SNP frequencies across each chromosome of each metastatic cell line relative the primary tumor cell line. There were disconnects between chromosomal gains or amplifications and protein levels of the genes in those regions. However, commonalities across all cell lines provide opportunities to select biological processes as druggable targets that could have efficacy against the primary tumor, as well as metastases.
Collapse
Affiliation(s)
- Paul T. Winnard
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raluca Yonescu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liqun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ying S. Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (Y.S.Z.); (V.R.); Tel.: +1-410-955-7492 (V.R.); Fax: +1-410-955-0484 (V.R.)
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: (Y.S.Z.); (V.R.); Tel.: +1-410-955-7492 (V.R.); Fax: +1-410-955-0484 (V.R.)
| |
Collapse
|
34
|
Wang C, Qin X, Guo W, Wang J, Liu L, Fang Z, Yuan H, Fan Y, Xu D. The chromosomal instability 25 gene signature is identified in clear cell renal cell carcinoma and serves as a predictor for survival and Sunitinib response. Front Oncol 2023; 13:1133902. [PMID: 37197417 PMCID: PMC10183591 DOI: 10.3389/fonc.2023.1133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Background Chromosomal instability (CIN) is a cancer hallmark and it is difficult to directly measure its phenotype, while a CIN25 gene signature was established to do so in several cancer types. However, it is currently unclear whether there exists this signature in clear cell renal cell carcinoma (ccRCC), and if so, which biological and clinical implications it has. Methods Transcriptomic profiling was performed on 10 ccRCC tumors and matched renal non-tumorous tissues (NTs) for CIN25 signature analyses. TCGA and E-MBAT1980 ccRCC cohorts were analyzed for the presence of CIN25 signature, CIN25 score-based ccRCC classification, and association with molecular alterations and overall or progression-free survival (OS or PFS). IMmotion150 and 151 cohorts of ccRCC patients treated with Sunitinib were analyzed for the CIN25 impact on Sunitinib response and survival. Results The transcriptomic analysis of 10 patient samples showed robustly upregulated expression of the CIN25 signature genes in ccRCC tumors, which were further confirmed in TCGA and E-MBAT1980 ccRCC cohorts. Based on their expression heterogeneity, ccRCC tumors were categorized into CIN25-C1 (low) and C2 (high) subtypes. The CIN25-C2 subtype was associated with significantly shorter patient OS and PFS, and characterized by increased telomerase activity, proliferation, stemness and EMT. The CIN25 signature reflects not only a CIN phenotype, but also levels of the whole genomic instability including mutation burden, microsatellite instability and homologous recombination deficiency (HRD). Importantly, the CIN25 score was significantly associated with Sunitinib response and survival. In IMmotion151 cohort, patients in the CIN25-C1 group exhibited 2-fold higher remission rate than those in the CIN25-C2 group (P = 0.0004) and median PFS in these two groups was 11.2 and 5.6 months, respectively (P = 7.78E-08). Similar results were obtained from the IMmotion150 cohort analysis. Higher EZH2 expression and poor angiogenesis, well characterized factors leading to Sunitinib resistance, were enriched in the CIN25-C2 tumors. Conclusion The CIN25 signature identified in ccRCC serves as a biomarker for CIN and other genome instability phenotypes and predicts patient outcomes and response to Sunitinib treatment. A PCR quantification is enough for the CIN25-based ccRCC classification, which holds great promises in clinical routine application.
Collapse
Affiliation(s)
- Chang Wang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, China
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Qin
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Guo
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Wang
- Department of Urologic Oncology, Division of Life Sciences and Medicine, University of Science and Technology of China, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqing Fang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Huiyang Yuan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Huiyang Yuan, ; Yidong Fan, ; Dawei Xu,
| | - Yidong Fan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Huiyang Yuan, ; Yidong Fan, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Huiyang Yuan, ; Yidong Fan, ; Dawei Xu,
| |
Collapse
|
35
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
36
|
Smith JC, Sheltzer JM. Genome-wide identification and analysis of prognostic features in human cancers. Cell Rep 2022; 38:110569. [PMID: 35354049 PMCID: PMC9042322 DOI: 10.1016/j.celrep.2022.110569] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Clinical decisions in cancer rely on precisely assessing patient risk. To improve our ability to identify the most aggressive malignancies, we constructed genome-wide survival models using gene expression, copy number, methylation, and mutation data from 10,884 patients. We identified more than 100,000 significant prognostic biomarkers and demonstrate that these genomic features can predict patient outcomes in clinically ambiguous situations. While adverse biomarkers are commonly believed to represent cancer driver genes and promising therapeutic targets, we show that cancer features associated with shorter survival times are not enriched for either oncogenes or for successful drug targets. Instead, the strongest adverse biomarkers represent widely expressed cell-cycle and housekeeping genes, and, correspondingly, nearly all therapies directed against these features have failed in clinical trials. In total, our analysis establishes a rich resource for prognostic biomarker analysis and clarifies the use of patient survival data in preclinical cancer research and therapeutic development.
Collapse
Affiliation(s)
- Joan C Smith
- Yale University School of Medicine, New Haven, CT 06511, USA; Google, Inc., New York, NY 10011, USA
| | | |
Collapse
|
37
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|