1
|
Xu W, Yang M, Wang J, Li J, Xiong M, Cao Z, Yang X. Artificial Cytotoxic T Lymphocytes Selectively Eliminate Tumor Cells for Effective Cancer Therapy. NANO LETTERS 2025. [PMID: 40492438 DOI: 10.1021/acs.nanolett.5c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
The highly selective ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells has inspired the development of artificial nanomedicine for effective cancer therapy. Here, an artificial CTL (aCTL) that selectively recognizes and kills cancer cells is developed. The membrane target-binding moiety, membrane-perforating peptides, and therapeutic prodrugs are integrated into the aCTL through supramolecular interactions. Consequently, the prepared aCTL selectively binds cancer cells and perforates the surrounding membrane. Subsequently, the conjugated prodrug is cleaved and released by the overexpressed membrane transpeptidase, allowing entry into tumor cells through the perforated holes. Finally, the aCTL significantly suppresses the growth of HepG2 hepatocellular carcinoma, B16-F10 melanomas, and patient-derived xenograft (PDX) breast cancer models.
Collapse
Affiliation(s)
- Weijia Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Mingda Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Jihong Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Jie Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
2
|
Eliason J, Krishnan S, Fukuda Y, Bustos MA, Winkowski D, Cho S, Basi A, Baird R, Grimm EA, Davies MA, Hoon DSB, Rao A, Burks JK, Ekmekcioglu S. Characterizing spatial immune architecture in metastatic melanoma using high-dimensional multiplex imaging. Front Immunol 2025; 16:1560778. [PMID: 40364843 PMCID: PMC12069457 DOI: 10.3389/fimmu.2025.1560778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have significantly improved survival for patients with metastatic melanoma, yet many experienceresistance due to immunosuppressive mechanisms within the tumor immune microenvironment (TIME). Understanding how the spatial architecture of immune and inflammatory components changes across disease stages may reveal novel prognostic biomarkers and therapeutic targets. Methods We performed high-dimensional spatial profiling of two melanoma tissue microarrays (TMAs), representing Stage III (n = 157) and Stage IV (n = 248) metastatic tumors. Using imaging mass cytometry (IMC) and multiplex immunofluorescence (mIF), we characterized the phenotypic, functional, and spatial properties of the TIME. Cellular neighborhoods were defined by inflammatory marker expression, and spatial interactions between immune and tumor cells were quantified using nearest-neighbor functions (G-cross). Associations with survival were assessed using Cox proportional hazards models with robust variance estimation. Results Stage IV tumors exhibited a distinct immune landscape, with increased CD74- and MIF-enriched inflammatory neighborhoods and reduced iNOS-associated regions compared to Stage III. Cytotoxic T lymphocytes (CTLs) and tumor cells were more prevalent in Stage IV TIME, while B cells and NK cells were depleted. Spatial analysis revealed that CTL-Th cell, NK-T cell, and B-NK cell interactions were linked to improved survival, whereas macrophage aggregation and excessive B-Th cell clustering in inflammatory regions correlated with worse outcomes. Organ-specific analyses showed that CTL infiltration near tumor cells predicted survival in gastrointestinal metastases, while NK-T cell interactions were prognostic in lymph node and skin metastases. Discussion Our results reveal stage-specific shifts in immune composition and spatial organization within the melanoma TIME. In advanced disease, immunosuppressive neighborhoods emerge alongside changes in immune cell localization, with spatial patterns of immune coordination-particularly involving CTLs, NK cells, and B cells-strongly predicting survival. These findings highlight spatial biomarkers that may refine patient stratification and guide combination immunotherapy strategies targeting the inflammatory architecture of the TIME.
Collapse
Affiliation(s)
- Joel Eliason
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | | | | | | | - Sungnam Cho
- Department of Melanoma Medical Oncology, Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Akshay Basi
- Department of Melanoma Medical Oncology, Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Jared K. Burks
- Department of Melanoma Medical Oncology, Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| |
Collapse
|
3
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
4
|
Wang MX, Mauch BE, Williams AF, Barazande-Pour T, Araujo Hoffmann F, Harris SH, Lathrop CP, Turkal CE, Yung BS, Paw MH, Gervasio DAG, Tran T, Stuhlfire AE, Guo T, Daniels GA, Park SJ, Gutkind JS, Hangauer MJ. Antigenic cancer persister cells survive direct T cell attack. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643359. [PMID: 40166148 PMCID: PMC11956947 DOI: 10.1101/2025.03.14.643359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug-tolerant persister cancer cells were first reported fifteen years ago as a quiescent, reversible cell state which tolerates unattenuated cytotoxic drug stress. It remains unknown whether a similar phenomenon contributes to immune evasion. Here we report a persister state which survives weeks of direct cytotoxic T lymphocyte (CTL) attack. In contrast to previously known immune evasion mechanisms that avoid immune attack, antigenic persister cells robustly activate CTLs which deliver Granzyme B, secrete IFNγ, and induce tryptophan starvation resulting in apoptosis initiation. Instead of dying, persister cells paradoxically leverage apoptotic caspase activity to avoid inflammatory death. Furthermore, persister cells acquire mutations and epigenetic changes which enable outgrowth of CTL-resistant cells. Persister cell features are enriched in inflamed tumors which regressed during immunotherapy in vivo and in surgically resected human melanoma tissue under immune stress ex vivo. These findings reveal a persister cell state which is a barrier to immune-mediated tumor clearance.
Collapse
Affiliation(s)
- Michael X Wang
- Department of Dermatology, University of California San Diego
| | - Brandon E Mauch
- Department of Dermatology, University of California San Diego
| | | | | | | | - Sophie H Harris
- Department of Dermatology, University of California San Diego
| | | | - Claire E Turkal
- Department of Dermatology, University of California San Diego
| | - Bryan S Yung
- Department of Pharmacology, University of California San Diego
- Moores Cancer Center, University of California San Diego
| | - Michelle H Paw
- Department of Dermatology, University of California San Diego
| | | | - Tiffany Tran
- Department of Dermatology, University of California San Diego
| | | | - Theresa Guo
- Moores Cancer Center, University of California San Diego
- Department of Otolaryngology, University of California San Diego
| | - Gregory A Daniels
- Moores Cancer Center, University of California San Diego
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego
| | - Soo J Park
- Moores Cancer Center, University of California San Diego
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego
- Moores Cancer Center, University of California San Diego
| | - Matthew J Hangauer
- Department of Dermatology, University of California San Diego
- Moores Cancer Center, University of California San Diego
| |
Collapse
|
5
|
Cheng R, Li S, Ma X, Zhuang W, Lei Y, He J, Liang C, Nie W, Xie HY. Intratumoral antigen-presenting cell activation by a nanovesicle for the concurrent tertiary lymphoid structure de novo neogenesis. SCIENCE ADVANCES 2025; 11:eadr1299. [PMID: 39970209 PMCID: PMC11837995 DOI: 10.1126/sciadv.adr1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Tertiary lymphoid structures (TLSs) usually lead to significantly improved clinical benefits in immunotherapy but are rarely observed within native tumors. The current approaches are difficult in effectively inducing TLS formation, let alone fully exploiting its anticancer efficacy. Here, a biomimetic nanovesicle (ADU-S@M1) is constructed to target tumors and then to produce abundant activated antigen-presenting cells (APCs) in situ by polarizing the tumor-associated macrophages toward M1 phenotype and promoting dendritic cell maturation. These activated APCs effectively initiate the TLS de novo neogenesis by acting as lymphoid tissue inducer cells that secrete lymphotoxin α and tumor necrosis factor α while normalizing the intratumoral vasculatures. In addition, they induce robust in situ adaptive immune responses by presenting the antigens released from the M1 cell-destroyed tumors and transporting them to the nearby TLS. Therefore, the development of tumors in mice, especially immune-cold tumors, was efficiently prevented, providing a promising strategy for promoting cancer immunotherapy.
Collapse
Affiliation(s)
- Ran Cheng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Sucheng Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Wanru Zhuang
- Chemical Biology Center, Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing 100191, P.R. China
| | - Yao Lei
- Chemical Biology Center, Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing 100191, P.R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing 100191, P.R. China
| |
Collapse
|
6
|
Cassioli C, Capitani N, Staton CC, Schirra C, Finetti F, Onnis A, Alawar N, Tu SM, Lopresti L, Tatangelo V, Tangredi C, Valvo S, Chang HF, Miccoli A, Compeer EB, Nicholls J, Blazar BR, Marotta G, Wood MJA, Trentin L, Patrussi L, Dustin ML, Becherer U, Baldari CT. Activation-induced thrombospondin-4 works with thrombospondin-1 to build cytotoxic supramolecular attack particles. Proc Natl Acad Sci U S A 2025; 122:e2413866122. [PMID: 39903110 PMCID: PMC11831147 DOI: 10.1073/pnas.2413866122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Cytotoxic attack particles released by CTLs and NK cells include diverse phospholipid membrane and glycoprotein encapsulated entities that contribute to target cell killing. Supramolecular attack particles (SMAPs) are one type of particle characterized by a cytotoxic core enriched in granzymes and perforin surrounded by a proteinaceous shell including thrombospondin (TSP)-1. TSP-4 was also detected in bulk analysis of SMAPs released by CTLs; however, it has not been investigated whether TSP-4 contributes to distinct SMAP types or the same SMAP type as TSP-1 and, if in the same type of SMAP, whether TSP-4 and TSP-1 cooperate or compete. Here, we observed that TSP-4 expression increased upon CD8+ T cell activation while, surprisingly, TSP-1 was down-regulated. Correlative Light and Electron Microscopy and Stimulated Emission Depletion microscopy localized TSP-4 and TSP-1 in SMAP-containing multicore granules. Superresolution dSTORM revealed that TSP-4 and TSP-1 are usually enriched in the same SMAPs while particles with single-positive shells are rare. Retention Using Selective Hooks assays showed that TSP-4 localizes to the lytic granules faster than TSP-1 and promotes its accumulation therein. TSP-4 contributed to direct CTL-mediated killing, as previously shown for TSP-1. TSP-4 and TSP-1 were both required for latent SMAP-mediated cell killing, in which released SMAPs kill targets after removal of the CTLs. Of note, we found that chronic lymphocytic leukemia (CLL) cell culture supernatants suppressed expression of TSP-4 in CTL and latent SMAP-mediated killing. These results identify TSP-4 as a functionally important component of SMAPs and suggest that SMAPs may be targeted for immune suppression by CLL.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena53100, Italy
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena53100, Italy
| | - Claire C. Staton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OxfordOX3 7FY, United Kingdom
- Institute for Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, OxfordOX3 7TY, United Kingdom
| | - Claudia Schirra
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg66421, Germany
| | | | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena53100, Italy
| | - Nadia Alawar
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg66421, Germany
| | - Szu-Min Tu
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg66421, Germany
| | | | | | - Carmela Tangredi
- Department of Life Sciences, University of Siena, Siena53100, Italy
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OxfordOX3 7FY, United Kingdom
| | - Hsin-Fang Chang
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg66421, Germany
| | | | - Ewoud B. Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OxfordOX3 7FY, United Kingdom
| | - Jemma Nicholls
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN55455
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN55455
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, Siena University Hospital, Siena53100, Italy
| | - Matthew J. A. Wood
- Institute for Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, OxfordOX3 7TY, United Kingdom
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padua, Padua35128, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena53100, Italy
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OxfordOX3 7FY, United Kingdom
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg66421, Germany
| | | |
Collapse
|
7
|
Zhao D, Wen X, Wu J, Chen F. Photoimmunotherapy for cancer treatment based on organic small molecules: Recent strategies and future directions. Transl Oncol 2024; 49:102086. [PMID: 39181114 PMCID: PMC11387906 DOI: 10.1016/j.tranon.2024.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Photodynamic therapy (PDT) is considered as a promising anticancer approach, owning to its high efficiency and spatiotemporal selectivity. Ample evidence indicated that PDT can trigger immunogenic cell death by releasing antigens that activate immune cells to promote anti-tumor immunity. Nevertheless, the inherent nature of tumors and their complex heterogeneity often limits the efficiency of PDT, which can be overcome with a novel strategy of photo-immunotherapy (PIT) strategy. By exploring the principles of PDT induction and ICD enhancement, combined with other therapies such as chemotherapy or immune checkpoint blockade, the tailored solutions can be designed to address specific challenges of drug resistance, hypoxic conditions, and tumor immunosuppressive microenvironments (TIMEs), which enables targeted enhancement of systemic immunity to address most distant and recurrent cancers. The present article summarizes the specific strategies of PIT and discusses recent existing limitations. More importantly, we anticipate that the perspectives presented herein will help address the clinical translation challenges associated with PIT.
Collapse
Affiliation(s)
- Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jiani Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
8
|
Izquierdo M, Ruiz-Navarro J, Baldari CT, Roda-Navarro P. Editorial: Structure and function of the immunological and redirecting artificial synapses and their clinical implications. Front Immunol 2024; 15:1497118. [PMID: 39421740 PMCID: PMC11484066 DOI: 10.3389/fimmu.2024.1497118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
- Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ear, nose and throat (ENT), School of Medicine, Universidad Complutense, Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
9
|
Sun D, Sun X, Zhang X, Wu J, Shi X, Sun J, Luo C, He Z, Zhang S. Emerging Chemodynamic Nanotherapeutics for Cancer Treatment. Adv Healthc Mater 2024; 13:e2400809. [PMID: 38752756 DOI: 10.1002/adhm.202400809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a transformative paradigm in the realm of reactive oxygen species -mediated cancer therapies, exhibiting its potential as a sophisticated strategy for precise and effective tumor treatment. CDT primarily relies on metal ions and hydrogen peroxide to initiate Fenton or Fenton-like reactions, generating cytotoxic hydroxyl radicals. Its notable advantages in cancer treatment are demonstrated, including tumor specificity, autonomy from external triggers, and a favorable side-effect profile. Recent advancements in nanomedicine are devoted to enhancing CDT, promising a comprehensive optimization of CDT efficacy. This review systematically elucidates cutting-edge achievements in chemodynamic nanotherapeutics, exploring strategies for enhanced Fenton or Fenton-like reactions, improved tumor microenvironment modulation, and precise regulation in energy metabolism. Moreover, a detailed analysis of diverse CDT-mediated combination therapies is provided. Finally, the review concludes with a comprehensive discussion of the prospects and intrinsic challenges to the application of chemodynamic nanotherapeutics in the domain of cancer treatment.
Collapse
Affiliation(s)
- Dongqi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jiaping Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
10
|
Wee Y, Wang J, Wilson EC, Rich CP, Rogers A, Tong Z, DeGroot E, Gopal YNV, Davies MA, Ekiz HA, Tay JKH, Stubben C, Boucher KM, Oviedo JM, Fairfax KC, Williams MA, Holmen SL, Wolff RK, Grossmann AH. Tumour-intrinsic endomembrane trafficking by ARF6 shapes an immunosuppressive microenvironment that drives melanomagenesis and response to checkpoint blockade therapy. Nat Commun 2024; 15:6613. [PMID: 39098861 PMCID: PMC11298541 DOI: 10.1038/s41467-024-50881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Tumour-host immune interactions lead to complex changes in the tumour microenvironment (TME), impacting progression, metastasis and response to therapy. While it is clear that cancer cells can have the capacity to alter immune landscapes, our understanding of this process is incomplete. Herein we show that endocytic trafficking at the plasma membrane, mediated by the small GTPase ARF6, enables melanoma cells to impose an immunosuppressive TME that accelerates tumour development. This ARF6-dependent TME is vulnerable to immune checkpoint blockade therapy (ICB) but in murine melanoma, loss of Arf6 causes resistance to ICB. Likewise, downregulation of ARF6 in patient tumours correlates with inferior overall survival after ICB. Mechanistically, these phenotypes are at least partially explained by ARF6-dependent recycling, which controls plasma membrane density of the interferon-gamma receptor. Collectively, our findings reveal the importance of endomembrane trafficking in outfitting tumour cells with the ability to shape their immune microenvironment and respond to immunotherapy.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Junhua Wang
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Oncologic Sciences, University of Utah, Salt Lake City, UT, USA
| | - Emily C Wilson
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Coulson P Rich
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Zongzhong Tong
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Evelyn DeGroot
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y N Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Urla, Izmir, Turkey
| | - Joshua K H Tay
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Kenneth M Boucher
- Cancer Biostatistics Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Juan M Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Matthew A Williams
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Oncologic Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Roger K Wolff
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
- Department of Oncologic Sciences, University of Utah, Salt Lake City, UT, USA.
- Providence Cancer Institute of Oregon, Earle A. Chiles Research Institute, Portland, OR, USA.
| |
Collapse
|
11
|
Gómez-Morón Á, Tsukalov I, Scagnetti C, Pertusa C, Lozano-Prieto M, Martínez-Fleta P, Requena S, Martín P, Alfranca A, Martin-Gayo E, Martin-Cofreces NB. Cytosolic protein translation regulates cell asymmetry and function in early TCR activation of human CD8 + T lymphocytes. Front Immunol 2024; 15:1411957. [PMID: 39114656 PMCID: PMC11303187 DOI: 10.3389/fimmu.2024.1411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Ilya Tsukalov
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Martín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Regulatory Molecules of Inflammatory Processes, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Aranzazu Alfranca
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Noa B Martin-Cofreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
13
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Biolato AM, Filali L, Krecke M, Thomas C, Hoffmann C. A comprehensive guide to study the immunological synapse using imaging flow cytometry. Methods Cell Biol 2024; 193:69-97. [PMID: 39919848 DOI: 10.1016/bs.mcb.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Cytotoxic lymphocytes, such as cytotoxic T cells and natural killer (NK) cells, are instrumental in the recognition and eradication of pathogenic cells, notably those undergoing malignant transformation. Cytotoxic lymphocytes establish direct contact with cancer cells via the formation of a specialized cell-cell junction known as the lytic immunological synapse. This structure serves as a critical platform for lymphocytes to integrate surface signals from potential cancer cells and to direct their cytolytic apparatus toward the confirmed targets. Conversely, cancer cells evolve synaptic defense strategies to evade lymphocyte cytotoxicity. This chapter delineates protocols using imaging flow cytometry to examine and quantify important subcellular processes occurring within cytotoxic lymphocytes and cancer cells engaged into an immunological synapse. These processes encompass the spatial redistribution of cytoskeletal components, vesicles, organelles and cell surface molecules. We specifically describe methods to generate and select conjugates between MDA-MB-231 breast cancer cells or K-562 leukemic cells and either the NK-92MI cell line or primary human NK cells. In addition, we detail procedures to evaluate the synaptic polarization of the actin cytoskeleton, CD63-positive vesicular compartments, MHC class I molecules, as well as the microtubule-organizing center in effector cells.
Collapse
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Max Krecke
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
15
|
Kvalvaag A, Dustin ML. Clathrin controls bidirectional communication between T cells and antigen presenting cells. Bioessays 2024; 46:e2300230. [PMID: 38412391 DOI: 10.1002/bies.202300230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.
Collapse
Affiliation(s)
- Audun Kvalvaag
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
17
|
Wee Y, Wang J, Wilson EC, Rich CP, Rogers A, Tong Z, DeGroot E, Gopal YV, Davies MA, Ekiz HA, Tay JK, Stubben C, Boucher KM, Oviedo JM, Fairfax KC, Williams MA, Holmen SL, Wolff RK, Grossmann AH. ARF6-dependent endocytic trafficking of the Interferon-γ receptor drives adaptive immune resistance in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560199. [PMID: 37873189 PMCID: PMC10592860 DOI: 10.1101/2023.09.29.560199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Adaptive immune resistance (AIR) is a protective process used by cancer to escape elimination by CD8+ T cells. Inhibition of immune checkpoints PD-1 and CTLA-4 specifically target Interferon-gamma (IFNγ)-driven AIR. AIR begins at the plasma membrane where tumor cell-intrinsic cytokine signaling is initiated. Thus, plasma membrane remodeling by endomembrane trafficking could regulate AIR. Herein we report that the trafficking protein ADP-Ribosylation Factor 6 (ARF6) is critical for IFNγ-driven AIR. ARF6 prevents transport of the receptor to the lysosome, augmenting IFNγR expression, tumor intrinsic IFNγ signaling and downstream expression of immunosuppressive genes. In murine melanoma, loss of ARF6 causes resistance to immune checkpoint blockade (ICB). Likewise, low expression of ARF6 in patient tumors correlates with inferior outcomes with ICB. Our data provide new mechanistic insights into tumor immune escape, defined by ARF6-dependent AIR, and support that ARF6-dependent endomembrane trafficking of the IFNγ receptor influences outcomes of ICB.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- These authors contributed equally
- current contact information: School of Dentistry, Taipei Medical University, Taiwan
| | - Junhua Wang
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- These authors contributed equally
| | - Emily C. Wilson
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Coulson P. Rich
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Zongzhong Tong
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Evelyn DeGroot
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y.N. Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - H. Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey
| | - Joshua K.H. Tay
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kenneth M. Boucher
- Cancer Biostatistics Shared Resource, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Juan M. Oviedo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Sheri L. Holmen
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Roger K. Wolff
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Allie H. Grossmann
- Department of Pathology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- Lead contact
| |
Collapse
|
18
|
Cheng Z, Xue C, Liu M, Cheng Z, Tian G, Li M, Xue R, Yao X, Zhang Y, Luo Z. Injectable microenvironment-responsive hydrogels with redox-activatable supramolecular prodrugs mediate ferroptosis-immunotherapy for postoperative tumor treatment. Acta Biomater 2023; 169:289-305. [PMID: 37544392 DOI: 10.1016/j.actbio.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Immunotherapy is an emerging antitumor modality with high specificity and persistence, but its application for resected tumor treatment is impeded by the low availability of tumor-specific antigens and strong immunosuppression in the wound margin. Here a nanoengineered hydrogel is developed for eliciting robust cooperative ferroptosis-immunotherapeutic effect on resected tumors. Specifically, β-cyclodextrin (β-CD) is first grafted onto oxidized sodium alginate (OSA) through Schiff base ligation, which could trap cRGD-modified redox-responsive Withaferin prodrugs (WA-cRGD) to obtain the hydrogel building blocks (Gel@WA-cRGD). Under Ca2+-mediated crosslinking, Gel@WA-cRGD rapidly forms physiologically stable hydrogels, of which the porous network is used to deliver programmed cell death ligand 1 antibodies (aPD-L1). After injection into the post-surgical wound cavity, the β-CD-entrapped WA-cRGD is detached by the local acidity and specifically internalized by residual tumor cells to trigger ferroptosis, thus releasing abundant damage-associated molecular patterns (DAMPs) and tumor-derived antigens for activating the antigen-presenting cell-mediated cross-presentation and downstream cytotoxic T cell (CTL)-mediated antitumor responses. Furthermore, aPD-L1 could block PD-1/PD-L1 interaction and enhance the effector function of CTLs to overcome tumor cell-mediated immunosuppression. This cooperative hydrogel-based antitumor strategy for ferroptosis-immunotherapy may serve as a generally-applicable approach for postoperative tumor management. STATEMENT OF SIGNIFICANCE: To overcome the immunosuppressive microenvironment in resected solid tumors for enhanced patient survival, here we report a nanoengineered hydrogel incorporated supramolecular redox-activatable Withaferin prodrug and PD-L1 antibody, which could elicit robust cooperative ferroptosis-immunotherapeutic effect against residual tumor cells in the surgical bed to prevent tumor relapse, thus offering a generally-applicable approach for postoperative tumor management.
Collapse
Affiliation(s)
- Zhuo Cheng
- School of Life Science, Chongqing University, Chongqing 400044, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Chencheng Xue
- School of Life Science, Chongqing University, Chongqing 400044, PR China
| | - Minghan Liu
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University. Chongqing 400038, PR China
| | - Zhiming Cheng
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University. Chongqing 400038, PR China
| | - Gan Tian
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, PR China
| | - Rui Xue
- School of Life Science, Chongqing University, Chongqing 400044, PR China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, PR China
| | - Yuan Zhang
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University. Chongqing 400038, PR China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
19
|
Blaudszun AR, Kim WJ, Um W, Yoon HY, Shim MK, Kim K. Adoptive Transfer of Photosensitizer-Loaded Cytotoxic T Cells for Combinational Photodynamic Therapy and Cancer Immuno-Therapy. Pharmaceutics 2023; 15:pharmaceutics15041295. [PMID: 37111779 PMCID: PMC10143374 DOI: 10.3390/pharmaceutics15041295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Adoptive cell transfer (ACT) has shown remarkable therapeutic efficacy against blood cancers such as leukemia and lymphomas, but its effect is still limited due to the lack of well-defined antigens expressed by aberrant cells within tumors, the insufficient trafficking of administered T cells to the tumor sites, as well as immunosuppression induced by the tumor microenvironment (TME). In this study, we propose the adoptive transfer of photosensitizer (PS)-loaded cytotoxic T cells for a combinational photodynamic and cancer immunotherapy. Temoporfin (Foscan®), a clinically applicable porphyrin derivative, was loaded into OT-1 cells (PS-OT-1 cells). The PS-OT-1 cells efficiently produced a large amount of reactive oxygen species (ROS) under visible light irradiation in a culture; importantly, the combinational photodynamic therapy (PDT) and ACT with PS-OT-1 cells induced significant cytotoxicity compared to ACT alone with unloaded OT-1 cells. In murine lymphoma models, intravenously injected PS-OT-1 cells significantly inhibited tumor growth compared to unloaded OT-1 cells when the tumor tissues were locally irradiated with visible light. Collectively, this study suggests that combinational PDT and ACT mediated by PS-OT-1 cells provides a new approach for effective cancer immunotherapy.
Collapse
Affiliation(s)
- André-René Blaudszun
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Biosensor and Materials Group, KIST Europe Forschungsgesellschaft mbH (KIST Europe), Saarland University, 66123 Saarbrücken, Germany
| | - Woo Jun Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wooram Um
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|