1
|
Waterman JM, Cofer TM, Von Laue OM, Mateo P, Wang L, Erb M. Leaf Size Determines Damage- and Herbivore-Induced Volatile Emissions in Maize. PLANT, CELL & ENVIRONMENT 2025; 48:3766-3777. [PMID: 39817590 PMCID: PMC11963494 DOI: 10.1111/pce.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Stress-induced plant volatiles play an important role in mediating ecological interactions between plants and their environment. The timing and location of the inflicted damage is known to influence the quality and quantity of induced volatile emissions. However, how leaf characteristics and herbivore feeding behaviour interact to shape volatile emissions is not well understood. Using a high-throughput volatile profiling system with high temporal resolution, we examined how mechanical damage and herbivore feeding on different leaves shape plant-level volatile emission patterns in maize. We then tested feeding patterns and resulting consequences on volatile emissions with two generalist herbivores (Spodoptera exigua and Spodoptera littoralis), and assessed whether feeding preferences are associated with enhanced herbivore performance. We found maize seedlings emit more volatiles when larger leaves are damaged. Larger leaves emitted more volatiles locally, which was the determining factor for higher plant-level emissions. Surprisingly, both S. exigua and S. littoralis preferentially consumed larger leaves, and thus maximize plant volatile emission without apparent growth benefits. Together, these findings provide an ecophysiological and behavioural mechanism for plant volatile emission patterns, with potentially important implications for volatile-mediated plant-environment interactions.
Collapse
Affiliation(s)
- Jamie M. Waterman
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Discipline of Botany, School of Natural SciencesTrinity College DublinDublinIreland
| | | | | | - Pierre Mateo
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Lei Wang
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
2
|
Gray HL, Ivers NA, Richardson LI, López-Uribe MM, Jha S. Simulation of early season herbivory via mechanical damage affects flower production in pumpkin (Cucurbita pepo ssp. pepo). ANNALS OF BOTANY 2024; 134:815-826. [PMID: 39093025 PMCID: PMC11979761 DOI: 10.1093/aob/mcae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g. flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g. nectar rewards). METHODS In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-d greenhouse experiment. KEY RESULTS We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators. CONCLUSIONS We show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.
Collapse
Affiliation(s)
- Hannah L Gray
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A Ivers
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Leeah I Richardson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- Lady Bird Johnson Wildflower Center, University of Texas, Austin, TX 78739, USA
| |
Collapse
|
3
|
Grof-Tisza P, Turlings TCJ, Bustos-Segura C, Benrey B. Field evidence for the role of plant volatiles induced by caterpillar oral secretion in prey localization by predatory social wasps. Biol Lett 2024; 20:20240384. [PMID: 39353566 PMCID: PMC11444782 DOI: 10.1098/rsbl.2024.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
One assumed function of herbivore-induced plant volatiles (HIPVs) is to attract natural enemies of the inducing herbivores. Field evidence for this is scarce. In addition, the assumption that elicitors in oral secretions that trigger the volatile emissions are essential for the attraction of natural enemies has not yet been demonstrated under field conditions. After observing predatory social wasps removing caterpillars from maize plants, we hypothesized that these wasps use HIPVs to locate their prey. To test this, we conducted an experiment that simultaneously explored the importance of caterpillar oral secretions in the interaction. Spodoptera caterpillars pinned onto mechanically damaged plants treated with oral secretion were more likely to be attacked by wasps compared with caterpillars on plants that were only mechanically wounded. Both of the latter treatments were considerably more attractive than plants only treated with oral secretion or left untreated. Subsequent analyses of headspace volatiles confirmed differences in emitted volatiles that likely account for the differential predation across treatments. These findings highlight the importance of HIPVs in prey localization by social wasps, hitherto underappreciated potential biocontrol agents and provide evidence for the role that elicitors play in inducing attractive odour blends.
Collapse
Affiliation(s)
- Patrick Grof-Tisza
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Natural Sciences, Converse University, Spartanburg, SC, USA
| | - Ted C. J. Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou475004, People’s Republic of China
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology Department, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Matos IS, Boakye M, Niewiadomski I, Antonio M, Carlos S, Johnson BC, Chu A, Echevarria A, Fontao A, Garcia L, Kalantar D, Madhavan S, Mann J, McDonough S, Rohde J, Scudder M, Sharma S, To J, Tomaka C, Vu B, Yokota N, Forbes H, Fricker M, Blonder BW. Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs. THE NEW PHYTOLOGIST 2024; 244:407-425. [PMID: 39180209 DOI: 10.1111/nph.20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function. We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale. This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.
Collapse
Affiliation(s)
- Ilaine Silveira Matos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mickey Boakye
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Izzi Niewiadomski
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Monica Antonio
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sonoma Carlos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Breanna Carrillo Johnson
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ashley Chu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Andrea Echevarria
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adrian Fontao
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lisa Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Diana Kalantar
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Srinivasan Madhavan
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joseph Mann
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samantha McDonough
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James Rohde
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Meg Scudder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Satvik Sharma
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jason To
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connor Tomaka
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bradley Vu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicole Yokota
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Holly Forbes
- University of California Botanical Garden, Berkeley, CA, 94720, USA
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Benjamin Wong Blonder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Liñán-Vigo F, Núñez-Farfán J. Plasticity in biomass allocation underlies tolerance to leaf damage in native and non-native populations of Datura stramonium. Oecologia 2024; 205:613-626. [PMID: 39048862 PMCID: PMC11358249 DOI: 10.1007/s00442-024-05585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
An introduction to a novel habitat represents a challenge to plants because they likely would face new interactions and possibly different physical context. When plant populations arrive to a new region free from herbivores, we can expect an evolutionary change in their defense level, although this may be contingent on the type of defense, resistance or tolerance, and cost of defense. Here, we addressed questions on the evolution of tolerance to damage in non-native Spanish populations of Datura stramonium by means of two comparative greenhouse experiments. We found differences in seed production, specific leaf area, and biomass allocation to stems and roots between ranges. Compared to the Mexican native populations of this species, non-native populations produced less seeds despite damage and allocate more biomass to roots and less to stems, and had higher specific leaf area values. Plasticity to leaf damage was similar between populations and no difference in tolerance to damage between native and non-native populations was detected. Costs for tolerance were detected in both regions. Two plasticity traits of leaves were associated with tolerance and were similar between regions. These results suggest that tolerance remains beneficial to plants in the non-native region despite it incurs in fitness costs and that damage by herbivores is low in the non-native region. The study of the underlying traits of tolerance can improve our understanding on the evolution of tolerance in novel environments, free from plants' specialist herbivores.
Collapse
Affiliation(s)
- Franco Liñán-Vigo
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Ciudad de Mexico, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Ciudad de Mexico, Mexico.
| |
Collapse
|
6
|
Zhong J, Zhang J, Zhang Y, Ge Y, He W, Liang C, Gao Y, Zhu Z, Machado RAR, Zhou W. Heat stress reprograms herbivory-induced defense responses in potato plants. BMC PLANT BIOLOGY 2024; 24:677. [PMID: 39014327 PMCID: PMC11253553 DOI: 10.1186/s12870-024-05404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.
Collapse
Affiliation(s)
- Jian Zhong
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Jinyi Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yadong Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Ge
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing He
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengjuan Liang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchatel, Neuchatel, 2000, Switzerland
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
7
|
Schrijvers-Gonlag M, Skarpe C, Julkunen-Tiitto R, Poléo ABS. Phenolic concentrations and carbon/nitrogen ratio in annual shoots of bilberry (Vaccinium myrtillus) after simulated herbivory. PLoS One 2024; 19:e0298229. [PMID: 38437193 PMCID: PMC10911626 DOI: 10.1371/journal.pone.0298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
Herbivory can be reduced by the production of defense compounds (secondary metabolites), but generally defenses are costly, and growth is prioritized over defense. While defense compounds may deter herbivory, nutrients may promote it. In a field study in boreal forest in Norway, we investigated how simulated herbivory affected concentrations of phenolics (generally a defense) and the carbon/nitrogen (C/N) ratio in annual shoots of bilberry (Vaccinium myrtillus), a deciduous clonal dwarf shrub whose vegetative and generative parts provide forage for many boreal forest animals. We measured concentrations of total tannins, individual phenolics, nitrogen and carbon following several types and intensities of herbivory. We identified 22 phenolics: 15 flavonoids, 1 hydroquinone and 6 phenolic acids. After high levels of herbivory, the total tannin concentration and the concentration of these 22 phenolics together (called total phenolic concentration) were significantly lower in bilberry annual shoots than in the control (natural herbivory at low to intermediate levels). Low-intensive herbivory, including severe defoliation, gave no significantly different total tannin or total phenolic concentration compared with the control. Many individual phenolics followed this pattern, while phenolic acids (deterring insect herbivory) showed little response to the treatments: their concentrations were maintained after both low-intensive and severe herbivory. Contrary to our predictions, we found no significant difference in C/N ratio between treatments. Neither the Carbon:Nutrient Balance hypothesis nor the Optimal Defense hypotheses, theories predicting plant resource allocation to secondary compounds, can be used to predict changes in phenolic concentrations (including total tannin concentration) in bilberry annual shoots after herbivory: in this situation, carbon is primarily used for other functions (e.g., maintenance, growth, reproduction) than defense.
Collapse
Affiliation(s)
- Marcel Schrijvers-Gonlag
- Campus Evenstad, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Christina Skarpe
- Campus Evenstad, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, Finland
| | - Antonio B. S. Poléo
- Campus Evenstad, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Koppang, Norway
| |
Collapse
|
8
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Waterman JM, Cofer TM, Wang L, Glauser G, Erb M. High-resolution kinetics of herbivore-induced plant volatile transfer reveal clocked response patterns in neighboring plants. eLife 2024; 12:RP89855. [PMID: 38385996 PMCID: PMC10942584 DOI: 10.7554/elife.89855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Volatiles emitted by herbivore-attacked plants (senders) can enhance defenses in neighboring plants (receivers), however, the temporal dynamics of this phenomenon remain poorly studied. Using a custom-built, high-throughput proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) system, we explored temporal patterns of volatile transfer and responses between herbivore-attacked and undamaged maize plants. We found that continuous exposure to natural blends of herbivore-induced volatiles results in clocked temporal response patterns in neighboring plants, characterized by an induced terpene burst at the onset of the second day of exposure. This delayed burst is not explained by terpene accumulation during the night, but coincides with delayed jasmonate accumulation in receiver plants. The delayed burst occurs independent of day:night light transitions and cannot be fully explained by sender volatile dynamics. Instead, it is the result of a stress memory from volatile exposure during the first day and secondary exposure to bioactive volatiles on the second day. Our study reveals that prolonged exposure to natural blends of stress-induced volatiles results in a response that integrates priming and direct induction into a distinct and predictable temporal response pattern. This provides an answer to the long-standing question of whether stress volatiles predominantly induce or prime plant defenses in neighboring plants, by revealing that they can do both in sequence.
Collapse
Affiliation(s)
| | | | - Lei Wang
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Science, University of NeuchâtelNeuchâtelSwitzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of BernBernSwitzerland
| |
Collapse
|
10
|
Frew A, Weinberger N, Powell JR, Watts-Williams SJ, Aguilar-Trigueros CA. Community assembly of root-colonizing arbuscular mycorrhizal fungi: beyond carbon and into defence? THE ISME JOURNAL 2024; 18:wrae007. [PMID: 38366019 PMCID: PMC10910849 DOI: 10.1093/ismejo/wrae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Adam Frew
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Natascha Weinberger
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Stephanie J Watts-Williams
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Carlos A Aguilar-Trigueros
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| |
Collapse
|
11
|
Shan L, Oduor AMO, Huang W, Liu Y. Nutrient enrichment promotes invasion success of alien plants via increased growth and suppression of chemical defenses. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2791. [PMID: 36482783 DOI: 10.1002/eap.2791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
In support of the prediction of the enemy release hypothesis regarding a growth-defense trade-off, invasive alien plants often exhibit greater growth and lower anti-herbivory defenses than native plants. However, it remains unclear how nutrient enrichment of invaded habitats may influence competitive interactions between invasive alien and co-occurring native plants, as well as production of anti-herbivore defense compounds, growth-promoting hormones, and defense-regulating hormones by the two groups of plants. Here, we tested whether: (i) nutrient enrichment causes invasive alien plants to produce greater biomass and lower concentrations of the defense compounds flavonoids and tannins than native plants; and (ii) invasive alien plants produce lower concentrations of a defense-regulating hormone jasmonic acid (JA) and higher concentrations of a growth-promoting hormone gibberellic acid (GA3). In a greenhouse experiment, we grew five congeneric pairs of invasive alien and native plant species under two levels each of nutrient enrichment (low vs. high), simulated herbivory (leaf clipping vs. no-clipping), and competition (alone vs. competition) in 2.5-L pots. In the absence of competition, high-nutrient treatment induced a greater increase in total biomass of invasive alien species than that of native species, whereas the reverse was true under competition as native species benefitted more from nutrient enrichment than invasive alien species. Moreover, high-nutrient treatment caused a greater increase in total biomass of invasive alien species than that of native species in the presence of simulated herbivory. Competition induced higher production of flavonoids and tannins. Simulated herbivory induced higher flavonoid expression in invasive alien plants under low-nutrient than high-nutrient treatments. However, flavonoid concentrations of native plants did not change under nutrient enrichment and simulated herbivory treatments. Invasive alien plants produced higher concentrations of GA3 than native plants. Taken together, these results suggest that impact of nutrient enrichment on growth of invasive alien and co-occurring native plants may depend on the level of competition that they experience. Moreover, invasive alien plants might adjust their flavonoid-based defense more efficiently than native plants in response to variation in soil nutrient availability and herbivory pressure. Our findings suggest that large-scale efforts to reduce nutrient enrichment of invaded habitats may help to control future invasiveness of target alien plant species.
Collapse
Affiliation(s)
- Liping Shan
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ayub M O Oduor
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
12
|
Zhang Y, Zhong J, Munawar A, Cai Y, He W, Zhang Y, Guo H, Gao Y, Zhu Z, Zhou W. Knocking down a DNA demethylase gene affects potato plant defense against a specialist insect herbivore. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:483-499. [PMID: 37781866 DOI: 10.1093/jxb/erad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
DNA demethylase (DML) is involved in plant development and responses to biotic and abiotic stresses; however, its role in plant-herbivore interaction remains elusive. Here, we found that herbivory by the potato tuber moth, Phthorimaea operculella, rapidly induced the genome-wide DNA methylation and accumulation of DML gene transcripts in potato plants. Herbivory induction of DML transcripts was suppressed in jasmonate-deficient plants, whereas exogenous application of methyl jasmonate (MeJA) improved DML transcripts, indicating that the induction of DML transcripts by herbivory is associated with jasmonate signaling. Moreover, P. operculella larvae grew heavier on DML gene (StDML2) knockdown plants than on wild-type plants, and the decreased biosynthesis of jasmonates in the former may be responsible for this difference, since the larvae feeding on these two genotypes supplemented with MeJA showed similar growth. In addition, P. operculella adult moths preferred to oviposit on StDML2 knockdown plants than on wild-type plants, which was associated with the reduced emission of β-caryophyllene in the former. In addition, supplementing β-caryophyllene to these two genotypes further disrupted moths' oviposit choice preference for them. Interestingly, in StDML2 knockdown plants, hypermethylation was found at the promoter regions for the key genes StAOS and StAOC in the jasmonate biosynthetic pathway, as well as for the key gene StTPS12 in β-caryophyllene production. Our findings suggest that knocking down StDML2 can affect herbivore defense via jasmonate signaling and defense compound production in potato plants.
Collapse
Affiliation(s)
- Yadong Zhang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jian Zhong
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yajie Cai
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenjing He
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixin Zhang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| |
Collapse
|
13
|
Wang L, Erb M. Feeding Assay to Study the Effect of Phytocytokines on Direct and Indirect Defense in Maize. Methods Mol Biol 2024; 2731:133-142. [PMID: 38019431 DOI: 10.1007/978-1-0716-3511-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phytocytokines mediate defense against pests and pathogens. Many methods have been developed to study the physiological responses triggered by phytocytokines in dicot plants. Here, we describe a detailed peptide feeding protocol to study the effect of phytocytokines on direct and indirect anti-herbivore defense in maize. This method relies on peptide uptake by the excised maize seedling or leaves via the transpiration stream. The headspace volatiles from plant samples are then analyzed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), or by gas chromatography-mass spectrometry (GC-MS). The samples can also be further processed to evaluate phytocytokine-induced defense gene expression or phytohormone production.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Garrote PJ, Bugalho MN, Fedriani JM. Seedling responses to moderate and severe herbivory: a field-clipping experiment with a keystone Mediterranean palm. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1058-1070. [PMID: 37713282 DOI: 10.1111/plb.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Plant-ungulate interactions are critical in shaping the structure of Mediterranean plant communities. Nevertheless, there is a dearth of knowledge on how plant intrinsic and extrinsic factors mediate the sign and strength of plant-ungulate interactions. This is most relevant when addressing natural or assisted restoration of plant communities in human-disturbed areas. We conducted field-clipping experiments simulating how different intensities of ungulate herbivory may affect the natural regeneration and establishment of the Mediterranean dwarf palm (Chamaerops humilis), a keystone species in Mediterranean ecosystems. We quantified seedling survival and size in two human-disturbed sites (SW Spain) where wild and domestic ungulates exert high herbivory pressure on vegetation. Severe clipping and seedling aging reduced rates of seedling survival. In contrast, moderate clipping did not affect seedling survival, suggesting a certain degree of C. humilis tolerance to herbivory. Severe clipping reduced seedling height strongly but not seedling diameter, and these effects seem to have decreased seedling survival. Nurse shrubs increased seedling size, which likely improved seedling survival. We also found seedling compensatory growth which varied between study sites. Field-clipping experiments can help disentangle effects of plant extrinsic and intrinsic factors on the sign and strength of plant-ungulate interactions and their ecological consequences on the dynamics of human-disturbed ecosystems. We call attention to the importance of appropriately managing scenarios of severe herbivory and summer droughts, particularly frequent in Mediterranean ecosystems, as synergic effects of such key drivers can negatively affect the structure and dynamics of plant communities and endanger their conservation.
Collapse
Affiliation(s)
- P J Garrote
- Desertification Research Centre (CIDE), CSIC-UVEG-GV, Moncada (Valencia), Spain
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - M N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - J M Fedriani
- Desertification Research Centre (CIDE), CSIC-UVEG-GV, Moncada (Valencia), Spain
- Doñana Biological Station (EBD), CSIC, C/Américo Vespucio s/n, Isla de la Cartuja, Seville, Spain
| |
Collapse
|
15
|
Lohn AF, Trtikova M, Chapela I, van den Berg J, du Plessis H, Hilbeck A. Effect of herbivore stress on transgene behaviour in maize crosses with different genetic backgrounds: cry1Ab transgene transcription, insecticidal protein expression and bioactivity against insect pests. ENVIRONMENTAL SCIENCES EUROPE 2023; 35:106. [PMID: 38037561 PMCID: PMC10684648 DOI: 10.1186/s12302-023-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Background Decades after their first commercial release, many theoretical assumptions are still taken for granted in the deployment of genetically modified (GM) crops. Theoretically, in the case of maize, active transcription of the cry1Ab transgene would result in dose-dependent production of the insecticidal Cry1Ab protein, which would in turn induce dose-dependent mortality on lepidopteran pests. We produced data to realistically approach this question by using a model that includes two genetic background contexts from two geographical provenances in Brazil and South Africa, and two lepidopteran pests (Helicoverpa armigera and Spodoptera littoralis). However, in this study, the effect of insect herbivory was superimposed to investigate possible stress-induced effects in transgene expression at three levels: mRNA, protein and bioactivity. Results Overall, we found that herbivore damage by H. armigera was reflected only at the translational level, with a higher level of Cry1Ab protein measured in the Brazilian crosses under herbivore stress. On the other hand, compared to non-stress growing conditions, the herbivore damage by S. littoralis was not directly reflected in mRNA, protein or bioactivity in the South African crosses. Conclusions The differences between South African and Brazilian genetic backgrounds, and between the stressor effect of the two herbivores used, highlight the complexity of transgene expression at the agroecological level. Supplementary Information The online version contains supplementary material available at 10.1186/s12302-023-00815-3.
Collapse
Affiliation(s)
- André Felipe Lohn
- Plant Ecological Genetics, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Miluse Trtikova
- Plant Ecological Genetics, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Ignacio Chapela
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA USA
| | - Johnnie van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hannalene du Plessis
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Angelika Hilbeck
- Plant Ecological Genetics, Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
16
|
Klotz M, Schaller J, Engelbrecht BMJ. Silicon-based anti-herbivore defense in tropical tree seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1250868. [PMID: 37900768 PMCID: PMC10602810 DOI: 10.3389/fpls.2023.1250868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Silicon-based defenses deter insect herbivores in many cultivated and wild grass species. Furthermore, in some of these species, silicon (Si) uptake and defense can be induced by herbivory. Tropical trees also take up Si and leaf Si concentrations vary greatly across and within species. As herbivory is a major driver of seedling mortality and niche differentiation of tropical tree species, understanding anti-herbivore defenses is pivotal. Yet, whether silicon is a constitutive and inducible herbivory defense in tropical forest tree species remains unknown. We grew seedlings of eight tropical tree species in a full factorial experiment, including two levels of plant-available soil Si concentrations (-Si/+Si) and a simulated herbivory treatment (-H/+H). The simulated herbivory treatment was a combination of clipping and application of methyl jasmonate. We then carried out multiple-choice feeding trials, separately for each tree species, in which leaves of each treatment combination were offered to a generalist caterpillar (Spodoptera frugiperda). Leaf damage was assessed. Three species showed a significant decrease in leaf damage under high compared to low Si conditions (by up to 72%), consistent with our expectation of Si-based defenses acting in tropical tree species. In one species, leaf damage was increased by increasing soil Si and in four species, no effect of soil Si on leaf damage was observed. Opposite to our expectation of Si uptake and defense being inducible by herbivory damage, simulated herbivory increased leaf damage in two species. Furthermore, simulated herbivory reduced Si concentrations in one species. Our results showed that tropical tree seedlings can be better defended when growing in Si-rich compared to Si-poor soils, and that the effects of Si on plant defense vary strongly across species. Furthermore, Si-based defenses may not be inducible in tropical tree species. Overall, constitutive Si-based defense should be considered part of the vast array of anti-herbivore defenses of tropical tree species. Our finding that Si-based defenses are highly species-specific combined with the fact that herbivory is a major driver of mortality in tropical tree seedling, suggests that variation in soil Si concentrations may have pervasive consequences for regeneration and performance across tropical tree species.
Collapse
Affiliation(s)
- Marius Klotz
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Bettina M. J. Engelbrecht
- Deptartment of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Smithsonian Tropical Research Institute (STRI), Balboa, Panama
| |
Collapse
|
17
|
Thorne SJ, Maathuis FJM, Hartley SE. Induction of silicon defences in wheat landraces is local, not systemic, and driven by mobilization of soluble silicon to damaged leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5363-5373. [PMID: 37314063 DOI: 10.1093/jxb/erad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In response to herbivory, many grasses, including crops such as wheat, accumulate significant levels of silicon (Si) as an antiherbivore defence. Damage-induced increases in Si can be localized in damaged leaves or be more systemic, but the mechanisms leading to these differences in Si distribution remain untested. Ten genetically diverse wheat landraces (Triticum aestivum) were used to assess genotypic variation in Si induction in response to mechanical damage and how this was affected by exogenous Si supply. Total and soluble Si levels were measured in damaged and undamaged leaves as well as in the phloem to test how Si was allocated to different parts of the plant after damage. Localized, but not systemic, induction of Si defences occurred, and was more pronounced when plants had supplemental Si. Damaged plants had significant increases in Si concentration in their damaged leaves, while the Si concentration in undamaged leaves decreased, such that there was no difference in the average Si concentration of damaged and undamaged plants. The increased Si in damaged leaves was due to the redirection of soluble Si, present in the phloem, from undamaged to damaged plant parts, potentially a more cost-effective defence mechanism for plants than increased Si uptake.
Collapse
Affiliation(s)
- Sarah J Thorne
- Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Susan E Hartley
- Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
18
|
Jiang Z, He J, Fang Y, Lin J, Liu S, Wu Y, Huang X. Effects of herbivore on seagrass, epiphyte and sediment carbon sequestration in tropical seagrass bed. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106122. [PMID: 37549560 DOI: 10.1016/j.marenvres.2023.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Herbivores strongly affect the ecological structure and functioning in seagrass bed ecosystems, but may exhibit density-dependent effects on primary producers and carbon sequestration. This study examined the effects of herbivorous snail (Cerithidea rhizophorarum) density on snail intraspecific competition and diet, dominant seagrass (Thalassia hemprichii) and epiphyte growth metrics, and sediment organic carbon (SOC). The growth rates of the herbivorous snail under low density (421 ind m-2) and mid density (842 ind m-2) were almost two times of those at extremely high density (1684 ind m-2), indicating strong intraspecific competition at high density. Herbivorous snails markedly reduced the epiphyte biomass on seagrass leaves. Additionally, the seagrass contribution to herbivorous snail as food source under high density was about 1.5 times of that under low density, while the epiphyte contribution under low density was 3 times of that under high density. A moderate density of herbivorous snails enhanced leaf length, carbon, nitrogen, total phenol and flavonoid contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. However, high density of herbivorous snails decreased leaf glucose, fructose, detritus carbon, and total phenols contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. Therefore, the effects of herbivorous snail on seagrass, epiphyte and SOC were density-dependent, and moderate density of herbivorous snail could be beneficial for seagrasses to increase productivity. This provided theoretical guidance for enhancing carbon sink in seagrass bed and its better conservation.
Collapse
Affiliation(s)
- Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Jialu He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guangdong Center for Marine Development Research, Guangzhou, 510220, China
| | - Yang Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jizhen Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China.
| |
Collapse
|
19
|
Camina JL, Usseglio V, Marquez V, Merlo C, Dambolena JS, Zygadlo JA, Ashworth L. Ecological interactions affect the bioactivity of medicinal plants. Sci Rep 2023; 13:12165. [PMID: 37500739 PMCID: PMC10374891 DOI: 10.1038/s41598-023-39358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
Essential oils produced by medicinal plants possess important bioactive properties (antibacterial, antioxidant) of high value for human society. Pollination and herbivory can modify the chemical defences of plants and therefore they may influence the bioactivity of essential oils. However, the effect of ecological interactions on plant bioactivity has not yet been evaluated. We tested the hypothesis that cross-pollination and simulated herbivory modify the chemical composition of essential oils, improving the bioactive properties of the medicinal plant Lepechinia floribunda (Lamiaceae). Through controlled experiments, we showed that essential oils from the outcrossed plant progeny had a higher relative abundance of oxygenated terpenes and it almost doubled the bacteriostatic effect on Staphylococcus aureus, compared to inbred progeny (i.e., progeny produced in absence of pollinators). Herbivory affected negatively and positively the production of rare compounds in inbred and outcrossed plants, respectively, but its effects on bioactivity still remain unknown. We show for the first time that by mediating cross-pollination (indirect ecosystem service), pollinators can improve ecosystem services linked to the biological activity of plant's essential oils. We stress the importance of the qualitative component of pollination (self, cross); an aspect usually neglected in studies of pollination services.
Collapse
Affiliation(s)
- Julia L Camina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Virginia Usseglio
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química General, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Victoria Marquez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Carolina Merlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias (FCA), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - José S Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Cátedra de Química Orgánica, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Lorena Ashworth
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México, Morelia, Mexico.
| |
Collapse
|
20
|
Bhattacharya S, MacCallum PE, Dayma M, McGrath-Janes A, King B, Dawson L, Bambico FR, Berry MD, Yuan Q, Martin GM, Preisser EL, Blundell JJ. A short pre-conception bout of predation risk affects both children and grandchildren. Sci Rep 2023; 13:10886. [PMID: 37407623 PMCID: PMC10322924 DOI: 10.1038/s41598-023-37455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic events that affect physiology and behavior in the current generation may also impact future generations. We demonstrate that an ecologically realistic degree of predation risk prior to conception causes lasting changes in the first filial (F1) and second filial (F2) generations. We exposed male and female mice to a live rat (predator stress) or control (non-predator) condition for 5 min. Ten days later, stressed males and females were bred together as were control males and females. Adult F1 offspring from preconception-stressed parents responded to a mild stressor with more anxiety-like behavior and hyperarousal than offspring from control parents. Exposing these F1 offspring to the mild stressor increased neuronal activity (cFOS) in the hippocampus and altered glucocorticoid system function peripherally (plasma corticosterone levels). Even without the mild stressor, F1 offspring from preconception-stressed parents still exhibited more anxiety-like behaviors than controls. Cross-fostering studies confirmed that preconception stress, not maternal social environment, determined offspring behavioral phenotype. The effects of preconception parental stress were also unexpectedly persistent and produced similar behavioral phenotypes in the F2 offspring. Our data illustrate that a surprisingly small amount of preconception predator stress alters the brain, physiology, and behavior of future generations. A better understanding of the 'long shadow' cast by fearful events is critical for understanding the adaptive costs and benefits of transgenerational plasticity. It also suggests the intriguing possibility that similar risk-induced changes are the rule rather than the exception in free-living organisms, and that such multigenerational impacts are as ubiquitous as they are cryptic.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
- Northwestern Polytechnic, Grande Prairie, AB, T8V 4C4, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mrunal Dayma
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Andrea McGrath-Janes
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brianna King
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Francis R Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Gerard M Martin
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Jacqueline J Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
21
|
Cunha AFA, Rodrigues PHD, Anghinoni AC, de Paiva VJ, Pinheiro DGDS, Campos ML. Mechanical wounding impacts the growth versus defense balance in tomato (Solanum lycopersicum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111601. [PMID: 36690279 DOI: 10.1016/j.plantsci.2023.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Plants have evolved elaborate surveillance systems that allow them to perceive the attack by pests and pathogens and activate the appropriate defenses. Mechanical stimulation, such as mechanical wounding, represents one of the most reliable cues for the perception of potential herbivore aggressors. Here we demonstrate that mechanical wounding disturbs the growth versus defense balance in tomato, a physiological condition where growth reduction arises as a pleiotropic consequence of the activation of defense responses (or vice-versa). We observed that multiple lesions on tomato leaves impairs the formation of several growth-related traits, including shoot elongation, leaf expansion and time for flowering, while concomitantly activating the production of defense responses such as trichome formation and the upregulation of defense-related genes. We also provide genetic evidence that this wound-induced growth repression is possibly a consequence of tomato plants sensing the injuries via jasmonates (JAs), a class of plant hormones known to be master regulators of the plant growth versus defense balance. Besides providing a mechanistic explanation on how the growth and defense balance is shifted when plants are subjected to a specific type of mechanical stimulus, our results may offer a practical explanation for why tomato productivity is so negatively impacted by herbivore attack.
Collapse
Affiliation(s)
- Ana Flavia Aparecida Cunha
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Pedro Henrique Duarte Rodrigues
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Ana Clara Anghinoni
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Vinicius Juliani de Paiva
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Daniel Gonçalves da Silva Pinheiro
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Lattarulo Campos
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil; Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil.
| |
Collapse
|
22
|
Gao L, Wei C, He Y, Tang X, Chen W, Xu H, Wu Y, Wilschut RA, Lu X. Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. THE NEW PHYTOLOGIST 2023; 237:2347-2359. [PMID: 36200166 DOI: 10.1111/nph.18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Collapse
Affiliation(s)
- Lunlun Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Chunqiang Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Guangxi Institute of Botany, Chinese Academy of Science, 540016, Guilin, China
| | - Yifan He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Xuefei Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
| | - Wei Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Henan, China
| | - Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Nematology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| |
Collapse
|
23
|
Mendoza-Mendoza A, Serrano M, Schwan-Estrada KRF, Ferreira JFS, Marchese JA. Editorial: Eliciting plant defense responses: From basic to applied science for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1129305. [PMID: 36824202 PMCID: PMC9941734 DOI: 10.3389/fpls.2023.1129305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | - José Abramo Marchese
- Plant Physiology and Biochemistry Lab., Agronomy Department, Federal Technological University of Paraná, Pato Branco, Brazil
| |
Collapse
|
24
|
Duarte MA, Woo S, Hultine K, Blonder B, Aparecido LMT. Vein network redundancy and mechanical resistance mitigate gas exchange losses under simulated herbivory in desert plants. AOB PLANTS 2023; 15:plad002. [PMID: 36959913 PMCID: PMC10029807 DOI: 10.1093/aobpla/plad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herbivory can impact gas exchange, but the causes of interspecific variation in response remain poorly understood. We aimed to determine (1) what effects does experimental herbivory damage to leaf midveins have on leaf gas exchange and, (2) whether changes in leaf gas exchange after damage was predicted by leaf mechanical or venation traits. We hypothesized that herbivory-driven impacts on leaf gas exchange would be mediated by (1a/1b) venation networks, either by more vein resistance, or possibly trading off with other structural defenses; (2a/2b) or more reticulation (resilience, providing more alternate flow pathways after damage) or less reticulation (sectoriality, preventing spread of reduced functionality after damage). We simulated herbivory by damaging the midveins of four leaves from each of nine Sonoran Desert species. We then measured the percent change in photosynthesis (ΔAn%), transpiration (ΔEt%) and stomatal conductance (Δgsw%) between treated and control leaves. We assessed the relationship of each with leaf venation traits and other mechanical traits. ΔAn% varied between +10 % and -55%, similar to ΔEt% (+27%, -54%) and Δgsw% (+36%, -53%). There was no tradeoff between venation and other structural defenses. Increased damage resilience (reduced ΔAn%, ΔEt%, Δgsw%) was marginally associated with lower force-to-tear (P < 0.05), and higher minor vein density (P < 0.10) but not major vein density or reticulation. Leaf venation networks may thus partially mitigate the response of gas exchange to herbivory and other types of vein damage through either resistance or resilience.
Collapse
Affiliation(s)
- Miguel A Duarte
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Sabrina Woo
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Kevin Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N. Galvin Parkway, Phoenix, AZ 85008, USA
| | - Benjamin Blonder
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
- Department of Environmental Science, Policy, and Management, University of California Berkeley, 120 Mulford Hall, Berkeley, CA 94720, USA
| | - Luiza Maria T Aparecido
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, USA
| |
Collapse
|
25
|
Rieksta J, Li T, Davie‐Martin CL, Aeppli LCB, Høye TT, Rinnan R. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:23-35. [PMID: 37284597 PMCID: PMC10168049 DOI: 10.1002/pei3.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Plants release a complex blend of volatile organic compounds (VOCs) in response to stressors. VOC emissions vary between contrasting environments and increase with insect herbivory and rising temperatures. However, the joint effects of herbivory and warming on plant VOC emissions are understudied, particularly in high latitudes, which are warming fast and facing increasing herbivore pressure. We assessed the individual and combined effects of chemically mimicked insect herbivory, warming, and elevation on dwarf birch (Betula glandulosa) VOC emissions in high-latitude tundra ecosystems in Narsarsuaq, South Greenland. We hypothesized that VOC emissions and compositions would respond synergistically to warming and herbivory, with the magnitude differing between elevations. Warming increased emissions of green leaf volatiles (GLVs) and isoprene. Herbivory increased the homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene, emissions, and the response was stronger at high elevation. Warming and herbivory had synergistic effects on GLV emissions. Dwarf birch emitted VOCs at similar rates at both elevations, but the VOC blends differed between elevations. Several herbivory-associated VOC groups did not respond to herbivory. Harsher abiotic conditions at high elevations might not limit VOC emissions from dwarf birch, and high-elevation plants might be better at herbivory defense than assumed. The complexity of VOC responses to experimental warming, elevation, and herbivory are challenging our understanding and predictions of future VOC emissions from dwarf birch-dominated ecosystems.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationKey Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Laurids Christian Brogaard Aeppli
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Toke Thomas Høye
- Department of Bioscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
26
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
27
|
Assessment of the Molecular Responses of an Ancient Angiosperm against Atypical Insect Oviposition: The Case of Hass Avocados and the Tephritid Fly Anastrepha ludens. Int J Mol Sci 2023; 24:ijms24032060. [PMID: 36768387 PMCID: PMC9916504 DOI: 10.3390/ijms24032060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.
Collapse
|
28
|
Whyle RL, Trowbridge AM, Jamieson MA. Genotype, mycorrhizae, and herbivory interact to shape strawberry plant functional traits. FRONTIERS IN PLANT SCIENCE 2022; 13:964941. [PMID: 36388560 PMCID: PMC9644214 DOI: 10.3389/fpls.2022.964941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and herbivores are ubiquitous biotic agents affecting plant fitness. While individual effects of pairwise interactions have been well-studied, less is known about how species interactions above and belowground interact to influence phenotypic plasticity in plant functional traits, especially phytochemicals. We hypothesized that mycorrhizae would mitigate negative herbivore effects by enhancing plant physiology and reproductive traits. Furthermore, we expected genotypic variation would influence functional trait responses to these biotic agents. To test these hypotheses, we conducted a manipulative field-based experiment with three strawberry (Fragaria x ananassa) genotypes to evaluate plant phenotypic plasticity in multiple functional traits. We used a fully-crossed factorial design in which plants from each genotype were exposed to mycorrhizal inoculation, herbivory, and the combined factors to examine effects on plant growth, reproduction, and floral volatile organic compounds (VOCs). Genotype and herbivory were key determinants of phenotypic variation, especially for plant physiology, biomass allocation, and floral volatiles. Mycorrhizal inoculation increased total leaf area, but only in plants that received no herbivory, and also enhanced flower and fruit numbers across genotypes and herbivory treatments. Total fruit biomass increased for one genotype, with up to 30-40% higher overall yield depending on herbivory. Herbivory altered floral volatile profiles and increased total terpenoid emissions. The effects of biotic treatments, however, were less important than the overall influence of genotype on floral volatile composition and emissions. This study demonstrates how genotypic variation affects plant phenotypic plasticity to herbivory and mycorrhizae, playing a key role in shaping physiological and phytochemical traits that directly and indirectly influence productivity.
Collapse
Affiliation(s)
- Robert L. Whyle
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| | - Amy M. Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mary A. Jamieson
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| |
Collapse
|
29
|
Mao Z, Ge Y, Zhang Y, Zhong J, Munawar A, Zhu Z, Zhou W. Disentangling the Potato Tuber Moth-Induced Early-Defense Response by Simulated Herbivory in Potato Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:902342. [PMID: 35693154 PMCID: PMC9178332 DOI: 10.3389/fpls.2022.902342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 06/02/2023]
Abstract
Plants rely on the perception of a multitude of herbivory-associated cues (HACs) to activate their defense response to insect herbivores. These stimuli are mainly derived from three functional components, namely, mechanical damage, insect-associated microbe, and insect's chemical cues. While simulated herbivory integrating these stimuli is widely exploited for complementing actual herbivory in clarifying the details of plant-herbivore interaction, breaking down these stimuli and identifying the mechanisms of plant responses associated with them have been less explored. In this study, the components of potato tuber moth (Phthorimaea operculella, PTM) herbivory were reorganized in a cumulative way and their impacts on the early defense responses of potato leaf were characterized. We found that simulated and actual herbivory of PTM triggered similar patterns of phytohormonal and transcriptomic responses in potato leaf. Moreover, the microbe in the PTM herbivory stimuli is associated with the regulation of the phytohormones jasmonic acid (JA) and abscisic acid (ABA) since reducing the microbe in HAC could reduce JA while increasing ABA. In addition, seven robust gene modules were identified to illustrate how potato plants respond to different PTM herbivory stimuli when herbivory components increased. Significantly, we found that mechanical damage mainly activated JA-mediated signaling; PTM-derived HACs contributed much more to potato early-defense response and induced signaling molecules such as multiple protein kinases; orally secreted bacteria stimuli could antagonize PTM-derived HACs and modulate plant defense, including repressing phenylpropanoid biosynthesis. Our study broadened the understanding of how potato plants integrate the responses to a multitude of stimuli upon PTM herbivory and evidenced that insect-associated microbes greatly modulated the plants response to insect herbivory.
Collapse
Affiliation(s)
- Zhiyao Mao
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ge
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yadong Zhang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jian Zhong
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Brenya E, Pervin M, Chen ZH, Tissue DT, Johnson S, Braam J, Cazzonelli CI. Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. PLANT, CELL & ENVIRONMENT 2022; 45:989-1010. [PMID: 34984703 DOI: 10.1111/pce.14252] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A single event of mechanical stimulation is perceived by mechanoreceptors that transduce rapid transient signalling to regulate gene expression. Prolonged mechanical stress for days to weeks culminates in cellular changes that strengthen the plant architecture leading to thigmomorphogenesis. The convergence of multiple signalling pathways regulates mechanically induced tolerance to numerous biotic and abiotic stresses. Emerging evidence showed prolonged mechanical stimulation can modify the baseline level of gene expression in naive tissues, heighten gene expression, and prime disease resistance upon a subsequent pathogen encounter. The phenotypes of thigmomorphogenesis can persist throughout growth without continued stimulation, revealing somatic-stress memory. Epigenetic processes regulate TOUCH gene expression and could program transcriptional memory in differentiating cells to program thigmomorphogenesis. We discuss the early perception, gene regulatory and phytohormone pathways that facilitate thigmomorphogenesis and mechanical stress acclimation in Arabidopsis and other plant species. We provide insights regarding: (1) the regulatory mechanisms induced by single or prolonged events of mechanical stress, (2) how mechanical stress confers transcriptional memory to induce cross-acclimation to future stress, and (3) why thigmomorphogenesis might resemble an epigenetic phenomenon. Deeper knowledge of how prolonged mechanical stimulation programs somatic memory and primes defence acclimation could transform solutions to improve agricultural sustainability in stressful environments.
Collapse
Affiliation(s)
- Eric Brenya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mahfuza Pervin
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Scott Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Janet Braam
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
31
|
Zheng X, Yin M, Chu S, Yang M, Yang Z, Zhu Y, Huang L, Peng H. Comparative Elucidation of Age, Diameter, and "Pockmarks" in Roots of Paeonia lactiflora Pall. (Shaoyao) by Qualitative and Quantitative Methods. FRONTIERS IN PLANT SCIENCE 2022; 12:802196. [PMID: 35154191 PMCID: PMC8826210 DOI: 10.3389/fpls.2021.802196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Paeonia lactiflora Pall. is a world-famous ornamental plant, whose roots have been used as an important traditional Chinese medicine, Shaoyao, to treat diseases for more than 1,000 years. Because of the excellent curative effect of Shaoyao, its quality has attracted wide attention, however, there is a lack of comprehensive research on the different influencing factors of quality of Shaoyao. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were utilized to systematically analyze the Shaoyao of different ages, diameters and roots with "pockmarks." 60 metabolites were detected and identified from Shaoyao using the UPLC-Q/TOF-MS, of which 20 potential quality markers of dissected roots with and without "pockmarks" were selected for the first time using the orthogonal partial least squares discriminant analysis (OPLS-DA) and the variable importance for projection (VIP) plot. Then, a selective and accurate HPLC-DAD quantitative assay has been developed for the simultaneous determination of 11 bioactive components in Shaoyao. The results showed that the total content of five monoterpene glycosides including oxypaeoniflorin, albiflorin, paeoniflorin, lactiflorin, and benzoylpaeoniflorin and six phenols including gallic acid, catechin, methyl gallate, ethyl gallate, apiopaeonoside and benzoic acid in the 3-year-old Shaoyao was higher than that of 4-year-old and 5-year-old Shaoyao. In Shaoyao of the same age, the total content of five monoterpene glycosides and six phenols decreased with an increase in diameter. In addition, regardless of whether it is a whole or a divided root, the contents of five monoterpene glycosides and six phenols in Shaoyao with "pockmarks" were higher than those of Shaoyao without "pockmarks." In summary, this work has explored several factors that might affect the quality of Shaoyao, and provide a guide for more comprehensive quality evaluation in its further production, processing, and rational utilization.
Collapse
Affiliation(s)
- Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | | | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, 2019RU57, Beijing, China
| |
Collapse
|
32
|
Villamil N, Li X, Seddon E, Pannell JR. Simulated herbivory enhances leaky sex expression in the dioecious herb Mercurialis annua. ANNALS OF BOTANY 2022; 129:79-86. [PMID: 34668537 PMCID: PMC8829902 DOI: 10.1093/aob/mcab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Plant reproductive traits are widely understood to be responsive to the selective pressures exerted by pollinators, but there is also increasing evidence for an important role for antagonists such as herbivores in shaping these traits. Many dioecious species show leaky sex expression, with males and females occasionally producing flowers of the opposite sex. Here, we asked to what extent leakiness in sex expression in Mercurialis annua (Euphorbiaceae) might also be plastically responsive to simulated herbivory. This is important because enhanced leakiness in dioecious populations could lead to a shift in both the mating system and in the conditions for transitions between combined and separate sexes. METHODS We examined the effect of simulated herbivory on the sexual expression of males and females of M. annua in two experiments in which different levels of simulated herbivory led to enhanced leakiness in both sexes. KEY RESULTS We showed that leaky sex expression in both males and females of the wind-pollinated dioecious herb M. annua is enhanced in response to simulated herbivory, increasing the probability for and the degree of leakiness in both sexes. We also found that leakiness was greater in larger females but not in larger males. CONCLUSIONS We discuss hypotheses for a possible functional link between herbivory and leaky sex expression, and consider what simulated herbivory-induced leakiness might imply for the evolutionary ecology of plant reproductive systems, especially the breakdown of dioecy and the evolution of hermaphroditism.
Collapse
Affiliation(s)
- Nora Villamil
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
| | - Xinji Li
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
| | - Emily Seddon
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
- Vegetation Ecologist, NatureServe, Boulder, CO 80301, USA
| | - John R Pannell
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
| |
Collapse
|
33
|
Wei N, Whyle RL, Ashman TL, Jamieson MA. Genotypic variation in floral volatiles influences floral microbiome more strongly than interactions with herbivores and mycorrhizae in strawberriesd. HORTICULTURE RESEARCH 2022; 9:uhab005. [PMID: 35141759 PMCID: PMC8795819 DOI: 10.1093/hr/uhab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/18/2022] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The floral microbiome is of significant relevance to plant reproduction and crop productivity. While plant genotype is key to floral microbiome assembly, whether and how genotypic variation in floral traits and plant-level mutualistic and antagonistic interactions at the rhizosphere and phyllosphere influence the microbiome in the anthosphere remain little known. Using a factorial field experiment that manipulated biotic interactions belowground (mycorrhizae treatments) and aboveground (herbivory treatments) in three strawberry genotypes, we assessed how genotypic variation in flower abundance and size and plant-level biotic interactions influence the bidirectional relationships between floral volatile organic compounds (VOCs) and the floral microbiome using structural equation modeling. We found that plant genotype played a stronger role, overall, in shaping the floral microbiome than biotic interactions with mycorrhizae and herbivores. Genotypic variation in flower abundance and size influenced the emission of floral VOCs, especially terpenes (e.g. α- and β-pinene, ocimene isomers) and benzenoids (e.g. p-anisaldehyde, benzaldehyde), which in turn affected floral bacterial and fungal communities. While the effects of biotic interactions on floral traits including VOCs were weak, mycorrhizae treatments (mycorrhizae and herbivory + mycorrhizae) affected the fungal community composition in flowers. These findings improve our understanding of the mechanisms by which plant genotype influences floral microbiome assembly and provide the first evidence that biotic interactions in the rhizosphere and phyllosphere can influence the floral microbiome, and offer important insights into agricultural microbiomes.
Collapse
Affiliation(s)
- Na Wei
- The Holden Arboretum, Kirtland, OH 44094, USA
- Department of Biological Sciences, University of Pittsburg, Pittsburg, PA 15260, USA
| | - Robert L Whyle
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburg, Pittsburg, PA 15260, USA
| | - Mary A Jamieson
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
34
|
ZHANG YF, ZHOU HY, TANG YL, LUO YM, ZHANG ZY. Hydrogen peroxide regulated salicylic acid– and jasmonic acid–dependent systemic defenses in tomato seedlings. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.54920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Memory and habituation to harmful and non-harmful stimuli in a field population of the sensitive plant, Mimosa pudica. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMimosa pudica is a Neotropical legume that closes its leaves rapidly in response to touch stimulation, hypothetically as herbivory defence. Habituation to non-harmful stimuli and long-term memory of past events have been demonstrated in this species, the former with relatively heavy objects and the latter under laboratory conditions. This species should not habituate to harmful stimuli if leaf movement is a response to herbivore damage. We tested in Monteverde, Costa Rica, whether (1) memory occurs in wild plants, (2) whether habituation occurs under harmful stimuli: simulated herbivory, and (3) whether wild plants can habituate to light non-harmful stimuli. The degree of closing of the leaflets and time until reopening was measured in response to repeated harmful and non-harmful stimuli. The results showed habituation to repeated non-harmful very light stimuli and showed lack of habituation to simulated leaf damage. Wild plants also showed faster rehabituation to repeated non-harmful stimuli when they had been exposed 15 days previously, suggesting possible long-term memory. These results indicate that wild plants are capable of (1) distinguishing between harmful and non-harmful stimuli (only habituating to the latter), (2) memorizing previous events, and 3) habituating very light tactile stimuli commonly experienced in the field.
Collapse
|
36
|
Jiang D, Tan M, Wu S, Zheng L, Wang Q, Wang G, Yan S. Defense responses of arbuscular mycorrhizal fungus-colonized poplar seedlings against gypsy moth larvae: a multiomics study. HORTICULTURE RESEARCH 2021; 8:245. [PMID: 34848684 PMCID: PMC8632881 DOI: 10.1038/s41438-021-00671-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi may help protect plants against herbivores; however, their use for the pest control of woody plants requires further study. Here, we investigated the effect of Glomus mosseae colonization on the interactions between gypsy moth larvae and Populus alba × P. berolinensis seedlings and deciphered the regulatory mechanisms underlying the mycorrhizal-induced resistance in the leaves of mycorrhizal poplar using RNA-seq and nontargeted metabolomics. The resistance assay showed that AM fungus inoculation protected poplar seedlings against gypsy moth larvae, as evidenced by the decreased larval growth and reduced larval survival. A transcriptome analysis revealed that differentially expressed genes (DEGs) were involved in jasmonic acid biosynthesis (lipoxygenase, hydroperoxide dehydratase, and allene oxide cyclase) and signal transduction (jasmonate-ZIM domain and transcription factor MYC2) and identified the genes that were upregulated in mycorrhizal seedlings. Except for chalcone synthase and anthocyanidin synthase, which were downregulated in mycorrhizal seedlings, all DEGs related to flavonoid biosynthesis were upregulated, including 4-coumarate-CoA ligase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, and leucoanthocyanidin reductase. The metabolome analysis showed that several metabolites with insecticidal properties, including coumarin, stachydrine, artocarpin, norizalpinin, abietic acid, 6-formylumbelliferone, and vanillic acid, were significantly accumulated in the mycorrhizal seedlings. These findings suggest the potential of mycorrhiza-induced resistance for use in pest management of woody plants and demonstrate that the priming of JA-dependent responses in poplar seedlings contributes to mycorrhiza-induced resistance to insect pests.
Collapse
Affiliation(s)
- Dun Jiang
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Shuai Wu
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Qing Wang
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Guirong Wang
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, 150040, Harbin, P. R. China.
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, P. R. China.
| |
Collapse
|
37
|
Morreeuw ZP, Escobedo-Fregoso C, Ríos-González LJ, Castillo-Quiroz D, Reyes AG. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110748. [PMID: 33691954 DOI: 10.1016/j.plantsci.2020.110748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 05/23/2023]
Abstract
Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 μg), flavanone (291.51 μg), hesperidin (34.23 μg), delphinidin (24.23 μg), quercetin (15.57 μg), kaempferol (13.71 μg), cyanidin (12.32 μg), apigenin (9.70 μg) and catechin (7.91 μg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Zoé P Morreeuw
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Cristina Escobedo-Fregoso
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Leopoldo J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila (UAdeC), Blvd. V. Carranza, Col. Republica Oriente, C.P. 25280, Saltillo, Coahuila, Mexico
| | - David Castillo-Quiroz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Saltillo, Carretera Saltillo-Zacatecas 9515, Col. Hacienda Buenavista, C.P. 25315, Saltillo, Coahuila, Mexico
| | - Ana G Reyes
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico.
| |
Collapse
|
38
|
Phenotypic plasticity of invasive Carpobrotus edulis modulates tolerance against herbivores. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02475-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Singh A, Kumar A, Hartley S, Singh IK. Silicon: its ameliorative effect on plant defense against herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6730-6743. [PMID: 32591824 DOI: 10.1093/jxb/eraa300] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Plants protect themselves against pest attack utilizing both direct and indirect modes of defense. The direct mode of defense includes morphological, biochemical, and molecular barriers that affect feeding, growth, and survival of herbivores whereas the indirect mode of defense includes release of a blend of volatiles that attract natural enemies of the pests. Both of these strategies adopted by plants are reinforced if the plants are supplied with one of the most abundant metalloids, silicon (Si). Plants absorb Si as silicic acid (Si(OH)4) and accumulate it as phytoliths, which strengthens their physical defense. This deposition of Si in plant tissue is up-regulated upon pest attack. Further, Si deposited in the apoplast, suppresses pest effector molecules. Additionally, Si up-regulates the expression of defense-related genes and proteins and their activity and enhances the accumulation of secondary metabolites, boosting induced molecular and biochemical defenses. Moreover, Si plays a crucial role in phytohormone-mediated direct and indirect defense mechanisms. It is also involved in the reduction of harmful effects of oxidative stress resulting from herbivory by accelerating the scavenging process. Despite increasing evidence of its multiple roles in defense against pests, the practical implications of Si for crop protection have received less attention. Here, we highlight recent developments in Si-mediated improved plant resistance against pests and its significance for future use in crop improvement.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Susan Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
40
|
Waterman JM, Hall CR, Mikhael M, Cazzonelli CI, Hartley SE, Johnson SN. Short‐term resistance that persists: Rapidly induced silicon anti‐herbivore defence affects carbon‐based plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jamie M. Waterman
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| | - Casey R. Hall
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| | - Meena Mikhael
- School of Medicine Western Sydney University Campbelltown NSW Australia
| | | | | | - Scott N. Johnson
- Hawkesbury Institute for the EnvironmentWestern Sydney University Richmond NSW Australia
| |
Collapse
|
41
|
Contrasting effects of herbivore damage type on extrafloral nectar production and ant attendance. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2020. [DOI: 10.1016/j.actao.2020.103638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Paudel S, Lin PA, Hoover K, Felton GW, Rajotte EG. Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory. J Chem Ecol 2020; 46:891-905. [PMID: 32700062 PMCID: PMC7467972 DOI: 10.1007/s10886-020-01201-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
The effect of temperature on insect-plant interactions in the face of changing climate is complex as the plant, its herbivores and their interactions are usually affected differentially leading to an asymmetry in response. Using experimental warming and a combination of biochemical and herbivory bioassays, the effects of elevated temperatures and herbivore damage (Helicoverpa zea) on resistance and tolerance traits of Solanum lycopersicum var. Better boy (tomato), as well as herbivory performance and salivary defense elicitors were examined. Insects and plants were differentially sensitive towards warming within the experimental temperature range. Herbivore growth rate increased with temperature, whereas plants growth as well as the ability to tolerate stress measured by photosynthesis recovery and regrowth ability were compromised at the highest temperature regime. In particular, temperature influenced the caterpillars’ capacity to induce plant defenses due to changes in the amount of a salivary defense elicitor, glucose oxidase (GOX). This was further complexed by the temperature effects on plant inducibility, which was significantly enhanced at an above-optimum temperature; this paralleled with an increased plants resistance to herbivory but significantly varied between previously damaged and undamaged leaves. Elevated temperatures produced asymmetry in species’ responses and changes in the relationship among species, indicating a more complicated response under a climate change scenario.
Collapse
Affiliation(s)
- Sulav Paudel
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Po-An Lin
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edwin G Rajotte
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
43
|
Thapsigargins and induced chemical defence in Thapsia garganica. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Meents AK, Mithöfer A. Plant-Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns? FRONTIERS IN PLANT SCIENCE 2020; 11:583275. [PMID: 33178248 PMCID: PMC7593327 DOI: 10.3389/fpls.2020.583275] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 05/16/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
Collapse
|
45
|
Body MJ, Dave DF, Coffman CM, Paret TY, Koo AJ, Cocroft RB, Appel HM. Use of Yellow Fluorescent Protein Fluorescence to Track OPR3 Expression in Arabidopsis Thaliana Responses to Insect Herbivory. FRONTIERS IN PLANT SCIENCE 2019; 10:1586. [PMID: 31850048 PMCID: PMC6897264 DOI: 10.3389/fpls.2019.01586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 05/08/2023]
Abstract
Feeding by chewing insects induces chemical defenses in plants that are regulated by the jasmonic acid (JA) pathway. Jasmonates are usually quantified by liquid chromatography-mass spectrometry (LC-MS) analysis of precursors and products in the biosynthetic pathway or inferred from the extraction and expression of genes known to respond to elevated levels of JA. Both approaches are costly and time consuming. To address these limitations, we developed a rapid reporter for the synthesis of JA based on the OPR3promoter:YFP-PTS1. Yellow fluorescent protein (YFP) fluorescence was increased by mechanical wounding and methyl jasmonate (MeJA) treatment and by caterpillar feeding. To develop an optimal sampling time for a quantitative bioassay, OPR3promoter:YFP-PTS1 plants were sampled at 1, 2, 3, and 24 h after treatment with 115 µM MeJA. The first increase in YFP fluorescence was detected at 2 h and remained elevated 3 and 24 h later; as a result, 3 h was chosen as the sampling time for a quantitative bioassay of jasmonate response to insect attack. Feeding by Pieris rapae caterpillars induced a 1.8-fold increase in YFP fluorescence, consistent with the known induction of JA production by this insect. We also assessed the utility of this reporter in studies of plant responses to caterpillar feeding vibrations, which are known to potentiate the JA-dependent production of chemical defenses. Pretreatment with feeding vibrations increased expression of the OPR3promoter:YFP-PTS1 in response to 14 µM MeJA. Feeding vibrations did not potentiate responses at higher MeJA concentrations, suggesting that potentiating effects of prior treatments can only be detected when plants are below a response threshold to the elicitor. The expression of OPR3 does not indicate levels of specific downstream jasmonates and quantification of specific jasmonates still requires detailed analysis by LC-MS. However, OPR3 expression does provide a rapid and inexpensive way to screen large numbers of plants for the involvement of jasmonate signaling in their response to a wide variety of treatments, and to study the induction and expression of AtOPR3.
Collapse
Affiliation(s)
- Mélanie J.A. Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Dhruveesh F. Dave
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Clayton M. Coffman
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Taylor Y. Paret
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Abraham J. Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Reginald B. Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Heidi M. Appel
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
46
|
Gely C, Laurance SGW, Stork NE. How do herbivorous insects respond to drought stress in trees? Biol Rev Camb Philos Soc 2019; 95:434-448. [PMID: 31750622 DOI: 10.1111/brv.12571] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023]
Abstract
Increased frequency and severity of drought, as a result of climate change, is expected to drive critical changes in plant-insect interactions that may elevate rates of tree mortality. The mechanisms that link water stress in plants to insect performance are not well understood. Here, we build on previous reviews and develop a framework that incorporates the severity and longevity of drought and captures the plant physiological adjustments that follow moderate and severe drought. Using this framework, we investigate in greater depth how insect performance responds to increasing drought severity for: (i) different feeding guilds; (ii) flush feeders and senescence feeders; (iii) specialist and generalist insect herbivores; and (iv) temperate versus tropical forest communities. We outline how intermittent and moderate drought can result in increases of carbon-based and nitrogen-based chemical defences, whereas long and severe drought events can result in decreases in plant secondary defence compounds. We predict that different herbivore feeding guilds will show different but predictable responses to drought events, with most feeding guilds being negatively affected by water stress, with the exception of wood borers and bark beetles during severe drought and sap-sucking insects and leaf miners during moderate and intermittent drought. Time of feeding and host specificity are important considerations. Some insects, regardless of feeding guild, prefer to feed on younger tissues from leaf flush, whereas others are adapted to feed on senescing tissues of severely stressed trees. We argue that moderate water stress could benefit specialist insect herbivores, while generalists might prefer severe drought conditions. Current evidence suggests that insect outbreaks are shorter and more spatially restricted in tropical than in temperate forests. We suggest that future research on the impact of drought on insect communities should include (i) assessing how drought-induced changes in various plant traits, such as secondary compound concentrations and leaf water potential, affect herbivores; (ii) food web implications for other insects and those that feed on them; and (iii) interactions between the effects on insects of increasing drought and other forms of environmental change including rising temperatures and CO2 levels. There is a need for larger, temperate and tropical forest-scale drought experiments to look at herbivorous insect responses and their role in tree death.
Collapse
Affiliation(s)
- Claire Gely
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University, Nathan, 4111, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science (TESS) and College of Science and Engineering, James Cook University, Cairns, 4878, Australia
| | - Nigel E Stork
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University, Nathan, 4111, Australia
| |
Collapse
|
47
|
Leroy N, Tombeur FD, Walgraffe Y, Cornélis JT, Verheggen FJ. Silicon and Plant Natural Defenses against Insect Pests: Impact on Plant Volatile Organic Compounds and Cascade Effects on Multitrophic Interactions. PLANTS 2019; 8:plants8110444. [PMID: 31652861 PMCID: PMC6918431 DOI: 10.3390/plants8110444] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 11/20/2022]
Abstract
Environmental factors controlling silicon (Si) accumulation in terrestrial plant are key drivers to alleviate plant biotic stresses, including insect herbivory. While there is a general agreement on the ability of Si-enriched plant to better resist insect feeding, recent studies suggest that Si also primes biochemical defense pathways in various plant families. In this review, we first summarize how soil parameters and climate variables influence Si assimilation in plants. Then, we describe recent evidences on the ability of Si to modulate plant volatile emissions, with potential cascade effects on phytophagous insects and higher trophic levels. Even though the mechanisms still need to be elucidated, Si accumulation in plants leads to contrasting effects on the levels of the three major phytohormones, namely jasmonic acid, salicylic acid and ethylene, resulting in modified emissions of plant volatile organic compounds. Herbivore-induced plant volatiles would be particularly impacted by Si concentration in plant tissues, resulting in a cascade effect on the attraction of natural enemies of pests, known to locate their prey or hosts based on plant volatile cues. Since seven of the top 10 most important crops in the world are Si-accumulating Poaceae species, it is important to discuss the potential of Si mobility in soil-plant systems as a novel component of an integrated pest management.
Collapse
Affiliation(s)
- Nicolas Leroy
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| | - Félix de Tombeur
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium.
| | - Yseult Walgraffe
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| | - Jean-Thomas Cornélis
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium.
| | - François J Verheggen
- Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030 Gembloux, Belgium.
| |
Collapse
|
48
|
Li G, Bartram S, Guo H, Mithöfer A, Kunert M, Boland W. SpitWorm, a Herbivorous Robot: Mechanical Leaf Wounding with Simultaneous Application of Salivary Components. PLANTS (BASEL, SWITZERLAND) 2019; 8:E318. [PMID: 31480435 PMCID: PMC6784092 DOI: 10.3390/plants8090318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Induction of jasmonate-mediated plant defense against insect herbivory is initiated by a combination of both mechanical wounding and chemical factors. In order to study both effects independently on plant defense induction, SpitWorm, a computer-controlled device which mimics the damage pattern of feeding insect larvae on leaves and, in addition, can apply oral secretions (OS) or other solutions to the 'biting site' during 'feeding,' was developed and evaluated. The amount of OS left by a Spodoptera littoralis larva during feeding on Phaseolus lunatus (lima bean) leaves was estimated by combining larval foregut volume, biting rate, and quantification of a fluorescent dye injected into the larvae's foregut prior to feeding. For providing OS amounts by SpitWorm equivalent to larval feeding, dilution and delivery rate were optimized. The effectiveness of SpitWorm was tested by comparing volatile organic compounds (VOC) emissions of P. lunatus leaves treated with either SpitWorm, MecWorm, or S. littoralis larvae. Identification and quantification of emitted VOCs revealed that SpitWorm induced a volatile bouquet that is qualitatively and quantitatively similar to herbivory. Additionally, RT-qPCR of four jasmonic acid responsive genes showed that SpitWorm, in contrast to MecWorm, induces the same regulation pattern as insect feeding. Thus, SpitWorm mimics insect herbivory almost identically to real larvae feeding.
Collapse
Affiliation(s)
- Guanjun Li
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Department of Natural Product Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, D-07745 Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Maritta Kunert
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Department of Natural Product Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
49
|
Mawalagedera SMUP, Callahan DL, Gaskett AC, Rønsted N, Symonds MRE. Combining Evolutionary Inference and Metabolomics to Identify Plants With Medicinal Potential. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
50
|
Hall CR, Waterman JM, Vandegeer RK, Hartley SE, Johnson SN. The Role of Silicon in Antiherbivore Phytohormonal Signalling. FRONTIERS IN PLANT SCIENCE 2019; 10:1132. [PMID: 31620157 PMCID: PMC6759751 DOI: 10.3389/fpls.2019.01132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/15/2019] [Indexed: 05/22/2023]
Abstract
The role of plant silicon (Si) in the alleviation of abiotic and biotic stress is now widely recognised and researched. Amongst the biotic stresses, Si is known to increase resistance to herbivores through biomechanical and chemical mechanisms, although the latter are indirect and remain poorly characterised. Chemical defences are principally regulated by several antiherbivore phytohormones. The jasmonic acid (JA) signalling pathway is particularly important and has been linked to Si supplementation, albeit with some contradictory findings. In this Perspectives article, we summarise existing knowledge of how Si affects JA in the context of herbivory and present a conceptual model for the interactions between Si and JA signalling in wounded plants. Further, we use novel information from the model grass Brachypodium distachyon to underpin aspects of this model. We show that Si reduces JA concentrations in plants subjected to chemical induction (methyl jasmonate) and herbivory (Helicoverpa armigera) by 34% and 32%, respectively. Moreover, +Si plants had 13% more leaf macrohairs than -Si plants. From this study and previous work, our model proposes that Si acts as a physical stimulus in the plant, which causes a small, transient increase in JA. When +Si plants are subsequently attacked by herbivores, they potentially show a faster induction of JA due to this priming. +Si plants that have already invested in biomechanical defences (e.g. macrohairs), however, have less utility for JA-induced defences and show lower levels of JA induction overall.
Collapse
Affiliation(s)
- Casey R. Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jamie M. Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rebecca K. Vandegeer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Susan E. Hartley
- York Environment and Sustainability Institute, Department of Biology, University of York, York, United Kingdom
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Scott Johnson,
| |
Collapse
|