1
|
Hex SBSW, Isbilen ES, Rubenstein DI. Plains Zebras Prioritize Foraging Without Sacrificing Social Bonds During a Severe Drought. Ecol Evol 2025; 15:e70632. [PMID: 39790732 PMCID: PMC11710937 DOI: 10.1002/ece3.70632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 01/12/2025] Open
Abstract
Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions. We investigated how the highly social plains zebra (Equus quagga) modify their activity budgets, social networks, and multimodal communication during a drought. Although animals prioritized feeding and the number of social interactions dramatically decreased in the late drought period, social associations remained robust. We observed age/sex class-specific changes in social behavior, reflecting the nutritional needs and social niche of each individual. Stallions devoted more time to greeting behaviors, which could mitigate harassment by bachelor males and facilitate grazing time for the females of the harem. Juveniles significantly increased time spent active socializing, despite mothers showing the greatest decrease in the number of social interactions. Instead, unrelated, nonlactating females served as social partners, accommodating both juveniles' social needs and lactating mothers' nutritive requirements. Using a network-based representation of multimodal communication, we observed a decrease in the number of signals used during the drought. Individuals used less diverse multimodal combinations, particularly in the costly context of aggression. These findings illustrate how social roles and differential responses to acute environmental stress within stable social groups may contribute to species resilience, and how communication flexibly responds to facilitate both survival and sociality under harsh environmental conditions.
Collapse
Affiliation(s)
- Severine B. S. W. Hex
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Erin S. Isbilen
- Child Study CenterYale University, School of MedicineNew HavenConnecticutUSA
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
2
|
Woodman JP, Gokcekus S, Beck KB, Green JP, Nussey DH, Firth JA. The ecology of ageing in wild societies: linking age structure and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220464. [PMID: 39463244 PMCID: PMC11513650 DOI: 10.1098/rstb.2022.0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 10/29/2024] Open
Abstract
The age of individuals has consequences not only for their fitness and behaviour but also for the functioning of the groups they form. Because social behaviour often changes with age, population age structure is expected to shape the social organization, the social environments individuals experience and the operation of social processes within populations. Although research has explored changes in individual social behaviour with age, particularly in controlled settings, there is limited understanding of how age structure governs sociality in wild populations. Here, we synthesize previous research into age-related effects on social processes in natural populations, and discuss the links between age structure, sociality and ecology, specifically focusing on how population age structure might influence social structure and functioning. We highlight the potential for using empirical data from natural populations in combination with social network approaches to uncover pathways linking individual social ageing, population age structure and societal functioning. We discuss the broader implications of these insights for understanding the social impacts of anthropogenic effects on animal population demography and for building a deeper understanding of societal ageing in general.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Joe P. Woodman
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Samin Gokcekus
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Kristina B. Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jonathan P. Green
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Dan H. Nussey
- Institute of Ecology & Evolution, The University of Edinburgh, EdinburghEH9 3JT, UK
| | - Josh A. Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Ostwald MM, da Silva CRB, Seltmann KC. How does climate change impact social bees and bee sociality? J Anim Ecol 2024; 93:1610-1621. [PMID: 39101348 DOI: 10.1111/1365-2656.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
Climatic factors are known to shape the expression of social behaviours. Likewise, variation in social behaviour can dictate climate responses. Understanding interactions between climate and sociality is crucial for forecasting vulnerability and resilience to climate change across animal taxa. These interactions are particularly relevant for taxa like bees that exhibit a broad diversity of social states. An emerging body of literature aims to quantify bee responses to environmental change with respect to variation in key functional traits, including sociality. Additionally, decades of research on environmental drivers of social evolution may prove fruitful for predicting shifts in the costs and benefits of social strategies under climate change. In this review, we explore these findings to ask two interconnected questions: (a) how does sociality mediate vulnerability to climate change, and (b) how might climate change impact social organisation in bees? We highlight traits that intersect with bee sociality that may confer resilience to climate change (e.g. extended activity periods, diet breadth, behavioural thermoregulation) and we generate predictions about the impacts of climate change on the expression and distribution of social phenotypes in bees. The social evolutionary consequences of climate change will be complex and heterogeneous, depending on such factors as local climate and plasticity of social traits. Many contexts will see an increase in the frequency of eusocial nesting as warming temperatures accelerate development and expand the temporal window for rearing a worker brood. More broadly, climate-mediated shifts in the abiotic and biotic selective environments will alter the costs and benefits of social living in different contexts, with cascading impacts at the population, community and ecosystem levels.
Collapse
Affiliation(s)
- Madeleine M Ostwald
- Cheadle Center for Biodiversity & Ecological Restoration, University of California, Santa Barbara, California, USA
| | - Carmen R B da Silva
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katja C Seltmann
- Cheadle Center for Biodiversity & Ecological Restoration, University of California, Santa Barbara, California, USA
| |
Collapse
|
4
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Testard C, Shergold C, Acevedo-Ithier A, Hart J, Bernau A, Negron-Del Valle JE, Phillips D, Watowich MM, Sanguinetti-Scheck JI, Montague MJ, Snyder-Mackler N, Higham JP, Platt ML, Brent LJN. Ecological disturbance alters the adaptive benefits of social ties. Science 2024; 384:1330-1335. [PMID: 38900867 PMCID: PMC11995978 DOI: 10.1126/science.adk0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
Extreme weather events radically alter ecosystems. When ecological damage persists, selective pressures on individuals can change, leading to phenotypic adjustments. For group-living animals, social relationships may be a mechanism enabling adaptation to ecosystem disturbance. Yet whether such events alter selection on sociality and whether group-living animals can, as a result, adaptively change their social relationships remain untested. We leveraged 10 years of data collected on rhesus macaques before and after a category 4 hurricane caused persistent deforestation, exacerbating monkeys' exposure to intense heat. In response, macaques demonstrated persistently increased tolerance and decreased aggression toward other monkeys, facilitating access to scarce shade critical for thermoregulation. Social tolerance predicted individual survival after the hurricane, but not before it, revealing a shift in the adaptive function of sociality.
Collapse
Affiliation(s)
- C. Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - C. Shergold
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - A. Acevedo-Ithier
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Hart
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - A. Bernau
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - J. E. Negron-Del Valle
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - D. Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - M. M. Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - M. J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - N. Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - J. P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
| | - M. L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - L. J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Motes-Rodrigo A, Albery GF, Negron-Del Valle J, Philips D, Platt M, Brent LJ, Testard C. A natural disaster exacerbates and redistributes disease risk across free-ranging macaques by altering social structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.17.549341. [PMID: 37503037 PMCID: PMC10370147 DOI: 10.1101/2023.07.17.549341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Climate change is intensifying extreme weather events, with severe implications for ecosystem dynamics. A key behavioural mechanism whereby animals may cope with such events is by increasing social cohesion to improve access to scarce resources like refuges, which in turn could exacerbate epidemic risk due to increased close contact. However, how and to what extent natural disasters affect disease risk via changes in sociality remains unexplored in animal populations. By modelling disease spread in free-living rhesus macaque groups (Macaca mulatta) before and after a hurricane, we demonstrate doubled pathogen transmission rates up to five years following the disaster, equivalent to an increase in pathogen infectivity from 10% to 20%. Moreover, the hurricane redistributed the risk of infection across the population, decreasing status-related differences found in pre-hurricane years. These findings demonstrate that natural disasters can exacerbate and homogenise epidemic risk in an animal population via changes in sociality. These observations provide unexpected further mechanisms by which extreme weather events can threaten wildlife health, population viability, and spillover to humans.
Collapse
|
8
|
Testard C, Shergold C, Acevedo-Ithier A, Hart J, Bernau A, Negron-Del Valle JE, Phillips D, Watowich MM, Sanguinetti-Scheck JI, Montague MJ, Snyder-Mackler N, Higham JP, Platt ML, Brent L. Natural disaster alters the adaptive benefits of sociality in a primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.17.549328. [PMID: 37503170 PMCID: PMC10370068 DOI: 10.1101/2023.07.17.549328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Weather-related disasters can radically alter ecosystems. When disaster-driven ecological damage persists, the selective pressures exerted on individuals can change, eventually leading to phenotypic adjustments. For group-living animals, social relationships are believed to help individuals cope with environmental challenges and may be a critical mechanism enabling adaptation to ecosystems degraded by disasters. Yet, whether natural disasters alter selective pressures on patterns of social interactions and whether group-living animals can, as a result, adaptively change their social relationships remains untested. Here, we leveraged unique data collected on rhesus macaques from 5 years before to 5 years after a category 4 hurricane, leading to persistent deforestation which exacerbated monkeys' exposure to intense heat. In response, macaques increased tolerance for and decreased aggression toward other monkeys, facilitating access to scarce shade critical for thermoregulation. Social tolerance predicted individual survival for 5 years after the hurricane, but not before it, revealing a clear shift in the adaptive function of social relationships in this population. We demonstrate that an extreme climatic event altered selection on sociality and triggered substantial and persistent changes in the social structure of a primate species. Our findings unveil the function and adaptive flexibility of social relationships in degraded ecosystems and identify natural disasters as potential evolutionary drivers of sociality. One-Sentence Summary Testard et al. show that a natural disaster altered selection on sociality in group-living primates triggering persistent changes in their social structure.
Collapse
|
9
|
Albery GF, Bansal S, Silk MJ. Comparative approaches in social network ecology. Ecol Lett 2024; 27:e14345. [PMID: 38069575 DOI: 10.1111/ele.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti-predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Matthew J Silk
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
11
|
Beck KB, Farine DR, Firth JA, Sheldon BC. Variation in local population size predicts social network structure in wild songbirds. J Anim Ecol 2023; 92:2348-2362. [PMID: 37837224 PMCID: PMC10952437 DOI: 10.1111/1365-2656.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The structure of animal societies is a key determinant of many ecological and evolutionary processes. Yet, we know relatively little about the factors and mechanisms that underpin detailed social structure. Among other factors, social structure can be influenced by habitat configuration. By shaping animal movement decisions, heterogeneity in habitat features, such as vegetation and the availability of resources, can influence the spatiotemporal distribution of individuals and subsequently key socioecological properties such as the local population size and density. Differences in local population size and density can impact opportunities for social associations and may thus drive substantial variation in local social structure. Here, we investigated spatiotemporal variation in population size at 65 distinct locations in a small songbird, the great tit (Parus major) and its effect on social network structure. We first explored the within-location consistency of population size from weekly samples and whether the observed variation in local population size was predicted by the underlying habitat configuration. Next, we created social networks from the birds' foraging associations at each location for each week and examined if local population size affected social structure. We show that population size is highly repeatable within locations across weeks and years and that some of the observed variation in local population size was predicted by the underlying habitat, with locations closer to the forest edge having on average larger population sizes. Furthermore, we show that local population size affected social structure inferred by four global network metrics. Using simple simulations, we then reveal that much of the observed social structure is shaped by social processes. Across different population sizes, the birds' social structure was largely explained by their preference to forage in flocks. In addition, over and above effects of social foraging, social preferences between birds (i.e. social relationships) shaped certain network features such as the extent of realized social connections. Our findings thus suggest that individual social decisions substantially contribute to shaping certain social network features over and above effects of population size alone.
Collapse
Affiliation(s)
- Kristina B. Beck
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Josh A. Firth
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Candolin U, Fletcher RJ, Stephens AEA. Animal behaviour in a changing world. Trends Ecol Evol 2023; 38:313-315. [PMID: 36921577 DOI: 10.1016/j.tree.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/15/2023]
Affiliation(s)
- Ulrika Candolin
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Robert J Fletcher
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|