1
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
2
|
Ying C, Zhang J, Zhang H, Gao S, Guo X, Lin J, Wu H, Hong Y. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol 2023; 369:114543. [PMID: 37743001 DOI: 10.1016/j.expneurol.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Central nervous system (CNS) diseases are a leading cause of death and disability. Due to CNS neurons have no self-renewal and regenerative ability as they mature, their loss after injury or disease is irreversible and often leads to functional impairments. Unfortunately, therapeutic options for CNS diseases are still limited, and effective treatments for these notorious diseases are warranted to be explored. At present, stem cell therapy has emerged as a potential therapeutic strategy for improving the prognosis of CNS diseases. Accumulating preclinical and clinical evidences have demonstrated that multiple molecular mechanisms, such as cell replacement, immunoregulation and neurotrophic effect, underlie the use of stem cell therapy for CNS diseases. However, several issues have yet to be addressed to support its clinical application. Thus, this review article aims to summarize the role and underlying mechanisms of stem cell therapy in treating CNS diseases. And it is worthy of further evaluation for the potential therapeutic applications of stem cell treatment in CNS disease.
Collapse
Affiliation(s)
- Caidi Ying
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jun Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Xu R, Duan C, Meng Z, Zhao J, He Q, Zhang Q, Gong C, Huang J, Xie Q, Yang Q, Bai Y. Lipid Microcapsules Promoted Neural Stem Cell Survival in the Infarcted Area of Mice with Ischemic Stroke by Inducing Autophagy. ACS Biomater Sci Eng 2022; 8:4462-4473. [PMID: 36069708 DOI: 10.1021/acsbiomaterials.2c00228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracerebral transplantation of neural stem cells (NSCs) for ischemic stroke treatment has been demonstrated to be inefficient, with only <5% of delivered cells being retained. Microcapsules may be a good carrier for NSC delivery; however, the current microcapsules do not fully meet the demands for cell survival after transplantation. In the present study, we designed a strategy for the encapsulation of NSCs in a novel lipid-alginate (L-A) microcapsule based on a two-step method. The protective effect of a L-A microcapsule on oxygen-glucose deprivation (OGD) was investigated by using the CCK8 test, the LDH release test, and flow cytometry. Mechanisms underlying the prosurvival effect were investigated by detecting autophagy markers like P62, LC3-I, and LC3-II, and autophagy flux analysis was also performed. Lastly, the ability of the L-A microcapsule to support NSCs delivery for ischemic stroke was investigated in the middle cerebral artery occlusion (MCAO) model. We found that L-A microcapsules exerted a good protective effect against OGD compared with control and alginate microcapsules. The L-A microcapsules were found to promote cell survival by not only providing a "physical" barrier but also altering autophagy markers like P62 and LC3-II, which enhanced autophagy flux. This novel microcapsule was confirmed to be suitable for NSC delivery in vivo, which alleviated transplanted NSC apoptosis, reduced the infarct volume, decreased brain edema, improved neurological deficit scores, and lastly, improved survival rate. The findings of this study may provide a new method for stem cell delivery, raising the prospect that intracerebral cell transplantation may be used to treat, for instance, ischemic stroke, traumatic brain injury, and so on.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Chunmei Duan
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Zhaoyou Meng
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xichangan Street, Changan District, Xi'an 710119, China
| | - Qian He
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qin Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Changxiong Gong
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Jiacheng Huang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qi Xie
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Qingwu Yang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Xinqiao Zheng Street, Shapingba District, Chongqing 400037, China
| | - Yang Bai
- Department of Otolaryngology, The First Affiliated Hospital, Army Medical University, Gaotanyan Zheng Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
4
|
Alvarado-Velez M, Enam SF, Mehta N, Lyon JG, LaPlaca MC, Bellamkonda RV. Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials 2020; 266:120419. [PMID: 33038594 DOI: 10.1016/j.biomaterials.2020.120419] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) triggers multiple biochemical and cellular processes that exacerbate brain tissue damage through a secondary injury. Therapies that prevent or limit the evolution of secondary injury could significantly reduce the neurological deficits associated with TBI. Mesenchymal stem cell (MSC) transplantation after TBI can ameliorate neurological deficits by modulating inflammation and enhancing the expression of neurotrophic factors. However, transplanted MSCs can be actively rejected by host immune responses, such as those mediated by cytotoxic CD8+ T cells, thereby limiting their therapeutic efficacy. Here, we designed an agarose hydrogel that releases Fas ligand (FasL), a protein that can induce apoptosis of cytotoxic CD8+ T cells. We studied the immunosuppressive effect of this hydrogel near the allogeneic MSC transplantation site and its impact on the survival of transplanted MSCs in the injured brain. Agarose-FasL hydrogels locally reduced the host cytotoxic CD8+ T cell population and enhanced the survival of allogeneic MSCs transplanted near the injury site. Furthermore, the expression of crucial neurotrophic factors was elevated in the injury penumbra, suggesting an enhanced therapeutic effect of MSCs. These results suggest that the development of immunosuppressive hydrogels for stem cell delivery can enhance the benefits of stem cell therapy for TBI.
Collapse
Affiliation(s)
- Melissa Alvarado-Velez
- Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Syed Faaiz Enam
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nalini Mehta
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Johnathan G Lyon
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Michelle C LaPlaca
- Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ravi V Bellamkonda
- Dept. of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
5
|
The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomater 2020; 102:1-12. [PMID: 31751809 DOI: 10.1016/j.actbio.2019.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Functional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI. This review briefly discusses current development on cell-based therapies and the use of bioactive matrices, hydrogels in particular, when incorporated in regenerative therapies. Desirable characteristics of bioactive matrices that have been shown to augment neural repair in TBI models were identified and further discussed. Understanding the relative outcomes of newly developed biomaterials implanted in vivo can better guide the development of biomaterials as a therapeutic strategy, for biomaterial-based cellular therapies are still in their nascent stages. Nonetheless, the value of bioactive matrices as a treatment for acute brain injuries should be appreciated and further developed. STATEMENT OF SIGNIFICANCE: Cell-based therapies have received attention as an alternative therapeutic strategy to improve clinical outcome post-traumatic brain injury but have achieved limited success. Whilst the incorporation of newly developed biomaterials in regenerative therapies has shown promise in augmenting neural repair, studies have revealed new hurdles which must be overcome to improve their therapeutic efficacy. This review discusses the recent development of cell-based therapies with a specific focus on the use of bioactive matrices in the form of hydrogels, to complement cell transplantation within the injured brain. Moreover, this review consolidates in vivo animal studies that demonstrate relative functional outcome upon the implantation of different biomaterials to highlight their desirable traits to guide their development for regenerative therapies in traumatic brain injury.
Collapse
|
6
|
Skop NB, Singh S, Antikainen H, Saqcena C, Calderon F, Rothbard DE, Cho CH, Gandhi CD, Levison SW, Dobrowolski R. Subacute Transplantation of Native and Genetically Engineered Neural Progenitors Seeded on Microsphere Scaffolds Promote Repair and Functional Recovery After Traumatic Brain Injury. ASN Neuro 2019; 11:1759091419830186. [PMID: 30818968 PMCID: PMC6399762 DOI: 10.1177/1759091419830186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
There is intense interest and effort toward regenerating the brain after severe injury. Stem cell transplantation after insult to the central nervous system has been regarded as the most promising approach for repair; however, engrafting cells alone might not be sufficient for effective regeneration. In this study, we have compared neural progenitors (NPs) from the fetal ventricular zone (VZ), the postnatal subventricular zone, and an immortalized radial glia (RG) cell line engineered to conditionally secrete the trophic factor insulin-like growth factor 1 (IGF-1). Upon differentiation in vitro, the VZ cells were able to generate a greater number of neurons than subventricular zone cells. Furthermore, differentiated VZ cells generated pyramidal neurons . In vitro, doxycycline-driven secretion of IGF-1 strongly promoted neuronal differentiation of cells with hippocampal, interneuron and cortical specificity. Accordingly, VZ and engineered RG-IGF-1-hemagglutinin (HA) cells were selected for subsequent in vivo experiments. To increase cell survival, we delivered the NPs attached to a multifunctional chitosan-based scaffold. The microspheres containing adherent NPs were injected subacutely into the lesion cavity of adult rat brains that had sustained controlled cortical impact injury. At 2 weeks posttransplantation, the exogenously introduced cells showed a reduction in stem cell or progenitor markers and acquired mature neuronal and glial markers. In beam walking tests assessing sensorimotor recovery, transplanted RG cells secreting IGF-1 contributed significantly to functional improvement while native VZ or RG cells did not promote significant recovery. Altogether, these results support the therapeutic potential of chitosan-based multifunctional microsphere scaffolds seeded with genetically modified NPs expressing IGF-1 to promote repair and functional recovery after traumatic brain injuries.
Collapse
Affiliation(s)
- Nolan B. Skop
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sweta Singh
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Henri Antikainen
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Chaitali Saqcena
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Frances Calderon
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
| | - Deborah E. Rothbard
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
| | - Cheul H. Cho
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Chirag D. Gandhi
- Department of Neurosurgery, Westchester Medical Center at NY Medical College, Valhalla, NY, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
7
|
Okur SÇ, Erdoğan S, Demir CS, Günel G, Karaöz E. The Effect of Umbilical Cord-derived Mesenchymal Stem Cell Transplantation in a Patient with Cerebral Palsy: A Case Report. Int J Stem Cells 2018; 11:141-147. [PMID: 29699386 PMCID: PMC5984068 DOI: 10.15283/ijsc17077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background Cerebral Palsy (CP) is the most common motor disability reason of childhood that occurs secondarily to non-progressive damage in the brain whose development is still ongoing. Methods 6-year-old dystonic-spastic male CP patient received allogenic mesenchymal stem cells treatment four times as 1×10⁶/kg in intrathecal and intravenous administration of Umbilical Cord-derived mesenchymal stem cells (UC-MSCs) ways. Before and after the treatment, the patient was followed-up with FIM (Functional Independent Measurement), GMFCS (Gross Motor Function Classification System 88), Tardieu Scale, TCMS (Trunk Control Measurement Scale), MACS (Manual Ability Classification Scale), CFSS (Communication Function Classification System) for 18 months and received intensive rehabilitation. Results Improvements were observed especially in functional scales except for the Tardieu Scale, and no adverse effects were detected aside from a slight pain in the back. Conclusion Wider future case studies on UC-MSCs will enable us to assess the efficacy of UC-MSCs which have positive impacts especially on functional scales.
Collapse
Affiliation(s)
- Sibel Çağlar Okur
- Department of Physical Therapy and Rehab, Health Science University, Bakirköy Dr Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Sinan Erdoğan
- Department of Histology and Embryology, İstinye University, Faculty of Medicine, İstanbul, Turkey
| | - Cansu Subaşı Demir
- Center for Stem Cell and Tissue Engineering Research and Practice, İstinye University, İstanbul, Turkey
| | - Gülşen Günel
- Center for Stem Cell and Tissue Engineering Research and Practice, İstinye University, İstanbul, Turkey
| | - Erdal Karaöz
- Department of Histology and Embryology, İstinye University, Faculty of Medicine, İstanbul, Turkey.,Center for Stem Cell and Tissue Engineering Research and Practice, İstinye University, İstanbul, Turkey.,Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), Liv Hospital, İstanbul, Turkey
| |
Collapse
|
8
|
Sun P, Ortega G, Tan Y, Hua Q, Riederer PF, Deckert J, Schmitt-Böhrer AG. Streptozotocin Impairs Proliferation and Differentiation of Adult Hippocampal Neural Stem Cells in Vitro-Correlation With Alterations in the Expression of Proteins Associated With the Insulin System. Front Aging Neurosci 2018; 10:145. [PMID: 29867451 PMCID: PMC5968103 DOI: 10.3389/fnagi.2018.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Rats intracerebroventricularily (icv) treated with streptozotocin (STZ), shown to generate an insulin resistant brain state, were used as an animal model for the sporadic form of Alzheimer’s disease (sAD). Previously, we showed in an in vivo study that 3 months after STZ icv treatment hippocampal adult neurogenesis (AN) is impaired. In the present study, we examined the effects of STZ on isolated adult hippocampal neural stem cells (NSCs) using an in vitro approach. We revealed that 2.5 mM STZ inhibits the proliferation of NSCs as indicated by reduced number and size of neurospheres as well as by less BrdU-immunoreactive NSCs. Double immunofluorescence stainings of NSCs already being triggered to start with their differentiation showed that STZ primarily impairs the generation of new neurons, but not of astrocytes. For revealing mechanisms possibly involved in mediating STZ effects we analyzed expression levels of insulin/glucose system-related molecules such as the glucose transporter (GLUT) 1 and 3, the insulin receptor (IR) and the insulin-like growth factor (IGF) 1 receptor. Applying quantitative Real time-PCR (qRT-PCR) and immunofluorescence stainings we showed that STZ exerts its strongest effects on GLUT3 expression, as GLUT3 mRNA levels were found to be reduced in NSCs, and less GLUT3-immunoreactive NSCs as well as differentiating cells were detected after STZ treatment. These findings suggest that cultured NSCs are a good model for developing new strategies to treat nerve cell loss in AD and other degenerative disorders.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Yan Tan
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Hua
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peter F Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Angelika G Schmitt-Böhrer
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Park BN, Yoon JK, An YS. Bone marrow mesenchymal stem cell transplantation in acute brain trauma. Nuklearmedizin 2018; 52:192-7. [DOI: 10.3413/nukmed-0543-12-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/06/2013] [Indexed: 01/22/2023]
Abstract
SummaryAim: This study was performed to evaluate the effects of intravenously transplanted rat bone-marrow derived mesenchymal stem cells (rBMSCs) in an acute brain trauma model using serial 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in rat models. Animals, methods: Trauma models were made using a controlled cortical impact injury device. The stem cell treatment group was treated with intravenous injections of BMSCs, and models without stem cell therapy comprised the control group. Serial 18F-FDG PET images were obtained 1, 7, 14, 21, and 28 days after trauma. The difference in 18F-FDG uptake between day 1 and each time point after trauma was analyzed with SPM2 (uncorrected p < 0.005). Results: The stem cell treatment group demonstrated significantly higher 18F-FDG uptake in the right parietal region at 14 days after trauma than at 1 day after trauma. An increase in glucose metabolism in the right parietal cortex appeared on days 21 and 28 after trauma in the group without stem cell treatment. The 18F-FDG uptake in the brain was improved over a broader area, including the right parietal and right primary somatosensory cortex, on days 21 and 28 after trauma in the stem cell treatment group compared with the group without stem cell treatment. Conclusion: BMSC therapy in trauma models led to improved glucose metabolism. This result might support the therapeutic effect of stem cells in brain trauma.
Collapse
|
10
|
de Moura TC, Afadlal S, Hazell AS. Potential for stem cell treatment in manganism. Neurochem Int 2018; 112:134-145. [DOI: 10.1016/j.neuint.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
11
|
Yao Y, Huang C, Gu P, Wen T. Combined MSC-Secreted Factors and Neural Stem Cell Transplantation Promote Functional Recovery of PD Rats. Cell Transplant 2016; 25:1101-13. [DOI: 10.3727/096368915x689938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell transplantation has enormous potential for the treatment of neurodegenerative disorders like Parkinson's disease (PD). Mesenchymal stem cells (MSCs) have attracted much attention because they can secrete a wide variety of cellular factors that promote cell growth. In this study, we prepared a conditioned medium (CM) using lyophilized MSC culture medium that contained the secretome of MSCs and applied this CM to the culture of neural stem cells (CM-NSCs) for the transplantation of PD model rats. Quantitative realtime PCR, Western blot, and immunocytochemistry were used to identify cell differentiation and expression of dopaminergic neuron-specific genes in vitro. Behavioral tests including rotational behavior and MWM training tests were also performed to assess the recovery. Our results indicated that combined treatment of CM and neural stem cell transplantation can significantly reduce apomorphine-induced rotational asymmetry and improve spatial learning ability. The CM-NSCs were able to differentiate into dopaminergic neurons in the ventral tegmental area (VTA) and medial forebrain bundle (MFB), and migrated around the lesion site. They showed a higher activity than untreated NSCs in cell survival, migration, and behavior improvement in the dopa-deficit rat model. These findings suggest that the neural stem cells treated with conditioned medium possess a great potential as a graft candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yuan Yao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chen Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Dunbar GL, Sandstrom MI, Rossignol J, Lescaudron L. Neurotrophic Enhancers as Therapy for Behavioral Deficits in Rodent Models of Huntington's Disease: Use of Gangliosides, Substituted Pyrimidines, and Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2016; 5:63-79. [PMID: 16801683 DOI: 10.1177/1534582306289367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interest in using neurotrophic factors as potential treatments for neurodegenerative disorders, such as Huntington's disease, has grown in the past decade. A major impediment for the clinical utility of neurotrophic factors is their inability to cross the blood-brain barrier in therapeutically significant amounts. Although several novel mechanisms for delivering exogenous neurotrophins to the brain have been developed, most of them involve invasive procedures or present significant risks. One approach to circumventing these problems is using therapeutic agents that can be administered systemically and have the ability to enhance the activity of neurotrophic factors. This review highlights the use of gangliosides, substituted pyrimidines, and mesenchymal stem cells as neurotrophic enhancers that have significant therapeutic potential while avoiding the pitfalls of delivering exogenous neurotrophic factors through the blood-brain barrier. The review focuses on the potential of these neurotrophic enhancers for treating the behavioral deficits in rodent models of Huntington's disease.
Collapse
|
13
|
Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells Int 2016; 2016:6235687. [PMID: 26997958 PMCID: PMC4779824 DOI: 10.1155/2016/6235687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in their in vivo behavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling their in vivo behavior further improvement in stem cell transplantations will be achieved.
Collapse
|
14
|
Devesa J, Díaz-Getino G, Rey P, García-Cancela J, Loures I, Nogueiras S, Hurtado de Mendoza A, Salgado L, González M, Pablos T, Devesa P. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report. Int J Mol Sci 2015; 16:30470-82. [PMID: 26703581 PMCID: PMC4691184 DOI: 10.3390/ijms161226244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Methods: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. Results: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. Conclusions: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD).
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela 15710, Spain.
| | | | - Pablo Rey
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | | | - Iria Loures
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Sonia Nogueiras
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | | | - Lucía Salgado
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Mónica González
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Tamara Pablos
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Pablo Devesa
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| |
Collapse
|
15
|
Ngalula KP, Cramer N, Schell MJ, Juliano SL. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury. Front Neurol 2015; 6:212. [PMID: 26500604 PMCID: PMC4595842 DOI: 10.3389/fneur.2015.00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/17/2015] [Indexed: 01/19/2023] Open
Abstract
Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage.
Collapse
Affiliation(s)
- Kapinga P Ngalula
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Nathan Cramer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Michael J Schell
- Department of Pharmacology, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Sharon L Juliano
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| |
Collapse
|
16
|
Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F, Nabi A. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural Regen Res 2014; 9:919-23. [PMID: 25206912 PMCID: PMC4146223 DOI: 10.4103/1673-5374.133133] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.
Collapse
Affiliation(s)
- Fatemeh Anbari
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Reza Bahrami
- Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadeghian
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Nabi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Arien-Zakay H, Gincberg G, Nagler A, Cohen G, Liraz-Zaltsman S, Trembovler V, Alexandrovich AG, Matok I, Galski H, Elchalal U, Lelkes PI, Lazarovici P, Shohami E. Neurotherapeutic effect of cord blood derived CD45+ hematopoietic cells in mice after traumatic brain injury. J Neurotrauma 2014; 31:1405-16. [PMID: 24640955 DOI: 10.1089/neu.2013.3270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of traumatic brain injury (TBI) is still an unmet need. Cell therapy by human umbilical cord blood (HUCB) has shown promising results in animal models of TBI and is under evaluation in clinical trials. HUCB contains different cell populations but to date, only mesenchymal stem cells have been evaluated for therapy of TBI. Here we present the neurotherapeutic effect, as evaluated by neurological score, using a single dose of HUCB-derived mononuclear cells (MNCs) upon intravenous (IV) administration one day post-trauma in a mouse model of closed head injury (CHI). Delayed (eight days post-trauma) intracerebroventricular administration of MNCs showed improved neurobehavioral deficits thereby extending the therapeutic window for treating TBI. Further, we demonstrated for the first time that HUCB-derived pan-hematopoietic CD45 positive (CD45(+)) cells, isolated by magnetic sorting and characterized by expression of CD45 and CD11b markers (96-99%), improved the neurobehavioral deficits upon IV administration, which persisted for 35 days. The therapeutic effect was in a direct correlation to a reduction in the lesion volume and decreased by pre-treatment of the cells with anti-human-CD45 antibody. At the site of brain injury, 1.5-2 h after transplantation, HUCB-derived cells were identified by near infrared scanning and immunohistochemistry using anti-human-CD45 and anti-human-nuclei antibodies. Nerve growth factor and vascular endothelial growth factor levels were differentially expressed in both ipsilateral and contralateral brain hemispheres, thirty-five days after CHI, measured by enzyme-linked immunosorbent assay. These findings indicate the neurotherapeutic potential of HUCB-derived CD45(+) cell population in a mouse model of TBI and propose their use in the clinical setting of human TBI.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- 1 School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. J Tissue Eng Regen Med 2013; 10:E419-E432. [DOI: 10.1002/term.1832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/12/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Nolan B. Skop
- Department of Neurology and Neurosciences; Rutgers-New Jersey Medical School; Newark NJ USA
- Department of Neurological Surgery; Rutgers-New Jersey Medical School; Newark NJ USA
| | - Frances Calderon
- Department of Neurology and Neurosciences; Rutgers-New Jersey Medical School; Newark NJ USA
| | - Cheul H. Cho
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark NJ USA
| | - Chirag D. Gandhi
- Department of Neurological Surgery; Rutgers-New Jersey Medical School; Newark NJ USA
| | - Steven W. Levison
- Department of Neurology and Neurosciences; Rutgers-New Jersey Medical School; Newark NJ USA
| |
Collapse
|
19
|
Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells. PLoS One 2013; 8:e76157. [PMID: 24098776 PMCID: PMC3786983 DOI: 10.1371/journal.pone.0076157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
During retina development, retinal progenitor cell (RPC) proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs) are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM) which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC) self-renewal, as well as betacellulin (BTC), an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs) and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.
Collapse
|
20
|
Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 2013; 34:2005-16. [DOI: 10.1016/j.biomaterials.2012.11.043] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/23/2012] [Indexed: 02/08/2023]
|
21
|
Devesa J, Reimunde P, Devesa P, Barberá M, Arce V. Growth hormone (GH) and brain trauma. Horm Behav 2013; 63:331-44. [PMID: 22405763 DOI: 10.1016/j.yhbeh.2012.02.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/27/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone with known neurotrophic effects. We aimed to study whether GH administration might be useful together with rehabilitation in the recovery of TBI patients. 13 TBI patients (8 M, 5 F; age: 6-53 years old) were studied. Time after TBI: 2.5 months to 11 years; 5 patients showed acquired GH-deficiency (GHD). Disabilities observed: cognitive disorders; motor plegias; neurogenic dysphagia (n=5), vegetative coma (n=2) and amaurosis (n=1). All but one TBI patient followed intense rehabilitation for years. Treatment consisted of GH administration (maximal dose 1 mg/day, 5 days/week, resting 15-days every 2-months, until a maximum of 8 months) and clinical rehabilitation according to the individual needs (3-4 h/day, 5 days/week, during 6-12 months). Informed consent was obtained before commencing GH administration. GH significantly increased plasma IGF-1 values (ng.mL(-1)) in both GHD and no GHD patients, being then similar between both groups (GHD: 275.6±35.6 [p<0.01 vs. baseline], no GHD: 270.2±64 [p<0.05 vs. baseline]). In all the cases clear significant improvements were observed during and at the end of the combined treatment. Cognitive improvements appeared earlier and were more important than motor improvements. Swallowing improved significantly in all TBI patients with neurogenic dysphagia (2 of them in a vegetative state). Visual performance was ameliorated in the patient with amaurosis. No undesirable side-effects were observed. Our data indicate that GH can be combined with rehabilitation for improving disabilities in TBI patients, regardless of whether or not they are GHD.
Collapse
Affiliation(s)
- Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
22
|
Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 2012; 9:236. [PMID: 23061919 PMCID: PMC3526406 DOI: 10.1186/1742-2094-9-236] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/04/2012] [Indexed: 01/14/2023] Open
Abstract
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain.
Collapse
Affiliation(s)
- Mahasweta Das
- Nanomedicine Research Center, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | |
Collapse
|
23
|
Wang E, Gao J, Yang Q, Parsley MO, Dunn TJ, Zhang L, DeWitt DS, Denner L, Prough DS, Wu P. Molecular mechanisms underlying effects of neural stem cells against traumatic axonal injury. J Neurotrauma 2011; 29:295-312. [PMID: 22077363 DOI: 10.1089/neu.2011.2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) improves functional outcomes following traumatic brain injury (TBI). Previously we demonstrated that human NSCs (hNSCs) via releasing glial cell line-derived neurotrophic factor (GDNF), preserved cognitive function in rats following parasagittal fluid percussion. However, the underlying mechanisms remain elusive. In this study, we report that NSC grafts significantly reduce TBI-induced axonal injury in the fimbria and other brain regions by blocking abnormal accumulation of amyloid precursor protein (APP). A preliminary mass spectrometry proteomics study revealed the opposite effects of TBI and NSCs on many of the cytoskeletal proteins in the CA3 region of the hippocampus, including α-smooth muscle actin (α-SMA), the main stress fiber component. Further, Western blot and immunostaining studies confirmed that TBI significantly increased the expression of α-SMA in hippocampal neurons, whereas NSC grafts counteracted the effect of TBI. In an in vitro model, rapid stretch injury significantly shortened lengths of axons and dendrites, increased the expression of both APP and α-SMA, and induced actin aggregation, effects offset by GDNF treatment. These GDNF protective effects were reversed by a GDNF-neutralizing antibody or a specific calcineurin inhibitor, and were mimicked by a specific Rho inhibitor. In summary, we demonstrate for the first time that hNSC grafts and treatment with GDNF acutely reduce traumatic axonal injury and promote neurite outgrowth. Possible mechanisms underlying GDNF-mediated neurite protection include balancing the activity of calcineurin, whereas GDNF-induced neurite outgrowth may result from the reduction of the abnormal α-SMA expression and actin aggregation via blocking Rho signals. Our study also suggests the necessity of further exploring the roles of α-SMA in the central nervous system (CNS), which may lead to a new avenue to facilitate recovery after TBI and other injuries.
Collapse
Affiliation(s)
- Enyin Wang
- Department of Neuroscience and Cell Biology, University Of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Heile A, Brinker T. Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1. DIALOGUES IN CLINICAL NEUROSCIENCE 2011. [PMID: 22034462 PMCID: PMC3182013 DOI: 10.31887/dcns.2011.13.2/aheile] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury remains a major cause of death and disability; it is estimated that annually 10 million people are affected. Preclinical studies have shown the potential therapeutic value of stem cell therapies. Neuroprotective as well as regenerative properties of stem cells have been suggested to be the mechanism of action in preclinical studies. However, up to now stem cell therapy has not been studied extensively in clinical trials. This article summarizes the current experimental evidence and points out hurdles for clinical application. Focusing on a cell therapy in the acute stage of head injury, the potential of encapsulated cell biodelivery as a novel cell-therapeutic approach will also be discussed.
Collapse
Affiliation(s)
- Anna Heile
- International Neuroscience Institute, Hannover, Germany.
| | | |
Collapse
|
25
|
PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging 2011; 38:1926-38. [DOI: 10.1007/s00259-011-1860-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
|
26
|
Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. Neuroreport 2010; 21:575-9. [PMID: 20431496 DOI: 10.1097/wnr.0b013e32833a7d2c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As stem cells can regenerate damaged tissue, their therapeutic potential on brain damage has been investigated. In this study, the effects of embryonic stem cell transplantation on brain damage were investigated by using a photochemically induced thrombotic brain damage model. Mice with systemic transplantation of embryonic stem cells expressing enhanced green fluorescence protein on day 1 showed a smaller brain lesion size on day 8 than the control mice. The smaller lesion was accompanied by the increase in the number of microvessels at the border of the damaged area. Inside and around the damaged lesion, no EGFP-positive cells were observed. These findings suggested that embryonic stem cell transplantation reduced the brain lesion through the acceleration of angiogenesis by endogenous endothelial cells.
Collapse
|
27
|
Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, Sanberg PR, Borlongan CV. Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res 2009; 1287:157-63. [DOI: 10.1016/j.brainres.2009.06.067] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 02/08/2023]
|
28
|
Heile AMB, Wallrapp C, Klinge PM, Samii A, Kassem M, Silverberg G, Brinker T. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 2009; 463:176-81. [PMID: 19638295 DOI: 10.1016/j.neulet.2009.07.071] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE "Naked" human mesenchymal stem cells (MSC) are neuro-protective in experimental brain injury (TBI). In a controlled cortical impact (CCI) rat model, we investigated whether encapsulated MSC (eMSC) act similarly, and whether efficacy is augmented using cells transfected to produce the neuro-protective substance glucagon-like peptide-1 (GLP-1). METHODS Thirty two Sprague-Dawley rats were randomized to five groups: controls (no CCI), CCI-only, CCI+eMSC, CCI+GLP-1 eMSC, and CCI+empty capsules. On day 14, cisternal cerebro-spinal fluid (CSF) was sampled for measurement of GLP-1 concentration. Brains were immuno-histochemically assessed using specific antibody staining for NeuN, MAP-2 and GFAP. In another nine healthy rats, in vitro. RESULTS GLP-1 production rates were measured from cells explanted after 2, 7 and 14 days. GLP-1 production rate in transfected cells, before implantation, was 7.03 fmol/capsule/h. Cells were still secreting GLP-1 at a rate of 3.68+/-0.49, 2.85+/-0.45 and 3.53+/-0.55 after 2, 7 and 14 days, respectively. In both of the stem cell treated CCI groups, hippocampal cell loss was reduced, along with an attenuation of cortical neuronal and glial abnormalities, as measured by MAP-2 and GFAP expression. The effects were more pronounced in animals treated with GLP-1 secreting eMSC. This group displayed an increased CSF level of GLP-1 (17.3+/-3.4pM). CONCLUSIONS Hippocampal neuronal cell loss, and cortical glial and neuronal cyto-skeletal abnormalities, after CCI are reduced following transplantation of encapsulated eMSC. These effects were augmented by GLP-1 transfected eMSC.
Collapse
Affiliation(s)
- Anna M B Heile
- International Neuroscience Institute GmbH, Rudolf-Pichlmayr-Str. 4, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Waerzeggers Y, Klein M, Miletic H, Himmelreich U, Li H, Monfared P, Herrlinger U, Hoehn M, Coenen HH, Weller M, Winkeler A, Jacobs AH. Multimodal Imaging of Neural Progenitor Cell Fate in Rodents. Mol Imaging 2008. [DOI: 10.2310/7290.2008.0010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yannic Waerzeggers
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Markus Klein
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Hrvoje Miletic
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Uwe Himmelreich
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Hongfeng Li
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Parisa Monfared
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Ulrich Herrlinger
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Mathias Hoehn
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Heinrich Hubert Coenen
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Michael Weller
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Alexandra Winkeler
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| | - Andreas Hans Jacobs
- From the Laboratory for Gene Therapy and Molecular Imaging and In Vivo NMR Laboratory, Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories of the Max Planck Society and the Faculty of Medicine, University of Cologne, Centre for Molecular Medicine Cologne Cologne, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Klinikum Fulda, Fulda, Germany; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurooncology, University
| |
Collapse
|
30
|
Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits. Neurosci Lett 2008; 434:160-4. [DOI: 10.1016/j.neulet.2007.12.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/11/2007] [Accepted: 12/28/2007] [Indexed: 11/21/2022]
|
31
|
Cullen DK, Stabenfeldt SE, Simon CM, Tate CC, LaPlaca MC. In vitro neural injury model for optimization of tissue-engineered constructs. J Neurosci Res 2008; 85:3642-51. [PMID: 17671988 DOI: 10.1002/jnr.21434] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cell transplantation is a promising approach for the treatment of traumatic brain injury, although the therapeutic benefits are limited by a high degree of donor cell death. Tissue engineering is a strategy to improve donor cell survival by providing structural and adhesive support. However, optimization prior to clinical implementation requires expensive and time-consuming in vivo studies. Accordingly, we have developed a three-dimensional (3-D) in vitro model of the injured host-transplant interface that can be used as a test bed for high-throughput evaluation of tissue-engineered strategies. The neuronal-astrocytic cocultures in 3-D were subjected to mechanical loading (inducing cell death and specific astrogliotic alterations) or to treatment with transforming growth factor-beta1 (TGF-beta1), inducing astrogliosis without affecting viability. Neural stem cells (NSCs) were then delivered to the cocultures. A sharp increase in the number of TUNEL(+) donor cells was observed in the injured cocultures compared to that in the TGF-beta1-treated and control cocultures, suggesting that factors related to mechanical injury, but not strictly astrogliosis, were detrimental to donor cell survival. We then utilized the mechanically injured cocultures to evaluate a methylcellulose-laminin (MC-LN) scaffold designed to reduce apoptosis. When NSCs were co-delivered with MC alone or MC-LN to the injured cocultures, the number of caspase(+) donor cells significantly decreased compared to that with vehicle delivery (medium). Collectively, these results demonstrate the utility of an in vitro model as a pre-animal test bed and support further investigation of a tissue-engineering approach for chaperoned NSC delivery targeted to improve donor cell survival in neural transplantation.
Collapse
Affiliation(s)
- D Kacy Cullen
- Wallace H. Coulter Department of Biomedical Engineering, Institute for Bioengineering and Bioscience, Laboratory for Neuroengineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Neural regeneration and repair in the central nervous system are currently hot topics in neuroscience. For many years there has been a hope that neurodegenerative diseases which are resistant to current therapies may be treated by the selective replacement of cells. Yet it is only recently that we have started to acquire the knowledge, tools, and techniques that may translate such optimism into new therapies. In this article, we will consider the potential to restore function to the damaged optic nerve. We will consider the technical issues involved and suggest a strategy for research progress.
Collapse
|
33
|
Zafonte RD. Brain Injury Research: Lessons for Reinventing the Future. The 38th Zeiter Lecture. Arch Phys Med Rehabil 2007; 88:551-4. [PMID: 17466721 DOI: 10.1016/j.apmr.2007.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
I discuss novel dynamics in brain injury medicine that will shape the field of physical medicine and rehabilitation over the next several years. I review the lessons from previous clinical trials and discuss how rapid biotechnologic changes will influence the lives of people with disabilities. This lecture focuses on prior paradigms and addresses lessons learned, novel strategies for reinvention (including person-specific therapies), conventional therapy programs, biomaterials and devices, cellular-based therapies, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Ross D Zafonte
- University of Pittsburgh, UPMC Health System, Pittsburgh, PA 15215, USA.
| |
Collapse
|
34
|
Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, Schneider A, Hescheler J, Bouillon B, Schäfer U, Neugebauer E. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 2007; 24:216-25. [PMID: 17263685 DOI: 10.1089/neu.2006.0141] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation of embryonic stem (ES) cells may provide cures for the damaged nervous system. Pre-differentiated ES or neuronal precursor cells have been investigated in various animal models of neurodegenerative diseases including traumatic brain injury (TBI). To our knowledge, no study has yet examined the effects of undifferentiated, murine ES cells on functional recovery and tumorigenity following implantation into injured rat brains. We evaluated the effect of transplantation of undifferentiated, murine embryonic cells on the recovery of motor function following lateral fluid percussion brain injury in Sprague-Dawley rats. At 3 days post-injury, animals received stereotactic injections of either embryonic stem cell suspension or injections of phosphate buffered saline without cells (control) into the injured cortex. Neurological motor function assessments were performed before injury, 72 h, 1, 3, and 6 weeks after transplantation using a Rotatrod and a Composite Neuroscore test. During this time period brain injured animals receiving ES cell transplantation showed a significant improvement in the Rotarod Test and in the Composite Neuroscore Test as compared to phosphate buffered saline (PBS)-treated animals. At 1 week post-transplantation, ES cells were detectable in 100% of transplanted animals. At 7 weeks following transplantation, EScells were detectable in only one animal. Two of 10 xenotransplanted animals revealed tumor formation over the observation period. These findings provide evidence for therapeutic potency of embryonic stem cell transplantation after TBI in rat, but also raise serious safety concerns about the use of such cells in human.
Collapse
Affiliation(s)
- Peter Riess
- Department of Trauma and Orthopedic Surgery, University of Witten/Herdecke, Cologne Merheim Medical Center, Ostmerheimerstrasse 200, 51109 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Becerra GD, Tatko LM, Pak ES, Murashov AK, Hoane MR. Transplantation of GABAergic neurons but not astrocytes induces recovery of sensorimotor function in the traumatically injured brain. Behav Brain Res 2007; 179:118-25. [PMID: 17324477 PMCID: PMC1880895 DOI: 10.1016/j.bbr.2007.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 01/02/2007] [Accepted: 01/23/2007] [Indexed: 11/26/2022]
Abstract
Embryonic stem (ES) cells have been investigated in many animal models of injury and disease. However, few studies have examined the ability of pre-differentiated ES cells to improve functional outcome following traumatic brain injury (TBI). The purpose of the present study was to compare the effect of murine ES cells that were pre-differentiated into GABAergic neurons or astrocytes on functional recovery following TBI. Neural and astrocyte induction was achieved by co-culturing ES cells on a bone marrow stromal fibroblast (M2-10B4) feeder layer and incubating them with various mitogenic factors. Rats were initially prepared with a unilateral controlled cortical contusion injury of the sensorimotor cortex or sham procedure. Rats were transplanted 7 days following injury with approximately 100K GABAergic neurons, astrocytes, fibroblasts, or media. Animals were assessed on a battery of sensorimotor tasks following transplantation. The stromal fibroblast cells (M2-10B4), as a control cell line, did not differ significantly from media infusions. Transplantation of GABAergic neurons facilitated complete and total recovery on the vibrissae-forelimb placing test as opposed to all other groups, which failed to show any recovery. It was also found that GABAergic neurons reduced the magnitude of the initial impairment on the limb use test. Histological analysis revealed infiltration of host brain with transplanted neurons and astrocytes. The results of the present study suggest that transplantation of pre-differentiated GABAergic neurons significantly induces recovery of sensorimotor function; whereas, astrocytes do not.
Collapse
Affiliation(s)
- G D Becerra
- Restorative Neuroscience Laboratory, Center for Integrative Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University, Carbondale, IL 62901, USA.
| | | | | | | | | |
Collapse
|
36
|
Bentz K, Molcanyi M, Riess P, Elbers A, Pohl E, Sachinidis A, Hescheler J, Neugebauer E, Schäfer U. Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line-dependent differences. J Neurosci Res 2007; 85:1057-64. [PMID: 17335079 DOI: 10.1002/jnr.21219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we compare the capacity of two different embryonic stem (ES) cell lines to secrete neurotrophins in response to cerebral tissue extract derived from healthy or injured rat brains. The intrinsic capacity of the embryonic cell lines BAC7 (feeder cell-dependent cultivation) to release brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) exceeded the release of these factors by CGR8 cells (feeder cell-free growth) by factors of 10 and 4, respectively. Nerve growth factor (NGF) was secreted only by BAC7 cells. Conditioning of cell lines with cerebral tissue extract derived from healthy or fluid percussion-injured rat brains resulted in a significant time-dependent increase in BDNF release in both cell lines. The increase in BDNF release by BAC7 cells was more pronounced when cells were incubated with brain extract derived from injured brain. However, differences in neurotrophin release associated with the origin of brain extract were at no time statistically significant. Neutrophin-3 and NGF release was inhibited when cell lines were exposed to cerebral tissue extract. The magnitude of the response to cerebral tissue extract was dependent on the intrinsic capacity of the cell lines to release neurotrophins. Our results clearly demonstrate significant variations in the intrinsic capability of different stem cell lines to produce neurotrophic factors. Furthermore, a significant modulation of neurotrophic factor release was observed following conditioning of cell lines with tissue extract derived from rat brains. A significant modulation of neurotrophin release dependent on the source of cerebral tissue extract used was not observed.
Collapse
Affiliation(s)
- Kristine Bentz
- Institute of Developmental Genetics, GSF-National Research Centre for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The purpose of this review article is to discuss the novel dynamics in the area of traumatic brain injury medicine and how rapid changes in biotechnology will influence the lives of persons with traumatic brain injury. This article will focus on biomaterials, devices, cellular therapy, conventional therapy, and person-specific therapy that will be part of the future care plans for those who treat persons with traumatic brain injury.
Collapse
Affiliation(s)
- Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, UPMC Health System, Pittsburgh, PA 15213, USA.
| |
Collapse
|