1
|
Tran GT, Bedi S, Rakesh P, Verma ND, Carter N, Robinson CM, Al-Atiyah R, Hall BM, Hodgkinson SJ. Autoantigen and IL-2 activated CD4 +CD25 +T regulatory cells are induced to express CD8 and are autoantigen specific in inhibiting experimental autoimmune encephalomyelitis. J Neuroimmunol 2025; 404:578611. [PMID: 40228404 DOI: 10.1016/j.jneuroim.2025.578611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP) is a self-limiting disease model of multiple sclerosis. CD4+CD25+Foxp3+T cells play a role in limiting autoimmune disease but treatment with antigen naïve CD4+CD25+ cells does not reduce EAE. This study examined if in vitro activation by MBP and rIL-2 induced CD4+CD25+Foxp3+ cells that could inhibit EAE. Culture of CD4+CD8-CD25+cells from naïve rats with MBP and rIL-2 induced activated Treg that reduced the severity of clinical EAE and infiltration of CD8+T cells and macrophage into brain stem. CD4+CD25+T cells activated by an irrelevant autoantigen and rIL-2 did not suppress EAE. Resting CD4+CD25+T cells activated by autoantigen and rIL-2 have mRNA for Infgr, Il12rb2, Il5 but not Tbet, Gata3, Ilr5ra or Ifng. These changes in mRNA expression are the markers of Ts1 cells. A proportion of CD4+CD8-CD25+ cells activated by MBP/rIL-2 were induced to express CD8α, CD8β and CD62L. Depletion of CD4+CD8α+CD25+ cells removed the capacity of MBP and rIL-2 activated CD4+CD25+T cells to suppress EAE. This study demonstrated that in vitro activation of CD4+CD8-CD25+ cells by MBP/rIL-2 induced relevant antigen-specific Treg within days, which expressed CD8α, CD8β and CD62L with a Ts1 phenotype and that had greater potency than freshly isolated antigen naive CD4+CD25+Treg in suppressing clinical severity of EAE and immune inflammation in CNS. These findings may guide development of antigen-specific Treg for therapy.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Rats
- Autoantigens/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Interleukin-2/pharmacology
- Interleukin-2/immunology
- Myelin Basic Protein/immunology
- Rats, Inbred Lew
- Female
- Interleukin-2 Receptor alpha Subunit/metabolism
- CD8 Antigens/biosynthesis
- CD8 Antigens/metabolism
- Cells, Cultured
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Sukhandep Bedi
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Prateek Rakesh
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Ranje Al-Atiyah
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
2
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
3
|
Hall BM, Verma ND, Tran GT, Hodgkinson SJ. Transplant Tolerance, Not Only Clonal Deletion. Front Immunol 2022; 13:810798. [PMID: 35529847 PMCID: PMC9069565 DOI: 10.3389/fimmu.2022.810798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The quest to understand how allogeneic transplanted tissue is not rejected and how tolerance is induced led to fundamental concepts in immunology. First, we review the research that led to the Clonal Deletion theory in the late 1950s that has since dominated the field of immunology and transplantation. At that time many basic mechanisms of immune response were unknown, including the role of lymphocytes and T cells in rejection. These original observations are reassessed by considering T regulatory cells that are produced by thymus of neonates to prevent autoimmunity. Second, we review "operational tolerance" induced in adult rodents and larger animals such as pigs. This can occur spontaneously especially with liver allografts, but also can develop after short courses of a variety of rejection inhibiting therapies. Over time these animals develop alloantigen specific tolerance to the graft but retain the capacity to reject third-party grafts. These animals have a "split tolerance" as peripheral lymphocytes from these animals respond to donor alloantigen in graft versus host assays and in mixed lymphocyte cultures, indicating there is no clonal deletion. Investigation of this phenomenon excludes many mechanisms, including anti-donor antibody blocking rejection as well as anti-idiotypic responses mediated by antibody or T cells. This split tolerance is transferred to a second immune-depleted host by T cells that retain the capacity to effect rejection of third-party grafts by the same host. Third, we review research on alloantigen specific inhibitory T cells that led to the first identification of the CD4+CD25+T regulatory cell. The key role of T cell derived cytokines, other than IL-2, in promoting survival and expansion of antigen specific T regulatory cells that mediate transplant tolerance is reviewed. The precise methods for inducing and diagnosing operational tolerance remain to be defined, but antigen specific T regulatory cells are key mediators.
Collapse
Affiliation(s)
- Bruce M. Hall
- Immune Tolerance Laboratory, School of Medicine, University of New South Wales (UNSW) Sydney, Ingham Institute, and Renal Service and Multiple Sclerosis Clinic, Liverpool Hospital, Liverpool, NSW, Australia
| | | | | | | |
Collapse
|
4
|
Hall BM, Hall RM, Tran GT, Robinson CM, Wilcox PL, Rakesh PK, Wang C, Sharland AF, Verma ND, Hodgkinson SJ. Interleukin-5 (IL-5) Therapy Prevents Allograft Rejection by Promoting CD4 +CD25 + Ts2 Regulatory Cells That Are Antigen-Specific and Express IL-5 Receptor. Front Immunol 2021; 12:714838. [PMID: 34912327 PMCID: PMC8667344 DOI: 10.3389/fimmu.2021.714838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
CD4+CD25+Foxp3+T cell population is heterogenous and contains three major sub-groups. First, thymus derived T regulatory cells (tTreg) that are naïve/resting. Second, activated/memory Treg that are produced by activation of tTreg by antigen and cytokines. Third, effector lineage CD4+CD25+T cells generated from CD4+CD25- T cells' activation by antigen to transiently express CD25 and Foxp3. We have shown that freshly isolated CD4+CD25+T cells are activated by specific alloantigen and IL-4, not IL-2, to Ts2 cells that express the IL-5 receptor alpha. Ts2 cells are more potent than naïve/resting tTreg in suppressing specific alloimmunity. Here, we showed rIL-5 promoted further activation of Ts2 cells to Th2-like Treg, that expressed foxp3, irf4, gata3 and il5. In vivo, we studied the effects of rIL-5 treatment on Lewis heart allograft survival in F344 rats. Host CD4+CD25+T cells were assessed by FACS, in mixed lymphocyte culture and by RT-PCR to examine mRNA of Ts2 or Th2-like Treg markers. rIL-5 treatment given 7 days after transplantation reduced the severity of rejection and all grafts survived ≥60d whereas sham treated rats fully rejected by day 31 (p<0.01). Treatment with anti-CD25 or anti-IL-4 monoclonal antibody abolished the benefits of treatment with rIL-5 and accelerated rejection. After 10d treatment with rIL-5, hosts' CD4+CD25+ cells expressed more Il5ra and responded to specific donor Lewis but not self. Enriched CD4+CD25+ cells from rIL-5 treated rats with allografts surviving >60 days proliferated to specific donor only when rIL-5 was present and did not proliferate to self or third party. These cells had more mRNA for molecules expressed by Th2-like Treg including Irf4, gata3 and Il5. These findings were consistent with IL-5 treatment preventing rejection by activation of Ts2 cells and Th2-like Treg.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Rachael M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Paul L Wilcox
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Prateek K Rakesh
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra F Sharland
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
5
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
6
|
Tran GT, Hodgkinson SJ, Carter N, Verma ND, Robinson CM, Plain KM, Nomura M, Hall BM. Autoantigen specific IL-2 activated CD4 +CD25 +T regulatory cells inhibit induction of experimental autoimmune neuritis. J Neuroimmunol 2020; 341:577186. [PMID: 32058174 DOI: 10.1016/j.jneuroim.2020.577186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 01/04/2023]
Abstract
Experimental autoimmune neuritis (EAN) induced by peripheral nerve myelin (PNM) is self-limiting and re-immunization with PNM does not re-activate disease. This study showed inhibition of EAN by CD4+CD25+T cells both from sensitized hosts or from naïve hosts after ex-vivo activation by PNM and rIL-2. Transfer of naïve CD4+CD25+T cells has no effect on EAN, nor did naïve CD4+CD25+T cells activated with rIL-2 and renal tubular antigen. Culture of naive CD4+CD25+Treg with rIL-2 and PNM induced mRNA for the IFN-gamma receptor. We showed naïve CD4+CD25+T cells activated by specific auto-antigen and rIL-2 produced more potent antigen-specific Treg that may have therapeutic potential.
Collapse
Affiliation(s)
- Giang T Tran
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Departments of Neurology Liverpool Health Service, Liverpool, NSW, Australia.
| | - Nicole Carter
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Karren M Plain
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia.
| | - Masaru Nomura
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, Faculty of Medicine, UNSW Sydney, Ingham Institute, Liverpool, NSW, Australia; Department of Nephrology, Liverpool Health Service, Liverpool, NSW, Australia.
| |
Collapse
|
7
|
Verma ND, Robinson CM, Carter N, Wilcox P, Tran GT, Wang C, Sharland A, Nomura M, Plain KM, Bishop GA, Hodgkinson SJ, Hall BM. Alloactivation of Naïve CD4 +CD8 -CD25 +T Regulatory Cells: Expression of CD8α Identifies Potent Suppressor Cells That Can Promote Transplant Tolerance Induction. Front Immunol 2019; 10:2397. [PMID: 31681288 PMCID: PMC6802415 DOI: 10.3389/fimmu.2019.02397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023] Open
Abstract
Therapy with alloantigen-specific CD4+CD25+ T regulatory cells (Treg) for induction of transplant tolerance is desirable, as naïve thymic Treg (tTreg) are not alloantigen-specific and are weak suppressor cells. Naïve tTreg from DA rats cultured with fully allogeneic PVG stimulator cells in the presence of rIL-2 express IFN-gamma receptor (IFNGR) and IL-12 receptor beta2 (IL-12Rβ2) and are more potent alloantigen-specific regulators that we call Ts1 cells. This study examined additional markers that could identify the activated alloantigen-specific Treg as a subpopulation within the CD4+CD25+Foxp3+Treg. After culture of naïve DA CD4+CD8−CD25+T cells with rIL-2 and PVG alloantigen, or rIL-2 without alloantigen, CD8α was expressed on 10–20% and CD8β on <5% of these cells. These cells expressed ifngr and Il12rb2. CD8α+ cells had increased Ifngr that characterizes Ts1 cells as well was Irf4, a transcription factor induced by TCR activation. Proliferation induced by re-culture with rIL-12 and alloantigen was greater with CD4+CD8α+CD25+Treg consistent with the CD8α+ cells expressing IL-12R. In MLC, the CD8α+ fraction suppressed responses against allogeneic stimulators more than the mixed Ts1 population, whereas the CD4+CD8−CD25+T cells were less potent. In an adoptive transfer assay, rIL-2 and alloantigen activated Treg suppress rejection at a ratio of 1:10 with naïve effector cells, whereas alloantigen and rIL-2 activated tTreg depleted of the CD8α+ cells were much less effective. This study demonstrated that expression of CD8α by rIL-2 and alloantigen activation of CD4+CD8−CD25+Foxp3+T cells was a marker of activated and potent Treg that included alloantigen-specific Treg.
Collapse
Affiliation(s)
- Nirupama D Verma
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Nicole Carter
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Paul Wilcox
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - Chaunmin Wang
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Alexandra Sharland
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Masaru Nomura
- Department of Surgery, Keiwakai Ebetsu Hospital, Ebetsu, Japan
| | - Karren M Plain
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| | - G Alexander Bishop
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Suzanne J Hodgkinson
- Transplantation Immunobiology Research Group, Faculty of Medicine and Health, Charles Perkins Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Laboratory, South Western Clinical School of Medicine, UNSW Sydney and Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
8
|
Hall BM, Robinson CM, Plain KM, Verma ND, Tran GT, Nomura M, Carter N, Boyd R, Hodgkinson SJ. Changes in Reactivity In Vitro of CD4 +CD25 + and CD4 +CD25 - T Cell Subsets in Transplant Tolerance. Front Immunol 2017; 8:994. [PMID: 28878770 PMCID: PMC5572370 DOI: 10.3389/fimmu.2017.00994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/03/2017] [Indexed: 01/03/2023] Open
Abstract
Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4+CD25+ T cells, yet in many models, proliferation of CD4+ T cells from hosts tolerant to specific-alloantigen in vitro is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4+, CD4+CD25+, and CD4+CD25− T cells from DA rats tolerant to Piebald Virol Glaxo rat strain (PVG) cardiac allografts and from naïve DA rats were examined. Proliferation of CD4+ T cells from both naïve and tolerant hosts was similar to both PVG and Lewis stimulator cells. In mixed lymphocyte culture to PVG, proliferation of naïve CD4+CD25− T cells was greater than naïve CD4+ T cells. In contrast, proliferation of CD4+CD25− T cells from tolerant hosts to specific-donor PVG was not greater than CD4+ T cells, whereas their response to Lewis and self-DA was greater than CD4+ T cells. Paradoxically, CD4+CD25+ T cells from tolerant hosts did not proliferate to PVG, but did to Lewis, whereas naïve CD4+CD25+ T cells proliferate to both PVG and Lewis but not to self-DA. CD4+CD25+ T cells from tolerant, but not naïve hosts, expressed receptors for interferon (IFN)-γ and IL-5 and these cytokines promoted their proliferation to specific-alloantigen PVG but not to Lewis or self-DA. We identified several differences in the patterns of proliferation to specific-donor alloantigen between cells from tolerant and naïve hosts. Most relevant is that CD4+CD25+ T cells from tolerant hosts failed to proliferate or suppress to specific donor in the absence of either IFN-γ or IL-5. The proliferation to third-party and self of each cell population from tolerant and naïve hosts was similar and not affected by IFN-γ or IL-5. Our findings suggest CD4+CD25+ T cells that mediate transplant tolerance depend on IFN−γ or IL-5 from alloactivated Th1 and Th2 cells.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Karren M Plain
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia.,Faculty of Veterinary Sciences, University of Sydney, Cobbity, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| | - Masaru Nomura
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia.,Department of Surgery, Nakashibetsu Hospital Shibetu-gun Nakashibetsu-cho, Hokkaido, Japan
| | - Nicole Carter
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia.,Faculty of Veterinary Sciences, University of Sydney, Cobbity, NSW, Australia
| | - Rochelle Boyd
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Department of Medicine, Ingham Institute, University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
9
|
Cytokines affecting CD4 +T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4 + T regulatory cells. Transpl Immunol 2017; 43-44:33-41. [PMID: 28652007 DOI: 10.1016/j.trim.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
CD4+T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4+CD25+FOXP3+Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4+, especially CD4+CD25+T cells. CD4+T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4+T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4+CD25+T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4+T cells' survival in culture with specific-donor alloantigen. Tolerant CD4+T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4+T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4+CD25+T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4+CD25+T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4+CD25+T cells that mediate transplant tolerance.
Collapse
|
10
|
Nomura M, Hodgkinson SJ, Tran GT, Verma ND, Robinson C, Plain KM, Boyd R, Hall BM. Cytokines affecting CD4 +T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4 +T regulatory cells. Transpl Immunol 2017; 42:24-33. [PMID: 28487237 DOI: 10.1016/j.trim.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
CD4+T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4+T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4+T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4+T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4+T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4+T cells. Tolerant CD4+CD25+T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4+CD25+T cells to third-party Lewis. Tolerant CD4+CD25+T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4+CD25+T cells.
Collapse
Affiliation(s)
- Masaru Nomura
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Catherine Robinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Karren M Plain
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Rochelle Boyd
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia.
| |
Collapse
|
11
|
Zhang H. Upregulation of PIM2 by Underexpression of MicroRNA-135-5p Improves Survival Rates of Skin Allografts by Suppressing Apoptosis of Fibroblast Cells. Med Sci Monit 2017; 23:107-113. [PMID: 28064305 PMCID: PMC5240881 DOI: 10.12659/msm.897613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND It has been reported that miR-135-5p is involved with many diseases. In this study, we aimed at define the relationship between miR-135-5p level and burn patient survival after skin transplantation. MATERIAL AND METHODS Expression of miR-135-5p and PIM2 was measured using real-time PCR and Western blot analysis in the skin samples collected from burn patients who received skin graft or in the fibroblast cells transfected with miR-135-5p mimics or inhibitors. The regulatory association between miR-135-5p and PIM2 was verified using bioinformatics analysis and luciferase assay. RESULTS The expression level of miR-135-5p was determined in 60 tissue samples divided into 2 groups based on the presence of rejection (long survival n=30, and short survival n=30). We found that miR-135-5p was substantially downregulated in the long survival group. We then searched the miRNA database online with the "seed sequence" located within the 3'-UTR of the target gene, and then validated PIM2 to be the direct gene via luciferase reporter assay system. We also established the negative regulatory relationship between miR-135-5p and PIM2 via studying the relative luciferase activity. We also conducted real-time PCR and Western blot analysis to study the mRNA and protein expression level of PIM2 among different groups (long survival n=30, short survival n=30) or cells treated with scramble control, miR-135-5p mimics, PIM2 siRNA, and miR-135-5p inhibitors, indicating the negative regulatory relationship between MiR-135-5p and PIM2. We also conducted experiments to investigate the influence of miR-135-5p and PIM2 on viability and apoptosis of cells. The results showed miR-135-5p reduced the viability of cells, while PIM2 negatively interfered with the viability of cells, and miR-135-5p inhibited apoptosis and PIM2 suppressed apoptosis. CONCLUSIONS MiR-135-5p is involved with the prognosis of burn patients after skin transplantation. PIM2 is a virtual target of miR-135-5p, and there is a negative regulatory relationship between miR-135-5p and PIM2. MiR-135-5p and PIM2 interfered with the viability and apoptosis in cells.
Collapse
Affiliation(s)
- Hongtu Zhang
- Department of Burn and Plastic Surgery, Jining Number 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
12
|
|
13
|
Hall BM, Tran GT, Robinson CM, Hodgkinson SJ. Induction of antigen specific CD4+CD25+Foxp3+T regulatory cells from naïve natural thymic derived T regulatory cells. Int Immunopharmacol 2015; 28:875-86. [DOI: 10.1016/j.intimp.2015.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
|
14
|
Ibrahim M, Widjajanto E, Widodo MA, Sumitro SB. EMSA Eritin Drives Expansion of Regulatory T Cells and Promotes T Cells Differentiation in Irradiated Mice. J Evid Based Complementary Altern Med 2015; 21:171-6. [PMID: 26170134 DOI: 10.1177/2156587215595146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/14/2015] [Indexed: 01/30/2023] Open
Abstract
Sublethal irradiation therapy in cancer treatment causes generalized immunosuppression, which results in a range of DNA damage. We examined the significance of a polyherbal medicine called "EMSA Eritin" on immunological responses in sublethally irradiated mice focusing on the involvement of Treg, naïve T cell, and also the development and differentiation of T cells in thymus. Normal BALB/c mice were sublethally irradiated with dose of 600 rad. The irradiated mice were then orally administered by EMSA Eritin once a day at different doses: 1.04, 3.12, 9.37 mg/g body weight. The treatment was performed for 14 days. On day 15, immunological responses were observed by analyzing the status of Treg and differentiation of T cells in thymus. The administration of EMSA Eritin to irradiated mice resulted in a significant increase of pre T cells, Treg cells, and naïve T cells, which in general could maintain and normalize healthy condition in mice.
Collapse
|
15
|
Hall BM. T Cells: Soldiers and Spies--The Surveillance and Control of Effector T Cells by Regulatory T Cells. Clin J Am Soc Nephrol 2015; 10:2050-64. [PMID: 25876770 DOI: 10.2215/cjn.06620714] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Traditionally, T cells were CD4+ helper or CD8+ cytotoxic T cells, and with antibodies, they were the soldiers of immunity. Now, many functionally distinct subsets of activated CD4+ and CD8+ T cells have been described, each with distinct cytokine and transcription factor expression. For CD4+ T cells, these include Th1 cells expressing the transcription factor T-bet and cytokines IL-2, IFN-γ, and TNF-β; Th2 cells expressing GATA-3 and the cytokines IL-4, IL-5, and IL-13; and Th17 cells expressing RORγt and cytokines IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced determine the immune inflammation that they mediate. T cells of the effector lineage can be naïve T cells, recently activated T cells, or memory T cells that can be distinguished by cell surface markers. T regulatory cells or spies were characterized as CD8+ T cells expressing I-J in the 1970s. In the 1980s, suppressor cells fell into disrepute when the gene for I-J was not present in the mouse MHC I region. At that time, a CD4+ T cell expressing CD25, the IL-2 receptor-α, was identified to transfer transplant tolerance. This was the same phenotype of activated CD4+ CD25+ T cells that mediated rejection. Thus, the cells that could induce tolerance and undermine rejection had similar badges and uniforms as the cells effecting rejection. Later, FOXP3, a transcription factor that confers suppressor function, was described and distinguishes T regulatory cells from effector T cells. Many subtypes of T regulatory cells can be characterized by different expressions of cytokines and receptors for cytokines or chemokines. In intense immune inflammation, T regulatory cells express cytokines characteristic of effector cells; for example, Th1-like T regulatory cells express T-bet, and IFN-γ-like Th1 cells and effector T cells can change sides by converting to T regulatory cells. Effector T cells and T regulatory cells use similar molecules to be activated and mediate their function, and thus, it can be very difficult to distinguish soldiers from spies.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, Department of Medicine, University of New South Wales, Sydney, Australia; and Renal Unit, Liverpool Hospital, Sydney, Australia
| |
Collapse
|
16
|
Verma ND, Hall BM, Plain KM, Robinson CM, Boyd R, Tran GT, Wang C, Bishop GA, Hodgkinson SJ. Interleukin-12 (IL-12p70) Promotes Induction of Highly Potent Th1-Like CD4(+)CD25(+) T Regulatory Cells That Inhibit Allograft Rejection in Unmodified Recipients. Front Immunol 2014; 5:190. [PMID: 24847323 PMCID: PMC4023029 DOI: 10.3389/fimmu.2014.00190] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
In rat models, CD4(+)CD25(+) T regulatory cells (Treg) play a key role in the induction and maintenance of antigen-specific transplant tolerance, especially in DA rats with PVG cardiac allografts (1, 2). We have previously described generation of alloantigen-specific Treg (Ts1), by culture of naïve natural CD4(+)CD25(+) Treg (nTreg) with specific alloantigen and IL-2 for 4 days. These cells express mRNA for IFN-γ receptor (ifngr) and suppress donor but not third party cardiac allograft rejection mediated by alloreactive CD4(+) T cells at ratios of <1:10. Here, we show that Ts1 also expressed the IL-12p70 specific receptor (il-12rβ2) and that rIL-12p70 can induce their proliferation. Ts1 cells re-cultured with rIL-12p70 alone or rIL-12p70 and recombinant interleukin-2 (rIL-2), suppressed proliferation of CD4(+) T cells in mixed lymphocyte culture at <1:1024, whereas Ts1 cells re-cultured with rIL-2 and alloantigen only suppressed at 1:32-64. The rIL-12p70 alloactivated Ts1 cells markedly delayed PVG, but not third party Lewis, cardiac allograft rejection in normal DA recipients. Ts1 cells re-cultured for 4 days with rIL-12p70 alone, but not those re-cultured with rIL-12p70 and rIL-2, expressed more il-12rβ2, t-bet, and ifn-γ, and continued to express the markers of Ts1 cells, foxp3, ifngr, and il-5 indicating Th1-like Treg were induced. Ts1 cells re-cultured with rIL-2 and alloantigen remained of the Ts1 phenotype and did not suppress cardiac graft rejection in normal DA rats. We induced highly suppressive Th1-like Treg from naïve nTreg in 7 days by culture with alloantigen, first with rIL-2 then with rIL-12p70. These Th1-like Treg delayed specific donor allograft rejection demonstrating therapeutic potential.
Collapse
Affiliation(s)
- Nirupama Darshan Verma
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| | - Bruce Milne Hall
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| | - Karren Michelle Plain
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| | - Rochelle Boyd
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| | - Chuanmin Wang
- Collaborative Transplant Research Laboratory, Royal Prince Alfred Hospital, The University of Sydney , Camperdown, NSW , Australia
| | - G Alex Bishop
- Collaborative Transplant Research Laboratory, Royal Prince Alfred Hospital, The University of Sydney , Camperdown, NSW , Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, Department of Medicine, Liverpool Hospital, University of New South Wales , Kensington, NSW , Australia
| |
Collapse
|
17
|
Plain KM, Verma ND, Tran GT, Nomura M, Boyd R, Robinson CM, Hodgkinson SJ, Hall BM. Cytokines affecting CD4(+) T regulatory cells in transplant tolerance. Interleukin-4 does not maintain alloantigen specific CD4(+)CD25(+) Treg. Transpl Immunol 2013; 29:51-9. [PMID: 24139939 DOI: 10.1016/j.trim.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 12/31/2022]
Abstract
IL-4 is thought to promote induction of transplantation tolerance and alloantigen-specific CD4(+)CD25(+) T regulatory cells (Treg). This study examined the effect of IL-4 on the induction and maintenance of the CD4(+) T regulatory cells (Treg) that mediate transplantation tolerance. Tolerance was induced in DA rats with PVG heterotopic cardiac allografts by a short course of cyclosporine. Naïve and tolerant lymphocytes, including the CD4(+) and CD4(+)CD25(+) T cell subsets, were assayed in mixed lymphocyte cultures with or without recombinant (r)IL-4 or other cytokines. The proliferation, cell surface and cytokine phenotype of these cells was examined, as was their capacity to adoptively transfer tolerance. rIL-4 enhanced the proliferation of naïve and tolerant lymphoid cells, including CD4(+) and CD4(+)CD25(+) T cells, but this was not alloantigen specific. Naïve or tolerant CD4(+) T cells cultured with rIL-4 and donor PVG antigen effected rapid graft rejection, even though before culture tolerant CD4(+) T cells transferred antigen-specific tolerance. These rIL-4 cultured CD4(+) T cells had a phenotype consistent with activated CD4(+)CD25(+)FoxP3(-) Th2 cells. While naïve natural CD4(+)CD25(+) T cells (nTreg) cultured with alloantigen and rIL-4 had enhanced proliferation and capacity to suppress rejection in vivo, the culture of tolerant CD4(+)CD25(+) T cells with alloantigen and rIL-4 could not sustain their proliferation against specific donor, nor their capacity to transfer tolerance to specific donor allograft. Thus, IL-4 promotes both regulatory and effector T cells early in the immune response, but once alloimmune tolerance is established, IL-4 promoted the activation of effector cells to mediate rejection and did not support alloantigen-specific Treg that could transfer specific tolerance.
Collapse
Affiliation(s)
- Karren M Plain
- Immune Tolerance Laboratory Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hall BM, Tran GT, Verma ND, Plain KM, Robinson CM, Nomura M, Hodgkinson SJ. Do Natural T Regulatory Cells become Activated to Antigen Specific T Regulatory Cells in Transplantation and in Autoimmunity? Front Immunol 2013; 4:208. [PMID: 23935597 PMCID: PMC3731939 DOI: 10.3389/fimmu.2013.00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
Antigen specific T regulatory cells (Treg) are often CD4+CD25+FoxP3+ T cells, with a phenotype similar to natural Treg (nTreg). It is assumed that nTreg cannot develop into an antigen specific Treg as repeated culture with IL-2 and a specific antigen does not increase the capacity or potency of nTreg to promote immune tolerance or suppress in vitro. This has led to an assumption that antigen specific Treg mainly develop from CD4+CD25−FoxP3− T cells, by activation with antigen and TGF-β in the absence of inflammatory cytokines such as IL-6 and IL-1β. Our studies on antigen specific CD4+CD25+ T cells from animals with tolerance to an allograft, identified that the antigen specific and Treg are dividing, and need continuous stimulation with specific antigen T cell derived cytokines. We identified that a variety of cytokines, especially IL-5 and IFN-γ but not IL-2 or IL-4 promoted survival of antigen specific CD4+CD25+FoxP3+ Treg. To examine if nTreg could be activated to antigen specific Treg, we activated nTreg in culture with either IL-2 or IL-4. Within 3 days, antigen specific Treg are activated and there is induction of new cytokine receptors on these cells. Specifically nTreg activated by IL-2 and antigen express the interferon-γ receptor (IFNGR) and IL-12p70 (IL-12Rβ2) receptor but not the IL-5 receptor (IL-5Rα). These cells were responsive to IFN-γ or IL-12p70. nTreg activated by IL-4 and alloantigen express IL-5Rα not IFNGR or IL-12p70Rβ2 and become responsive to IL-5. These early activated antigen specific Treg, were respectively named Ts1 and Ts2 cells, as they depend on Th1 or Th2 responses. Further culture of Ts1 cells with IL-12p70 induced Th1-like Treg, expressing IFN-γ, and T-bet as well as FoxP3. Our studies suggest that activation of nTreg with Th1 or Th2 responses induced separate lineages of antigen specific Treg, that are dependent on late Th1 and Th2 cytokines, not the early cytokines IL-2 and IL-4.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, Medicine, University of New South Wales , Sydney, NSW , Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Inhibition of Pim2-prolonged skin allograft survival through the apoptosis regulation pathway. Cell Mol Immunol 2012; 9:503-10. [PMID: 23085945 DOI: 10.1038/cmi.2012.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, apoptosis has been considered to be an important regulator for allograft survival. The serine/threonine kinase Pim2 has been implicated in many apoptotic pathways. In a previous study, we found that pim2 was highly expressed in CD4(+) T cells in an allograft model. Here, we further investigated the effects of Pim2 on allograft survival and the underlying mechanisms associated with apoptosis. The results showed that pim2 was overexpressed in grafts and spleens, particularly in spleen CD4(+) T cells when acute allorejection occurred, and correlated positively with the extent of rejection. In T cells from the spleens of naive BALB/c mice treated with 5 µM 4a (a specific inhibitor of Pim2) for 24 h, the apoptosis rate increased and the phosphorylation of BAD was decreased. Furthermore, adoptive transfer of CD4(+) T cells treated with 4a in vitro to allografted severe combined immunodeficiency (SCID) mice effectively prolonged allograft survival from 19.5±1.7 days to 31±2.3 days. Moreover, the results demonstrated that the CD4(+)CD25(-) effector T-cell subset was the predominate expresser of the pim2 gene as compared with the CD4(+)CD25(+) regulatory T (Treg) cell subset. Alloantigen-induced CD4(+)CD25(+) T cells displayed less Foxp3 expression and a low suppression of apoptosis compared with effector CD4(+)CD25(-) T cells treated with 4a. Collectively, these data revealed that Pim2 facilitated allograft rejection primarily by modulating the apoptosis of effector T cells and the function of Treg cells. These data suggested that Pim2 may be an important target for in vivo anti-rejection therapies and for the ex vivo expansion of CD4(+)CD25(+) T cells.
Collapse
|
20
|
Guo X, Jie Y, Ren D, Zeng H, Zhang Y, He Y, Pan Z. In vitro-expanded CD4(+)CD25(high)Foxp3(+) regulatory T cells controls corneal allograft rejection. Hum Immunol 2012; 73:1061-7. [PMID: 22939904 DOI: 10.1016/j.humimm.2012.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 12/29/2022]
Abstract
AIMS Natural CD4(+)CD25(+) regulatory cells (nTregs) have been implicated in maintaining peripheral immune tolerance. This study aims to test whether immunotherapy using in vitro-expanded Treg (iTregs) could suppress allograft rejection in corneal transplantation model. METHODS Natural CD4(+)CD25(+) T cells were freshly purified from naïve mice and expanded in vitro by culturing with anti-CD3/CD28-coated Dynabeads, interleukin (IL)-2 and transforming growth factor (TGF-β1). Suppression ability of iTregs was assayed by co-culturing with CD4(+)CD25(-) T cells (Teff) in vitro and by targeting corneal allograft rejection in vivo. Tracking of iTreg after adoptive transfer in vivo were examined by CFSE labeling. RESULTS Natural Treg cells were expanded by culturing with anti-CD3/CD28-coated Dynabeads in the presence of IL-2 and TGF-β1. Compared with nTregs, iTregs had similar expression of CD62L, and PD- L1, lower expression of CD69, higher levels of PD-1, CD25, and Foxp3. iTreg cells exerted stronger suppression function than natural Treg cells when cocultured with CD4(+)CD25(-) T cells in vitro and prevented fully MHC-mismatched corneal allograft rejection. Survival of iTreg cells could suppress alloimmune reaction and most prone to migrate to graft draining LNs and spleens. Moreover, maintaining CD25 expression on iTregs was indicative for preservation of allosuppression. CONCLUSION Therapeutic use of in vitro-expanded CD4(+)CD25(+) T cells may be a effective and safe tool for controlling allograft rejection and may help induce allograft tolerance.
Collapse
Affiliation(s)
- Xuming Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Lab, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
McFarland HI, Puig M, Grajkowska LT, Tsuji K, Lee JP, Mason KP, Verthelyi D, Rosenberg AS. Regulatory T cells in γ irradiation-induced immune suppression. PLoS One 2012; 7:e39092. [PMID: 22723935 PMCID: PMC3378522 DOI: 10.1371/journal.pone.0039092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/18/2012] [Indexed: 11/24/2022] Open
Abstract
Sublethal total body γ irradiation (TBI) of mammals causes generalized immunosuppression, in part by induction of lymphocyte apoptosis. Here, we provide evidence that a part of this immune suppression may be attributable to dysfunction of immune regulation. We investigated the effects of sublethal TBI on T cell memory responses to gain insight into the potential for loss of vaccine immunity following such exposure. We show that in mice primed to an MHC class I alloantigen, the accelerated graft rejection T memory response is specifically lost several weeks following TBI, whereas identically treated naïve mice at the same time point had completely recovered normal rejection kinetics. Depletion in vivo with anti-CD4 or anti-CD25 showed that the mechanism involved cells consistent with a regulatory T cell (T reg) phenotype. The loss of the T memory response following TBI was associated with a relative increase of CD4+CD25+ Foxp3+ expressing T regs, as compared to the CD8+ T effector cells requisite for skin graft rejection. The radiation-induced T memory suppression was shown to be antigen-specific in that a third party ipsilateral graft rejected with normal kinetics. Remarkably, following the eventual rejection of the first MHC class I disparate skin graft, the suppressive environment was maintained, with markedly prolonged survival of a second identical allograft. These findings have potential importance as regards the immunologic status of T memory responses in victims of ionizing radiation exposure and apoptosis-inducing therapies.
Collapse
Affiliation(s)
- Hugh I McFarland
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xiang M, Hou WR, Xie SN, Zhang WD, Wang X. Immunosuppressive effects of an ethyl acetate extract from Urtica dentata Hand on skin allograft rejection. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:57-63. [PMID: 19698774 DOI: 10.1016/j.jep.2009.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 07/30/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY To investigate the immunosuppressive effects of HPLC qualitied ethyl acetate extract (EAE) from Urtica dentate Hand on skin allograft rejection in a murine model. MATERIALS AND METHODS Allo-skin transplantation model was established by placing skin allograft of C57BL/6 mice in the wound bed which was on the back of Balb/c mice. We used FACS to study the effects of EAE on dendritic cells (DCs) maturation and CD4(+)CD25(+)T regulatory cells (Tregs) differentiation. We also studied spleen lymphocyte proliferation and T-bet gene expression in DCs. Concentration of Th1/Th2 cytokines was monitored as markers of Th1/Th2 responses by ELISA. RESULTS A significant prolongation of skin allografts survival was observed as a dose-dependent manner in the animals treated with EAE. By FACS, we found that treatment with EAE (200 mg kg(-1)) resulted in an immature statement of DCs and stimulated the differentiation of CD4(+)CD25(+)Tregs. Additionally, the expression of T-bet gene and the proliferation of spleen lymphocytes were efficiently abated in EAE treated mice. Comparing to the model control, EAE-treated recipients showed a significant down-regulation (P<0.01) of Th1 cytokines (IL-2, IFN-gamma) and an obviously increase (P<0.01) of Th2 cytokine (IL-10) in the serum, which presented in a dose-related way. CONCLUSIONS The anti-allograft rejection effect of EAE by enhancing CD4(+)CD25(+)Tregs differentiation and sustaining DCs immaturation makes EAE to be a possible choice for treating autoimmune diseases in a way of inducing a stable immunological tolerance state.
Collapse
Affiliation(s)
- Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resources Evaluation, School of Pharmacy, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
23
|
Xia G, Shah M, Luo X. Prevention of allograft rejection by amplification of Foxp3(+)CD4(+)CD25(+) regulatory T cells. Transl Res 2009; 153:60-70. [PMID: 19138650 PMCID: PMC3408234 DOI: 10.1016/j.trsl.2008.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022]
Abstract
CD4(+)CD25(+) T cells were identified originally as potent suppressors of autoimmunity and were later termed "natural regulatory T cells" or nTreg cells. Subsequently, a transcription factor called forkhead box protein 3 (Foxp3) was identified to be a critical regulator for Treg differentiation and function. Foxp3(+)CD4(+)CD25(+) Treg cells have been increasingly documented to suppress allograft rejection and to mediate allograft tolerance in transplantation. In this article, the authors review current approaches for amplification of allo-specific Foxp3(+)CD4(+)CD25(+) Treg cells for prevention of allograft rejection and induction of allo-specific transplant tolerance.
Collapse
Affiliation(s)
- Guliang Xia
- Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Il 60611, USA
| | | | | |
Collapse
|
24
|
Hall BM, Tran G, Hodgkinson SJ. Alloantigen specific T regulatory cells in transplant tolerance. Int Immunopharmacol 2009; 9:570-4. [PMID: 19539571 DOI: 10.1016/j.intimp.2009.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 01/08/2023]
Abstract
CD4(+)CD25(+)Foxp3(+)T cells are regulatory/suppressor cells (Treg) that include non-antigen(Ag)-specific as well as Ag-specific Tregs. How non-Ag-specific naïve CD4(+)CD25(+)Treg develop into specific Tregs is unknown. We have studied DA rats tolerant to fully allogeneic PVG cardiac grafts that survived with out immunosuppression for over 100 days and identified the cellular basis of alloantigen specific tolerance. Key observations from our studies will be reviewed including how CD4(+)CD25(+)Tregs were first identified and the cytokine dependence of CD4(+)T cells that transfer alloantigen specific transplant tolerance which died in culture unless stimulated with both cytokine rich ConA supernatant and specific donor alloantigen. Both the tolerant CD4(+)CD25(+) and CD4(+)CD25(-) T cell populations are required to transfer tolerance, yet alone the CD4(+)CD25(-) T cell effect rejection. Tolerance transfer occurs with a low ratio of CD4(+)CD25(+)T cells (<1:10), whereas to induce tolerance with naive CD4(+)CD25(+)T cells requires both a ratio of >1:1 and is not alloantigen specific. Recent findings on how naïve CD4(+)CD25(+)T cells developed into two separated pathways of alloantigen specific Tregs, by culturing them with alloAg with either IL-2 or IL-4 and donor alloantigen are described. IL-2 enhances IFN-gammaR and IL-5 mRNA while IL-4 induced a reciprocal profile with de novo IL-5Ralpha and increased IFN-gamma mRNA expression. Both IL-2 and IL-4 alloactivated CD4(+)CD25(+)Tregs within 3-4 days of culture can induce alloantigen specific tolerance at ratios of 1:10. Long term, CD4(+)CD25(+)T cells from tolerant hosts given IL-2 cultured cells have increased IL-5 and IFN-gammaR mRNA; whereas hosts given IL-4 cultured cells had enhanced IL-5Ralpha mRNA expression and IL-5 enhanced their proliferation to donor but not third party alloAg. These findings suggest that Th1 and Th2 responses activate two pathways of alloantigen specific Tregs that can mediate transplant tolerance but are dependent upon cytokines produced by ongoing Th1 and/or Th2 immune responses.
Collapse
Affiliation(s)
- Bruce M Hall
- Department of Medicine, The University of New South Wales, Liverpool Hospital, Liverpool, NSW, Australia.
| | | | | |
Collapse
|
25
|
Verma ND, Plain KM, Nomura M, Tran GT, Robinson C, Boyd R, Hodgkinson SJ, Hall BM. CD4+CD25+ T cells alloactivated ex vivo by IL-2 or IL-4 become potent alloantigen-specific inhibitors of rejection with different phenotypes, suggesting separate pathways of activation by Th1 and Th2 responses. Blood 2009; 113:479-87. [PMID: 18827184 DOI: 10.1182/blood-2008-05-156612] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD4(+)CD25(+)Foxp3(+) T cells are regulatory/suppressor cells (Tregs) that include non-antigen (Ag)-specific as well as Ag-specific Tregs. How non-Ag-specific naive CD4(+)CD25(+) Treg develop into specific Tregs is unknown. Here, we generated adaptive Tregs by culture of naive CD4(+)CD25(+)Foxp3(+) T cells with allo-Ag and either interleukin-2 (IL-2) or IL-4. Within days, IL-2 enhanced interferon-gamma receptor (Ifngammar) and Il-5 mRNA and IL-4 induced a reciprocal profile with de novo IL-5Ralpha and increased IFN-gamma mRNA expression. Both IL-2- and IL-4-alloactivated CD4(+)CD25(+) Tregs within 3 to 4 days of culture had enhanced capacity to induce tolerance to specific donor but not to third-party cardiac allografts. These hosts became tolerant as allografts functioned more than 250 days, with a physiologic ratio of less than 10% CD4(+)CD25(+)Foxp3(+) T cells in the CD4(+) population. CD4(+)CD25(+) T cells from tolerant hosts given IL-2-cultured cells had increased Il-5 and Ifngammar mRNA. Those from hosts given IL-4-cultured cells had enhanced IL-5Ralpha mRNA expression and IL-5 enhanced their proliferation to donor but not third-party allo-Ag. Thus, IL-2 and IL-4 activated allo-Ag-specific Tregs with distinct phenotypes that were retained in vivo. These findings suggested that T-helper 1 (Th1) and Th2 responses activate 2 pathways of adaptive Ag-specific Tregs that mediate tolerance. We propose they be known as T-suppressor 1 (Ts1) and Ts2 cells.
Collapse
Affiliation(s)
- Nirupama D Verma
- Faculty of Medicine, University of New South Wales and Department of Medicine, Liverpool Hospital, Liverpool, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liang H, Yi D, Zheng Q, Du J, Cao Y, Yu S, Zhu H. Improvement of Heart Allograft Acceptability Associated With Recruitment of CD4+CD25+ T Cells in Peripheral Blood by Recipient Treatment With Granulocyte Colony-Stimulating Factor. Transplant Proc 2008; 40:1604-11. [DOI: 10.1016/j.transproceed.2008.02.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 02/26/2008] [Indexed: 01/13/2023]
|
27
|
Xia G, He J, Leventhal JR. Ex vivo-expanded natural CD4+CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts. Am J Transplant 2008; 8:298-306. [PMID: 18190656 DOI: 10.1111/j.1600-6143.2007.02088.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Foxp3(+)CD4(+)CD25(+) natural regulatory T (nT(reg)) cells have been shown in immunodeficient mice to suppress allograft rejection after adoptive cotransfer. We hypothesized that immunotherapy using ex vivo-expanded nT(reg) could suppress allograft rejection in wild-type mice. Donor alloantigen (alloAg) specificity of naive splenic nT(reg) was enriched in vitro by culturing with anti-CD3/CD28-coated Dynabeads plus bone marrow-derived dendritic cells (BM-DC) in the presence of interleukin (IL)-2 or IL-2 plus transforming growth factor (TGF)-beta. On average, 96.2% fresh CD4(+)CD25(+) nT(reg) were intracellular Foxp3(+). By d+20 in culture, 6.4% nT(reg) were Foxp3(+) following expansion with IL-2 alone, and 14.4% or 19.7% nT(reg) were Foxp3(+) when expanded with IL-2 plus 0.5 or 2.5 ng/mL TGF-beta, respectively. In vitro, alloAg-enriched, TGF-beta/IL-2-conditioned nT(reg) exerted stronger donor alloAg-specific suppression than cells with IL-2 alone in mixed lymphocyte reaction (MLR) assays. In vivo, alloAg-enriched, TGF-beta/IL-2-conditioned nT(reg) expressed high-level Foxp3 following infusion, effectively overcame acute rejection and induced long-term survival of donor but not third-party heart allografts in peritransplant host T-cell-depleted mice. Long-term surviving allografts were noted to possess Foxp3(+) graft-infiltrating cells of exogenous and endogenous origins. In conjunction with transient host T-cell depletion, therapeutic use of ex vivo-expanded nT(reg) may be a practical means of preventing acute allograft rejection.
Collapse
Affiliation(s)
- G Xia
- Department of Surgery-Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
28
|
Hall BM, Robinson CM, Plain KM, Verma ND, Carter N, Boyd RA, Tran GT, Hodgkinson SJ. Studies on naïve CD4+CD25+T cells inhibition of naïve CD4+CD25−T cells in mixed lymphocyte cultures. Transpl Immunol 2008; 18:291-301. [DOI: 10.1016/j.trim.2007.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/24/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022]
|
29
|
Hall BM, Plain KM, Verma ND, Tran GT, Boyd R, Robinson CM, Nicolls MR, Berger ME, Nomura M, Hodgkinson SJ. Transfer of allograft specific tolerance requires CD4+CD25+T cells but not interleukin-4 or transforming growth factor-beta and cannot induce tolerance to linked antigens. Transplantation 2007; 83:1075-84. [PMID: 17452898 DOI: 10.1097/01.tp.0000259553.66185.2f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mechanisms by which CD4+T cells, especially CD4+ CD25+T cells, transfer allograft specific tolerance are poorly defined. The role of cytokines and the effect on antigen-presenting cells is not resolved. METHODS Anti-CD3 monoclonal antibody (mAb) therapy induced tolerance to PVG heterotopic cardiac transplantation in DA rats. Peripheral CD4+T cells or CD4+ CD25+ and CD4+ CD25-T cell subsets were adoptively transferred to irradiated DA hosts grafted with PVG heart grafts. For specificity studies, tolerant CD4+T cells were transferred to hosts with Lewis or (PVGxLewis)F1 heart grafts. Cytokine mRNA induction and the requirement for interleukin (IL)-4 and transforming growth factor (TGF)-beta in the transfer of tolerance was assessed. RESULTS CD4+T cells transferred specific tolerance and suppressed naïve CD4+T cells capacity to effect rejection of PVG but not Lewis grafts. (PVGxLewis)F1 grafts had a major rejection episode but recovered. Later these hosts accepted PVG but not Lewis skin grafts. Adoptive hosts restored with tolerant or naïve cells had similar levels of mRNA expression for all Th1 and Th2 cytokines and effector molecules assayed. Transfer of tolerance by CD4+T cells was not blocked by mAb to IL-4 or TGF-beta. CD4+ CD25-T cells from either naïve or tolerant hosts effected rejection. In contrast neither tolerant nor naïve CD4+ CD25+T cells restored rejection. CONCLUSIONS Specific tolerance transfer required CD4+ containing CD4+ CD25+T cells. An inflammatory response with induction of mRNA for Th1 and Th2 cytokines plus cytotoxic effector molecules occurred, but IL-4 and TGF-beta were not essential. Inhibition of antigen presenting cells was not the sole mechanism as there was no linked tolerance.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, University of New South Wales, Australian Technology Park, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Plain KM, Boyd R, Verma ND, Robinson CM, Tran GT, Hodgkinson SJ, Hall BM. Transplant Tolerance Associated With a Th1 Response and Not Broken by IL-4, IL-5, and TGF-β Blockade or Th1 Cytokine Administration. Transplantation 2007; 83:764-73. [PMID: 17414711 DOI: 10.1097/01.tp.0000256326.11647.2e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Specific transplant tolerance is mediated by CD4 T cells that die unless supported by T-cell derived cytokines and donor antigen. This study examined the role of Th1 and Th2 cytokines in the maintenance of tolerance. METHODS Tolerance to fully allogeneic PVG cardiac allografts in DA rats was induced by short-term anti-CD3 monoclonal antibody therapy. Responses of tolerant cells to donor and third party antigen were assessed in vivo by examination of the infiltrate in the heart and application of skin grafts, and in vitro in mixed lymphocyte culture. Cell subsets were stained, induction of cytokine mRNA assayed by reverse-transcriptase polymerase chain reaction and the role of cytokines determined by treating with blocking monoclonal antibody to cytokines or cytokine administration. RESULTS Tolerated grafts had a T cell and macrophage infiltrate with increased mRNA for Th1 cytokines, interleukin (IL)-2, and interferon (IFN)-gamma but not Th2 cytokines. Peripheral lymphocytes proliferated in mixed lymphocyte culture and expressed Th1 cytokine mRNA. Tolerant hosts accepted PVG and rejected Lewis skin allografts and the lymph nodes draining both these grafts had similar induction of Th1 and Th2 cytokine mRNA. Treatment of tolerant rats with Th1 cytokines IL-2, IFN-gamma, and IL-12p70 or monoclonal antibody that blocked IL-4, IL-5, and transforming growth factor-beta did not prevent acceptance of PVG skin grafts. CONCLUSIONS These studies in a model of tolerance regulated by CD4CD25 T cells demonstrated there was no defect in Th1 responses. Tolerance was due to regulation that was not solely dependent on IL-4, IL-5, or transforming growth factor-beta and was not inactivated or overwhelmed by administration of Th1 cytokines, IL-2, IFN-gamma or IL-12p70.
Collapse
Affiliation(s)
- Karren M Plain
- Immune Tolerance Laboratory, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Xia G, He J, Zhang Z, Leventhal JR. Targeting Acute Allograft Rejection by Immunotherapy With Ex Vivo-Expanded Natural CD4+CD25+ Regulatory T Cells. Transplantation 2006; 82:1749-55. [PMID: 17198271 DOI: 10.1097/01.tp.0000250731.44913.ee] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Natural CD4CD25 regulatory T (Treg) cells have been implicated in suppressing alloreactivity in vitro and in vivo. We hypothesized that immunotherapy using ex vivo-expanded natural Treg could prevent acute allograft rejection in mice. METHODS Natural CD4+ CD25+ Treg were freshly purified from naive mice via automated magnetic cell sorter and expanded ex vivo by anti-CD3/CD28 monoclonal antibody (mAb)-coated Dynabeads. Suppression was assayed in vitro by mixed lymphocyte reaction and in vivo by targeting cardiac allograft rejection. Survival of Treg or effector T (Teff) cells after adoptive transfer in vivo was tracked by flow cytometry and all allografts were examined by histology and immunohistochemistry. RESULTS By day nine in culture, 26.6+/-5.3-fold of expansion was achieved by co-culture of fresh natural Treg with anti-CD3/CD28 mAb-coated Dynabeads and interleukin-2. Ex vivo-expanded Treg exerted stronger suppression than fresh ones towards alloantigens in vitro and prevented CD4 Teff-mediated but only delayed CD4+/CD8+ Teff-mediated heart allograft rejection in Rag-/- mice. Long-term surviving allografts showed no signs of acute or chronic rejection with graft-infiltrating Treg expressing CD25 and FoxP3. Infused Treg persisted and expanded long-term in vivo and trafficked through the peripheral lymphoid tissues. CD25 expression was dynamic in vivo: maintained CD25 expression on Treg was indicative for the preservation of allosuppression, while significantly enhanced CD25 expression on CD4+ effector T cells was most likely associated with T-cell expansion and graft rejection. CONCLUSIONS Therapeutic use of ex vivo-expanded natural CD4+ CD25+ Treg may be a feasible and nontoxic modality for controlling allograft rejection or perhaps inducing allograft tolerance.
Collapse
Affiliation(s)
- Guliang Xia
- Department of Surgery-Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|