1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Xu H, Zhou Y, Guo J, Ling T, Xu Y, Zhao T, Shi C, Su Z, You Q. Elevated extracellular calcium ions accelerate the proliferation and migration of HepG2 cells and decrease cisplatin sensitivity. J Biomed Res 2023; 37:340-354. [PMID: 37750331 PMCID: PMC10541776 DOI: 10.7555/jbr.37.20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 09/27/2023] Open
Abstract
Hepatoblastoma is the most frequent liver malignancy in children. HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture. Intriguingly, we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells. The calcium signal is in connection with a series of processes critical in the tumorigenesis. Here, we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells. Mechanistically, calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase (FAK), protein kinase B, and p38 mitogen-activated protein kinase. The inhibitor of FAK or Ca 2+/calmodulin-dependent kinase Ⅱ (CaMKⅡ) reversed the Ca 2+-induced effects on HepG2 cells, including cell proliferation and migration, epithelial-mesenchymal transition protein expression levels, and phosphorylation levels of FAK and protein kinase B. Moreover, calcium ions decreased HepG2 cells' sensitivity to cisplatin. Furthermore, we found that the expression levels of FAK and CaMKⅡ were increased in hepatoblastoma. The group with high expression levels of FAK and CaMKⅡ exhibited significantly lower ImmunoScore as well as CD8 + T and NK cells. The expression of CaMKⅡ was positively correlated with that of PDCD1 and LAG3. Correspondingly, the expression of FAK was negatively correlated with that of TNFSF9, TNFRSF4, and TNFRSF18. Collectively, extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡ and enhances cisplatin resistance. FAK and CaMKⅡ shape immune cell infiltration and responses in tumor microenvironments, thereby serving as potential targets for hepatoblastoma.
Collapse
Affiliation(s)
- Haozhe Xu
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yiming Zhou
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Jing Guo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Tao Ling
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chuanxin Shi
- Division of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Zhongping Su
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiang You
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| |
Collapse
|
3
|
Peng K, Li S, Li Q, Zhang C, Yuan Y, Liu M, Zhang L, Wang Y, Yu S, Zhang H, Liu T. Positive Phospho-Focal Adhesion Kinase in Gastric Cancer Associates With Poor Prognosis After Curative Resection. Front Oncol 2022; 12:953938. [PMID: 35982966 PMCID: PMC9379279 DOI: 10.3389/fonc.2022.953938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is the fifth most commonly diagnosed cancer and usually has a dismal prognosis. Our previous study highlights the contribution of focal adhesion kinase (FAK) in the tumorigenesis of diffuse gastric cancer (DGC), a subtype of GC according to Lauren classification. The prognostic value of phosphorylated FAK (pFAK) in GC remains to be explored. To explore the prognostic value of pFAK, we retrospectively collected 176 formalin-fixed paraffin-embedded (FFPE) tumor tissues from GC patients who underwent D2 gastrectomy without neoadjuvant treatment. The immunohistochemistry (IHC) staining of pFAK was performed. Survival analysis was performed by Kaplan–Meier and risk factors were evaluated by Cox regression analysis. A pFAK-based nomogram was also constructed for the prediction of overall survival (OS). We demonstrated that the prognosis of pFAK-positive patients was worse than that of the pFAK-negative patients in GC (p = 0.010; hazard ratio [HR] = 1.777, 95% CI 1.131 to 2.791; median OS, 46.6 vs. 86.3 months, respectively), and positive pFAK was also an independent risk factor for the worse prognosis of GC (p = 0.0054; HR = 1.89, 95% CI 1.21–2.96). Moreover, the nomogram based on pFAK and other independent risk factors could improve predictive accuracy for prognosis of GC. In conclusion, through analysis of a large collection of clinically annotated GC samples, we demonstrate that pFAK is a negative prognostic factor in GC, and a nomogram integrating pFAK could help predict OS for GC patients.
Collapse
Affiliation(s)
- Ke Peng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Chenlu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yitao Yuan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Menglin Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Haisheng Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Tianshu Liu, ; Haisheng Zhang,
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- *Correspondence: Tianshu Liu, ; Haisheng Zhang,
| |
Collapse
|
4
|
Gunn SA, Kreps LM, Zhao H, Landon K, Ilacqua JS, Addison CL. Focal Adhesion Kinase Inhibitors Prevent Osteoblast Mineralization in Part Due to Suppression of Akt-mediated stabilization of Osterix. J Bone Oncol 2022; 34:100432. [PMID: 35620245 PMCID: PMC9126966 DOI: 10.1016/j.jbo.2022.100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmacological blockade of FAK results in reduced ALP expression and mineralization by differentiated osteoblasts. Although FAK inhibition resulted in increased levels of BMP2, Wnt3a and Mdm2, and decreased p53, alteration of these pathways was unable to restore mineralization in the presence of FAK tyrosine kinase inhibitors. FAK tyrosine kinase inhibitors resulted in decreased levels of phospho-S473 Akt which led to increased levels of active GSK3β which in turn inhibited Runx2 activity that could contribute to the observed reduced ALP levels. FAK tyrosine kinase inhibitors blocked Akt-mediated stabilization of osterix leading to decreased overall levels of osterix and impaired mineralization in MC3T3-E1 cells differentiated into osteoblasts.
Focal Adhesion Kinase (FAK) is an important regulator of tumor cell proliferation, survival and metastasis. As such it has become a therapeutic target of interest in cancer. Previous studies suggested that use of FAK tyrosine kinase inhibitors (TKIs) blocks osteolysis in in vivo models of bone metastasis. However, from these studies it was not clear whether FAK TKIs blocked bone degradation by osteoclasts or also promoted bone formation by osteoblasts. In this study we evaluated whether use of the FAK TKI PF-562,271 affected the differentiation of pre-osteoblasts, or activity of mature differentiated osteoblasts. MC3T3-E1 pre-osteoblastic cells were treated with various doses of PF-562,271 following 3 or 10 days of differentiation which led to the inhibition of alkaline phosphatase (ALP) expression and reduced viable cell numbers in a dose-dependent manner. MC3T3-E1 cells which had been differentiated for 21 days prior to treatment with PF-562,271 showed a dose dependent decrease in mineralization as assessed by Alizarin Red staining, with concomitant decreased expression of ALP which is known to facilitate the bone mineralization activity of osteoblasts, however mRNA levels of the transcription factors RUNX2 and osterix which are important for osteoblast maturation and mineralization appeared unaffected at this time point. We speculated that this may be due to altered function of RUNX2 protein due to inhibitory phosphorylation by GSK3β. We found treatment with PF-562,271 resulted in increased GSK3β activity as measured by reduced levels of phospho-Ser9-GSK3β which would result in phosphorylation and inhibition of RUNX2. Treatment of 21 day differentiated MC3T3-E1 cells with PF-562,271 in combination with GSK3β inhibitors partially restored mineralization however this was not statistically significant. As we observed that FAK TKI also resulted in suppression of Akt, which is known to alter osterix protein stability downstream of RUNX2, we examined protein levels by western blot and found a dose-dependent decrease in osterix in FAK TKI treated differentiated MC3T3-E1 cells which is likely responsible for the reduced mineralization observed. Taken together our results suggest that use of FAK TKIs as therapeutics in the bone metastatic setting may block new bone formation as an off-target effect and thereby exacerbate the defective bone regulation that is characteristic of the bone metastatic environment.
Collapse
|
5
|
Wang H, Liu Z, Li A, Wang J, Liu J, Liu B, Lian X, Zhang B, Pang B, Liu L, Gao Y. COL4A1 as a novel oncogene associated with the clinical characteristics of malignancy predicts poor prognosis in glioma. Exp Ther Med 2021; 22:1224. [PMID: 34539820 PMCID: PMC8438660 DOI: 10.3892/etm.2021.10658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Studies have indicated that collagen α-1 (IV) chain (COL4A1) has an indispensable regulatory role in the complex pathological mechanisms of numerous types of malignant tumor. However, its role in the development of glioma has remained elusive. Therefore, the present study sought to determine the association between the expression levels of COL4A1 and the clinical characteristics of gliomas by analyzing large samples. First, analysis of thousands of glioma tissue samples collected from the Gene expression profiling interactive analysis, Gene Expression Omnibus database, the Ivy glioblastoma atlas, The Human Protein Atlas, Chinese Glioma Genome Atlas and The Cancer Genome Atlas. In addition, glioma tissues and normal brain tissues from patients with glioma and epilepsy undergoing surgical resection were collected. These samples, which were subjected to a variety of different detection techniques (including sequencing data, chip data, reverse transcription-quantitative PCR, cell lines and tissue samples, in situ hybridization and immunology) revealed that COL4A1 expression was not only increased at the mRNA level but also at the protein level as compared with that in normal brain tissue. Furthermore, Kaplan-Meier analysis revealed that COL4A1 expression was associated with reduced overall survival of patients, particularly those with World Health Organization grade III glioma. Receiver operating characteristic analysis suggested that COL4A1 had a moderate diagnostic value for glioma. In addition, the Mann-Whitney U-test or Kruskal-Wallis test indicated that the expression levels of COL4A1 were positively associated with the histological type and historical grade of the tumor, patient age, ‘Primary, Recurrent, Secondary’ type and the chemotherapy status, and negatively associated with isocitrate dehydrogenase mutation and 1p19q co-deletion (P<0.001). Gene-set enrichment analysis indicated that overexpression of COL4A1 promoted cancer-associated pathways, such as the JAK/STAT signaling pathway and cell cycle regulation. Finally, an MTT assay, immunohistochemical analysis of the cell cycle regulator KI67 and a wound-healing assay further confirmed that knockdown of COL4A1 inhibited the proliferation and migration ability of glioma cells. In conclusion, COL4A1, as a novel oncogene, is a marker for poor prognosis in patients with glioma. The present study expanded the understanding of the pathogenesis of glioma and identified COL4A1 as a potential target for the diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Zhendong Liu
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ang Li
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jialin Wang
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiantao Liu
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binfeng Liu
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xiaoyu Lian
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bo Zhang
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bo Pang
- Department of Neurosurgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Liyun Liu
- Department of Orthopaedics, Orthopedic Hospital of Henan Province, Zhengzhou, Henan 450018, P.R. China
| | - Yanzheng Gao
- Department of Orthopedics and Microbiome Laboratory, Henan University People's Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
6
|
Shi D, Lin B, Lai J, Li K, Feng Y. Upregulation of CPNE3 suppresses invasion, migration and proliferation of glioblastoma cells through FAK pathway inactivation. J Mol Histol 2021; 52:589-596. [PMID: 33725213 DOI: 10.1007/s10735-021-09966-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is a deadly brain tumor with a bleak prognosis. In recent years, the copine III (CPNE3) protein was discovered to be associated to metastasis across various types of malignancies. Nevertheless, its function has not been well documented in glioma. This study characterizes CPNE3 expression in GBM along with its impact and underlying molecular mechanism with regards to cellular migration, invasion and proliferation. Immunohistochemistry was used to characterizes CPNE3 expression in the glioma tissues. Then, knockdown of CPNE3 expression was used to analyze the role of CPNE3 in GBM cell viability, migration, invasion. Western blot analysis was performed to measure the protein levels of FAK signaling pathway. We found that GBM tissues had higher CPNE3 expressions as compared to those in normal brain tissues. CPNE3 silencing in GBM cells impaired the migratory, invasive and proliferative abilities of GBM cells that can be attributed to inactivation of the FAK signaling pathway. Collectively, these findings highlight the role of CPNE3 as a new biomarker, offering deeper insights into its carcinogenic role in GBM.
Collapse
Affiliation(s)
- Dijian Shi
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Science, 118 Xingguang Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Bo Lin
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Science, 118 Xingguang Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Jun Lai
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Science, 118 Xingguang Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Kaipeng Li
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Science, 118 Xingguang Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Yimo Feng
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Science, 118 Xingguang Avenue, Liangjiang New Area, Chongqing, 400016, China.
| |
Collapse
|
7
|
Chen X, Wang G, Mohammed Alsayed AM, Du Z, Lu Liu, Ma Y, Liu P, Zhang Q, Chen X, Chen W, Ye F, Zheng X, Liu Z. Synthesis and biological evaluation of novel N-substituted benzamides as anti-migration agents for treatment of osteosarcoma. Eur J Med Chem 2021; 214:113203. [PMID: 33530028 DOI: 10.1016/j.ejmech.2021.113203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/25/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022]
Abstract
A novel series of novel N-substituted (indole or indazole) benzamides were synthesized, and their anti-tumor properties were evaluated. The majority of tested compounds possessed moderate cytotoxicity, but inspiringly, we verified that active compound 5d presents an astonishing advantage by inhibiting the adhesion, migration, and invasion of osteosarcoma (OS) cells in vitro. Mechanistically, we confirmed 5d inhibited the migration ability of OS cells via the expression of genes related to adhesion, migration, and invasion. This effects of 5d suggest that it can be used as a potential chemotherapeutic drug to some aggressive and/or metastatic cancers, as well as in combination with other clinical anti-cancer drugs. In turn, this could enhance the therapeutic effect or reduce the risk of cell migration.
Collapse
Affiliation(s)
- Xiaojing Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Guangbao Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Ali Mohammed Mohammed Alsayed
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Zongxuan Du
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Lu Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Yue Ma
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Peng Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Qianwen Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Xianxin Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Wenbin Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China
| | - Faqing Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
Jiang K, Yao G, Hu L, Yan Y, Liu J, Shi J, Chang Y, Zhang Y, Liang D, Shen D, Zhang G, Meng S, Piao H. MOB2 suppresses GBM cell migration and invasion via regulation of FAK/Akt and cAMP/PKA signaling. Cell Death Dis 2020; 11:230. [PMID: 32286266 PMCID: PMC7156523 DOI: 10.1038/s41419-020-2381-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
Mps one binder 2 (MOB2) regulates the NDR kinase family, however, whether and how it is implicated in cancer remain unknown. Here we show that MOB2 functions as a tumor suppressor in glioblastoma (GBM). Analysis of MOB2 expression in glioma patient specimens and bioinformatic analyses of public datasets revealed that MOB2 was downregulated at both mRNA and protein levels in GBM. Ectopic MOB2 expression suppressed, while depletion of MOB2 enhanced, the malignant phenotypes of GBM cells, such as clonogenic growth, anoikis resistance, and formation of focal adhesions, migration, and invasion. Moreover, depletion of MOB2 increased, while overexpression of MOB2 decreased, GBM cell metastasis in a chick chorioallantoic membrane model. Overexpression of MOB2-mediated antitumor effects were further confirmed in mouse xenograft models. Mechanistically, MOB2 negatively regulated the FAK/Akt pathway involving integrin. Notably, MOB2 interacted with and promoted PKA signaling in a cAMP-dependent manner. Furthermore, the cAMP activator Forskolin increased, while the PKA inhibitor H89 decreased, MOB2 expression in GBM cells. Functionally, MOB2 contributed to the cAMP/PKA signaling-regulated inactivation of FAK/Akt pathway and inhibition of GBM cell migration and invasion. Collectively, these findings suggest a role of MOB2 as a tumor suppressor in GBM via regulation of FAK/Akt signaling. Additionally, we uncover MOB2 as a novel regulator in cAMP/PKA signaling. Given that small compounds targeting FAK and cAMP pathway have been tested in clinical trials, we suggest that interference with MOB2 expression and function may support a theoretical and therapeutic basis for applications of these compounds.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, 116044, Dalian, China
| | - Gang Yao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, 116044, Dalian, China
| | - Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, 116044, Dalian, China
| | - Yumei Yan
- The First Department of Ultrasound, the First Affiliated Hospital to Dalian Medical University, No. 222 Zhongshan Road, 116021, Dalian, China
| | - Jia Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Youwei Chang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, 116044, Dalian, China
| | - Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 116004, Dalian, China
| | - Guirong Zhang
- Central laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, 116044, Dalian, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
9
|
Brown NF, Williams M, Arkenau HT, Fleming RA, Tolson J, Yan L, Zhang J, Singh R, Auger KR, Lenox L, Cox D, Lewis Y, Plisson C, Searle G, Saleem A, Blagden S, Mulholland P. A study of the focal adhesion kinase inhibitor GSK2256098 in patients with recurrent glioblastoma with evaluation of tumor penetration of [11C]GSK2256098. Neuro Oncol 2019; 20:1634-1642. [PMID: 29788497 DOI: 10.1093/neuonc/noy078] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background GSK2256098 is a novel oral focal adhesion kinase (FAK) inhibitor. Preclinical studies demonstrate growth inhibition in glioblastoma cell lines. However, rodent studies indicate limited blood-brain barrier (BBB) penetration. In this expansion cohort within a phase I study, the safety, tolerability, pharmacokinetics (PK), and clinical activity of GSK2256098 were evaluated in patients with recurrent glioblastoma. Biodistribution and kinetics of [11C]GSK2256098 were assessed in a substudy using positron-emission tomography (PET). Methods Patients were treated with GSK2256098 until disease progression or withdrawal due to adverse events (AEs). Serial PK samples were collected on day 1. On a single day between days 9 and 20, patients received a microdose of intravenous [11C]GSK2256098 and were scanned with PET over 90 minutes with parallel PK sample collection. Response was assessed by MRI every 6 weeks. Results Thirteen patients were treated in 3 dose cohorts (1000 mg, 750 mg, 500 mg; all dosed twice daily). The maximum tolerated dose was 1000 mg twice daily. Dose-limiting toxicities were related to cerebral edema. Treatment-related AEs (>25%) were diarrhea, fatigue, and nausea. Eight patients participated in the PET substudy, with [11C]GSK2256098 VT (volume of distribution) estimates of 0.9 in tumor tissue, 0.5 in surrounding T2 enhancing areas, and 0.4 in normal brain. Best response of stable disease was observed in 3 patients, including 1 patient on treatment for 11.3 months. Conclusions GSK2256098 was tolerable in patients with relapsed glioblastoma. GSK2256098 crossed the BBB at low levels into normal brain, but at markedly higher levels into tumor, consistent with tumor-associated BBB disruption. Additional clinical trials of GSK2256098 are ongoing.
Collapse
Affiliation(s)
- Nicholas F Brown
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Oncology, UCL Cancer Institute, London, UK
| | - Matthew Williams
- Computational Oncology Lab, Institute of Global Health Innovation, South Kensington Campus, Imperial College, London, UK.,Radiotherapy Department, Charing Cross Hospital, London, UK
| | - Hendrik-Tobias Arkenau
- Department of Oncology, UCL Cancer Institute, London, UK.,Sarah Cannon Research Institute UK, London, UK
| | - Ronald A Fleming
- GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, USA
| | - Jerry Tolson
- GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, USA
| | | | | | | | - Kurt R Auger
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laurie Lenox
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David Cox
- GlaxoSmithKline Research & Development Ltd, Uxbridge, UK
| | - Yvonne Lewis
- GlaxoSmithKline, Collegeville, Pennsylvania, USA.,Imanova Ltd, Centre for Imaging Sciences, London, UK
| | | | - Graham Searle
- Imanova Ltd, Centre for Imaging Sciences, London, UK
| | - Azeem Saleem
- Imanova Ltd, Centre for Imaging Sciences, London, UK
| | - Sarah Blagden
- NIHR/Wellcome Trust Imperial CRF, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, UK
| | - Paul Mulholland
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Oncology, UCL Cancer Institute, London, UK
| |
Collapse
|
10
|
Focal Adhesion Kinase (FAK) Overexpression and Phosphorylation in Oral Squamous Cell Carcinoma and their Clinicopathological Significance. Pathol Oncol Res 2019; 26:1659-1667. [PMID: 31522363 DOI: 10.1007/s12253-019-00732-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Focal adhesion kinase (FAK) is involved in progression of various cancers, and FAK overexpression has been associated with cancer invasion and metastasis. However, the involvement of FAK expression in the clinicopathological malignancy of oral squamous cell carcinoma (OSCC) remains unknown. In addition, there is no consensus regarding the role of p16 expression in OSCC. In this study, the immunohistochemically measured expression of FAK, phosphorylated FAK (FAKpY397) and p16 expressions and their associations with clinicopathological features and 5-year survival rates were examined in surgical samples from 70 patients with primary OSCC. FAK and FAKpY397 were expressed at high levels in 42 cases (60.0%) and 34 cases (48.6%), respectively, and 9 cases (12.9%) were positive for p16. FAK expression was significantly correlated with local recurrence, subsequent metastasis, and the mode of invasion. FAKpY397 expression was significantly correlated with both N classification and the mode of invasion. p16 expression was significantly correlated with clinical stage only. Patients having high expression of FAK, FAKpY397, or both showed significantly worse prognosis, but p16 expression showed no significant relation to prognosis. The results suggested that overexpression and phosphorylation of FAK in OSCC may affect cancer progression, such as local invasion and lymph node metastasis, and thereby contribute to life prognosis.
Collapse
|
11
|
Singh PK, Deorukhkar AA, Venkatesulu BP, Li X, Tailor R, Bomalaski JS, Krishnan S. Exploiting Arginine Auxotrophy with Pegylated Arginine Deiminase (ADI-PEG20) to Sensitize Pancreatic Cancer to Radiotherapy via Metabolic Dysregulation. Mol Cancer Ther 2019; 18:2381-2393. [PMID: 31395686 DOI: 10.1158/1535-7163.mct-18-0708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/05/2018] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Distinct metabolic vulnerabilities of cancer cells compared with normal cells can potentially be exploited for therapeutic targeting. Deficiency of argininosuccinate synthetase-1 (ASS1) in pancreatic cancers creates auxotrophy for the semiessential amino acid arginine. We explored the therapeutic potential of depleting exogenous arginine via pegylated arginine deiminase (ADI-PEG20) treatment as an adjunct to radiotherapy. We evaluated the efficacy of treatment of human pancreatic cancer cell lines and xenografts with ADI-PEG20 and radiation via clonogenic assays and tumor growth delay experiments. We also investigated potential mechanisms of action using reverse-phase protein array, Western blotting, and IHC and immunofluorescence staining. ADI-PEG20 potently radiosensitized ASS1-deficient pancreatic cancer cells (MiaPaCa-2, Panc-1, AsPc-1, HPAC, and CaPan-1), but not ASS1-expressing cell lines (Bxpc3, L3.6pl, and SW1990). Reverse phase protein array studies confirmed increased expression of proteins related to endoplasmic reticulum (ER) stress and apoptosis, which were confirmed by Western blot analysis. Inhibition of ER stress signaling with 4-phenylbutyrate abrogated the expression of ER stress proteins and reversed radiosensitization by ADI-PEG20. Independent in vivo studies in two xenograft models confirmed significant tumor growth delays, which were associated with enhanced expression of ER stress proteins and apoptosis markers and reduced expression of proliferation and angiogenesis markers. ADI-PEG20 augmented the effects of radiation by triggering the ER stress pathway, leading to apoptosis in pancreatic tumor cells.
Collapse
Affiliation(s)
- Pankaj K Singh
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Amit A Deorukhkar
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Bhanu P Venkatesulu
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Xiaolin Li
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Ramesh Tailor
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | | | - Sunil Krishnan
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
12
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
13
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
14
|
Thanapprapasr K, Nartthanarung A, Thanapprapasr D, Jinawath A. pFAK-Y397 overexpression as both a prognostic and a predictive biomarker for patients with metastatic osteosarcoma. PLoS One 2017; 12:e0182989. [PMID: 28846700 PMCID: PMC5573209 DOI: 10.1371/journal.pone.0182989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022] Open
Abstract
Focal adhesion kinase (FAK) is important for tumor cell survival and metastasis in various cancers. However, its expression and prognostic value in patients with metastatic osteosarcoma remain unknown. We investigated the expression of FAK and its phosphorylated form (pFAK-Y397) in osteosarcoma tissues from 53 patients by immunohistochemistry and evaluated their correlations with clinicopathologic characteristics and outcomes. The prognostic values were assessed using Kaplan-Meier survival and Cox regression analyses. Total FAK and pFAK-Y397 were overexpressed in 48 (90.6%) and 33 (62.3%) cases, respectively. pFAK-Y397 overexpression was correlated with poor histologic response after neoadjuvant chemotherapy in patients with osteosarcoma regardless of the presence of metastasis or not. Kaplan-Meier curve showed that patients with metastatic osteosarcoma with pFAK-Y397 overexpression had significantly worse overall survival (OS) than those with non-overexpression (P = 0.044). Multivariate Cox regression analysis confirmed pFAK-Y397 overexpression as an independent prognostic predictor for OS and post metastases OS (PMOS) (P = 0.017, P = 0.006, respectively). Age at diagnosis was also an independent indicator for PMOS (P = 0.003). However, total FAK expression was not correlated with any clinicopathologic characteristics or OS in patients with metastatic osteosarcoma. In conclusion, our findings identified FAK as a common aberrant protein overexpression in various subtypes of osteosarcoma. pFAK-Y397 overexpression can be used as a prognostic biomarker predicting poor OS for patients with metastatic osteosarcoma, and the expression of pFAK-Y397 differentiated good and poor responders to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Kamolrat Thanapprapasr
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani, Thailand
- * E-mail: (AJ); (KT)
| | - Adisak Nartthanarung
- Musculoskeletal Oncology Unit, Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangmani Thanapprapasr
- Surgical Oncology Unit, Wattanosoth Cancer Hospital, Bangkok Hospital Medical Center, Bangkok, Thailand
| | - Artit Jinawath
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (AJ); (KT)
| |
Collapse
|
15
|
Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, Evans TRJ, Zalcman G, Bahleda R, Hollebecque A, Lemech C, Dean E, Brown J, Gibson D, Peddareddigari V, Murray S, Nebot N, Mazumdar J, Swartz L, Auger KR, Fleming RA, Singh R, Millward M. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann Oncol 2016; 27:2268-2274. [PMID: 27733373 DOI: 10.1093/annonc/mdw427] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) is important in cancer growth, survival, invasion, and migration. The purpose of this study was to determine the maximum tolerated dose (MTD), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the FAK inhibitor, GSK2256098, in cancer patients. PATIENTS AND METHODS The dose of GSK2256098 was escalated, in cohorts of patients with advanced cancer, from 80 to 1500 mg, oral twice daily (BID), until the MTD was determined. Serial blood samples were obtained from all patients, and the PK was determined. Paired tumor biopsies were obtained in select patients, and the level of phospho-FAK (pFAK) was determined. RESULTS Sixty-two patients (39 males, 23 females; median age 61 y.o., range 21-84) received GSK2256098. Dose-limiting toxicities of grade 2 proteinuria (1000 mg BID), grade 2 fatigue, nausea, vomiting (1250 mg BID), and grade 3 asthenia and grade 2 fatigue (1500 mg BID) were reported with the MTD identified as 1000 mg BID. The most frequent adverse events (AEs) were nausea (76%), diarrhea (65%), vomiting (58%), and decreased appetite (47%) with the majority of AEs being grades 1-2. The PK was generally dose proportional with a geometric mean elimination half-life range of 4-9 h. At the 750, 1000, and 1500 mg BID dose levels evaluated, the pFAK, Y397 autophosphorylation site, was reduced by ∼80% from baseline. Minor responses were observed in a patient with melanoma (-26%) and three patients with mesothelioma (-13%, -15%, and -17%). In the 29 patients with recurrent mesothelioma, the median progression-free survival was 12 weeks with 95% CI 9.1, 23.4 weeks (23.4 weeks merlin negative, n = 14; 11.4 weeks merlin positive, n = 9; 10.9 weeks merlin status unknown, n = 6). CONCLUSIONS GSK2256098 has an acceptable safety profile, has evidence of target engagement at doses at or below the MTD, and has clinical activity in patients with mesothelioma, particularly those with merlin loss.
Collapse
Affiliation(s)
- J C Soria
- Drug Development Department at Gustave Roussy Cancer Campus, University Paris-Sud, Paris, France
| | - H K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
- School of Cancer Medicine, Latrobe University, Melbourne, Australia
| | - S P Blagden
- Imperial College, Hammersmith Hospital, London
| | - R Plummer
- Northern Centre for Cancer Care, Newcastle
| | | | - M Ranson
- University of Manchester, Christie Hospital, Manchester
| | - T R J Evans
- University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - G Zalcman
- Early Phases Clinical Trials Unit at Caen University Hospital, Caen, France
| | - R Bahleda
- Drug Development Department at Gustave Roussy Cancer Campus, University Paris-Sud, Paris, France
| | - A Hollebecque
- Drug Development Department at Gustave Roussy Cancer Campus, University Paris-Sud, Paris, France
| | - C Lemech
- Sarah Cannon Research Institute, London
| | - E Dean
- University of Manchester, Christie Hospital, Manchester
| | - J Brown
- University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - D Gibson
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - V Peddareddigari
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - S Murray
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - N Nebot
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - J Mazumdar
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - L Swartz
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - K R Auger
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - R A Fleming
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - R Singh
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, USA
| | - M Millward
- School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Australia
| |
Collapse
|
16
|
Prognostic Value of Focal Adhesion Kinase (FAK) in Human Solid Carcinomas: A Meta-Analysis. PLoS One 2016; 11:e0162666. [PMID: 27637100 PMCID: PMC5026375 DOI: 10.1371/journal.pone.0162666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023] Open
Abstract
Background Recently, the number of reports on focal adhesion kinase (FAK) as a vital therapeutic target in solid carcinomas has increased; however, the prognostic role of FAK status remains poorly understood. This study aims to evaluate the prognostic effect of FAK by means of a meta-analysis. Methods We performed a systematic literature search in order to examine the correlation between expression of FAK and overall survival(OS). The hazard ratio (HR) of OS was used to measure survival. A random-effects model was used to pool study statistics. Sensitivity and publication bias analyses were also conducted. Results Thirty eligible studies involving 4702 patients were included. The median expression rate of FAK was 54%. Meta-analysis of the HRs demonstrated that high FAK expression was associated with worse OS (average HR = 2.073, 95%confidence interval[CI]:1.712–2.510, p = 0.000). Regarding cancer type, FAK was associated with worse OS in gastric cancer (HR = 2.646,95% CI:1.743–4.017, p = 0.000), hepatocellular carcinoma (HR = 1.788,95% CI:1.228–2.602, p = 0.002), ovarian cancer (HR = 1.815, 95% CI: 1.193–2.762, p = 0.005), endometrial cancer (HR = 4.149, 95% CI:2.832–6.079, p = 0.000), gliomas (HR = 2.650, 95% CI: 1.205–5.829, p = 0.015), and squamous cell carcinoma (HR = 1,696, 95% CI: 1.030–2.793, p = 0.038). No association was found between HR and disease staging according to our meta-regression analysis. Conclusions Our study shows that high expression of FAK is associated with a worse OS in patients with carcinomas, but the association between FAK and prognosis varies according to cancer type. The value of FAK status in clinical prognosis in cancer needs further research.
Collapse
|
17
|
Ren K, Lu X, Yao N, Chen Y, Yang A, Chen H, Zhang J, Wu S, Shi X, Wang C, Sun X. Focal adhesion kinase overexpression and its impact on human osteosarcoma. Oncotarget 2016; 6:31085-103. [PMID: 26393679 PMCID: PMC4741590 DOI: 10.18632/oncotarget.5044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. SiRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis.
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiao Lu
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Nan Yao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Yong Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Aizhen Yang
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Sujia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiaoliang Sun
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China
| |
Collapse
|
18
|
Anderson HJ, Galileo DS. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell Oncol (Dordr) 2016; 39:229-42. [PMID: 26883759 DOI: 10.1007/s13402-016-0267-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. METHODS The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. RESULTS The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. CONCLUSIONS We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.
Collapse
Affiliation(s)
- Hannah J Anderson
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, 19713, USA.
| |
Collapse
|
19
|
Greenall SA, Donoghue JF, Van Sinderen M, Dubljevic V, Budiman S, Devlin M, Street I, Adams TE, Johns TG. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene 2015; 34:5277-87. [PMID: 25659577 DOI: 10.1038/onc.2014.448] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/19/2014] [Accepted: 11/08/2014] [Indexed: 12/20/2022]
Abstract
A truncation mutant of the epidermal growth factor receptor, EGFRvIII, is commonly expressed in glioma, an incurable brain cancer. EGFRvIII is tumorigenic, in part, through its transactivation of other receptor tyrosine kinases (RTKs). Preventing the effects of this transactivation could form part of an effective therapy for glioma; however, the mechanism by which the transactivation occurs is unknown. Focusing on the RTK MET, we show that MET transactivation in U87MG human glioma cells in vitro is proportional to EGFRvIII activity and involves MET heterodimerization associated with a focal adhesion kinase (FAK) scaffold. The transactivation of certain other RTKs was, however, independent of FAK. Simultaneously targeting EGFRvIII (with panitumumab) and the transactivated RTKs themselves (with motesanib) in an intracranial mouse model of glioma resulted in significantly greater survival than with either agent alone, indicating that cotargeting these RTKs has potent antitumor efficacy and providing a strategy for treating EGFRvIII-expressing gliomas, which are usually refractory to treatment.
Collapse
Affiliation(s)
- S A Greenall
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia.,Division of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC, Australia
| | - J F Donoghue
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - M Van Sinderen
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - V Dubljevic
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - S Budiman
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - M Devlin
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, Australia
| | - I Street
- CRC for Cancer Therapeutics, Bundoora, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - T E Adams
- Division of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC, Australia
| | - T G Johns
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Wolle D, Lee SJ, Li Z, Litan A, Barwe SP, Langhans SA. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma. Cancer Med 2014; 3:1146-58. [PMID: 25052069 PMCID: PMC4302666 DOI: 10.1002/cam4.314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor (EGF) signaling regulates cell growth, proliferation, and differentiation. Upon receptor binding, EGF triggers cascades of downstream signaling, including the MAPK and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways. Aberrant expression/activation of EGFR is found in multiple human cancers, including medulloblastoma, the most prevalent pediatric brain cancer, and often has been associated with metastasis, poor prognosis, and resistance to chemotherapy. Na,K-ATPase is an ion pump well known for its role in intracellular ion homeostasis. Recent studies showed that Na,K-ATPase also functions as a signaling platform and revealed a role in EGFR, MAPK, and PI3K signaling. While both EGFR and Na,K-ATPase seem to modulate similar signaling pathways, cardiac glycosides that are steroid-like inhibitors of Na,K-ATPase, exhibit antiproliferative and proapoptotic properties in cancer cells. Thus, we sought to better understand the relationship between EGF and cardiac glycoside signaling. Here, we show that in medulloblastoma cells, both EGF and ouabain activate Erk1/2 and PI3K/Akt signaling. Nevertheless, in medulloblastoma cells ouabain did not transactivate EGFR as has been reported in various other cell lines. Indeed, ouabain inhibited EGF-induced Erk1/2 and Akt activation and, moreover, prevented EGF-induced formation of actin stress fibers and cell motility, probably by activating a stress signaling response. Na,K-ATPase has been proposed to act as a signaling scaffold and our studies suggest that in medulloblastoma cells Na,K-ATPase might act as a check point to integrate EGF-associated signaling pathways. Thus, Na,K-ATPase might serve as a valid target to develop novel therapeutic approaches in tumors with aberrant activation of the EGFR signaling cascades.
Collapse
Affiliation(s)
- Daniel Wolle
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, 19803
| | | | | | | | | | | |
Collapse
|
21
|
Bosch R, Dieguez-Gonzalez R, Moreno MJ, Gallardo A, Novelli S, Espinosa I, Céspedes MV, Pavón MÁ, Briones J, Grañena A, Sierra J, Mangues R, Casanova I. Focal adhesion protein expression in human diffuse large B-cell lymphoma. Histopathology 2014; 65:119-31. [PMID: 24467224 DOI: 10.1111/his.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
AIMS Focal adhesions have been associated with poor prognosis in multiple cancer types, but their prognostic value in diffuse large B-cell lymphoma (DLBCL) has not been evaluated. The aim of this study was to investigate the expression patterns and the prognostic value of the focal adhesion proteins FAK, Pyk2, p130Cas and HEF1 in DLBCL. METHODS AND RESULTS Focal adhesion protein expression was examined using immunohistochemistry in normal lymphoid tissues and in 60 DLBCL patient samples. Kaplan-Meier survival and Cox regression analysis were performed to evaluate the correlation of focal adhesion protein expression with patient prognosis. FAK, Pyk2, p130Cas and HEF1 expression was mostly found in the germinal centres of normal human lymphoid tissues. When assessed in DLBCL samples, FAK, Pyk2, p130Cas and HEF1 were highly expressed in 45%, 34%, 42% and 45% of the samples, respectively. Multivariate Cox analysis revealed that decreased FAK expression was a significant independent predictor of poorer disease outcome. CONCLUSIONS FAK expression is an independent prognostic factor in DLBCL. Our results suggest that the addition of FAK immunostaining to the current immunohistochemical algorithms may facilitate risk stratification of DLBCL patients.
Collapse
Affiliation(s)
- Rosa Bosch
- Grup d'Oncogènesi i Antitumorals, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Osthole suppresses the migratory ability of human glioblastoma multiforme cells via inhibition of focal adhesion kinase-mediated matrix metalloproteinase-13 expression. Int J Mol Sci 2014; 15:3889-903. [PMID: 24599080 PMCID: PMC3975374 DOI: 10.3390/ijms15033889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK) is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP)-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.
Collapse
|
23
|
Ritt M, Guan JL, Sivaramakrishnan S. Visualizing and manipulating focal adhesion kinase regulation in live cells. J Biol Chem 2013; 288:8875-86. [PMID: 23393139 DOI: 10.1074/jbc.m112.421164] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Focal Adhesion Kinase (FAK) is essential for cell migration and plays an important role in tumor metastasis. However, the complex intermolecular and intramolecular interactions that regulate FAK activity at the focal adhesion remain unresolved. We have engineered a toolbox of FRET sensors that retain all of the individual FAK domains but modulate a key intramolecular regulatory interaction between the band 4.1/ezrin/radixin/moesin (FERM) and kinase domains of FAK. We demonstrate systematic control and quantitative measurement of the FERM-kinase interaction at focal adhesions, which in turn allows us to control cell migration. Using these sensors, we find that Tyr-397 phosphorylation, rather than kinase activity of FAK, is the key determinant of cell migration. Our sensors directly demonstrate, for the first time, a pH-dependent change in a protein-protein interaction at a macromolecular structure in live cells. The FERM-kinase interaction at focal adhesions is enhanced at acidic pH, with a concomitant decrease in Tyr-397 phosphorylation, providing a potential mechanism for enhanced migration of cancer cells.
Collapse
Affiliation(s)
- Michael Ritt
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
24
|
Srikanth M, Das S, Berns EJ, Kim J, Stupp SI, Kessler JA. Nanofiber-mediated inhibition of focal adhesion kinase sensitizes glioma stemlike cells to epidermal growth factor receptor inhibition. Neuro Oncol 2013; 15:319-29. [PMID: 23328812 DOI: 10.1093/neuonc/nos316] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme is the most common glioma in adults and carries a poor prognosis, due to tumor recurrence despite aggressive treatment. Such relapse has been attributed to the persistence of glioma stemlike cells (GSCs), a subpopulation of glioma cells with stem cell properties. Thus, targeting these cells will be critical to achieving meaningful improvement in glioblastoma multiforme survival. We investigated the role of β1-integrin signaling as one such potential target. METHODS We used GSCs isolated from primary human gliomas and maintained in stem cell conditions. We manipulated β1-integrin signaling using a self-assembling peptide amphiphile (PA) displaying the IKVAV (isoleucine-lysine-valine-alanine-valine) epitope as well as lentiviral overexpression, and we assayed the effects on downstream effectors and apoptosis using immunofluorescence. RESULTS We show that β1-integrin expression correlates with decreased survival in glioma patients and that β1-integrin is highly expressed by GSCs. The IKVAV PA potently increases immobilized β1-integrin at the GSC membrane, activating integrin-linked kinase while inhibiting focal adhesion kinase (FAK). The IKVAV PA induces striking apoptosis in GSCs via this FAK inhibition, which is enhanced in combination with inhibition of epidermal growth factor receptor (EGFR). Conversely, lentiviral overexpression of β1-integrin renders GSCs resistant to EGFR inhibition, which was overcome by FAK inhibition. CONCLUSIONS These observations reveal a role for β1-integrin signaling through FAK in GSC treatment resistance and introduce self-assembling PAs as a novel new therapeutic approach for overcoming this resistance.
Collapse
Affiliation(s)
- Maya Srikanth
- Department of Neurology, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | |
Collapse
|