1
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
2
|
Tavares G, Rosendo-Silva D, Simões F, Eickhoff H, Marques D, Sacramento JF, Capucho AM, Seiça R, Conde SV, Matafome P. Circulating Dopamine Is Regulated by Dietary Glucose and Controls Glucagon-like 1 Peptide Action in White Adipose Tissue. Int J Mol Sci 2023; 24:ijms24032464. [PMID: 36768789 PMCID: PMC9916853 DOI: 10.3390/ijms24032464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders.
Collapse
Affiliation(s)
- Gabriela Tavares
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Daniela Rosendo-Silva
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
| | - Flávia Simões
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Hans Eickhoff
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Marques
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana F. Sacramento
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Adriana M. Capucho
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Raquel Seiça
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
| | - Sílvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matafome
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School, 3046-854 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
3
|
Ashraf UM, Atari E, Alasmari F, Waghulde H, Kumar V, Sari Y, Najjar SM, Jose PA, Kumarasamy S. Intrarenal Dopaminergic System Is Dysregulated in SS- Resp18mutant Rats. Biomedicines 2023; 11:111. [PMID: 36672619 PMCID: PMC9855394 DOI: 10.3390/biomedicines11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The genetic and molecular basis of developing high blood pressure and renal disease are not well known. Resp18mutant Dahl salt-sensitive (SS-Resp18mutant) rats fed a 2% NaCl diet for six weeks have high blood pressure, increased renal fibrosis, and decreased mean survival time. Impairment of the dopaminergic system also leads to hypertension that involves renal and non-renal mechanisms. Deletion of any of the five dopamine receptors may lead to salt-sensitive hypertension. Therefore, we investigated the interaction between Resp18 and renal dopamine in SS-Resp18mutant and Dahl salt-sensitive (SS) rats. We found that SS-Resp18mutant rats had vascular dysfunction, as evidenced by a decrease in vasorelaxation in response to sodium nitroprusside. The pressure-natriuresis curve in SS-Resp18mutant rats was shifted down and to the right of SS rats. SS-Resp18mutant rats had decreased glomerular filtration rate and dopamine receptor subtypes, D1R and D5R. Renal dopamine levels were decreased, but urinary dopamine levels were increased, which may be the consequence of increased renal dopamine production, followed by secretion into the tubular lumen. The increased renal dopamine production in SS-Resp18mutant rats in vivo was substantiated by the increased dopamine production in renal proximal tubule cells treated with L-DOPA. Overall, our study provides evidence that targeted disruption of the Resp18 locus in the SS rat dysregulates the renal dopaminergic system.
Collapse
Affiliation(s)
- Usman M. Ashraf
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ealla Atari
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Harshal Waghulde
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Pedro A. Jose
- Department of Medicine, Division of Kidney Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Gildea JJ, Xu P, Schiermeyer KA, Yue W, Carey RM, Jose PA, Felder RA. Inverse Salt Sensitivity of Blood Pressure Is Associated with an Increased Renin-Angiotensin System Activity. Biomedicines 2022; 10:2811. [PMID: 36359330 PMCID: PMC9687845 DOI: 10.3390/biomedicines10112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
High and low sodium diets are associated with increased blood pressure and cardiovascular morbidity and mortality. The paradoxical response of elevated BP in low salt diets, aka inverse salt sensitivity (ISS), is an understudied vulnerable 11% of the adult population with yet undiscovered etiology. A linear relationship between the number of single nucleotide polymorphisms (SNPs) in the dopamine D2 receptor (DRD2, rs6276 and 6277), and the sodium myo-inositol cotransporter 2 (SLC5A11, rs11074656), as well as decreased expression of these two genes in urine-derived renal proximal tubule cells (uRPTCs) isolated from clinical study participants suggest involvement of these cells in ISS. Insight into this newly discovered paradoxical response to sodium is found by incubating cells in low sodium (LS) conditions that unveil cell physiologic differences that are then reversed by mir-485-5p miRNA blocker transfection and bypassing the genetic defect by DRD2 re-expression. The renin-angiotensin system (RAS) is an important counter-regulatory mechanism to prevent hyponatremia under LS conditions. Oversensitive RAS under LS conditions could partially explain the increased mortality in ISS. Angiotensin-II (AngII, 10 nmol/L) increased sodium transport in uRPTCs to a greater extent in individuals with ISS than SR. Downstream signaling of AngII is verified by identifying lowered expression of nuclear factor erythroid 2-related factor 2 (NRF2), CCCTC-binding factor (CTCF), and manganese-dependent mitochondrial superoxide dismutase (SOD2) only in ISS-derived uRPTCs and not SR-derived uRPTCs when incubated in LS conditions. We conclude that DRD2 and SLC5A11 variants in ISS may cause an increased low sodium sensitivity to AngII and renal sodium reabsorption which can contribute to inverse salt-sensitive hypertension.
Collapse
Affiliation(s)
- John J. Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Katie A. Schiermeyer
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Wei Yue
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, The University of Virginia, Charlottesville, VA 22903, USA;
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
- Department of Physiology/Pharmacology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Robin A. Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| |
Collapse
|
5
|
Felder RA, Gildea JJ, Xu P, Yue W, Armando I, Carey RM, Jose PA. Inverse Salt Sensitivity of Blood Pressure: Mechanisms and Potential Relevance for Prevention of Cardiovascular Disease. Curr Hypertens Rep 2022; 24:361-374. [PMID: 35708819 PMCID: PMC9728138 DOI: 10.1007/s11906-022-01201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To review the etiology of inverse salt sensitivity of blood pressure (BP). RECENT FINDINGS Both high and low sodium (Na+) intake can be associated with increased BP and cardiovascular morbidity and mortality. However, little is known regarding the mechanisms involved in the increase in BP in response to low Na+ intake, a condition termed inverse salt sensitivity of BP, which affects approximately 15% of the adult population. The renal proximal tubule is important in regulating up to 70% of renal Na+ transport. The renin-angiotensin and renal dopaminergic systems play both synergistic and opposing roles in the regulation of Na+ transport in this nephron segment. Clinical studies have demonstrated that individuals express a "personal salt index" (PSI) that marks whether they are salt-resistant, salt-sensitive, or inverse salt-sensitive. Inverse salt sensitivity results in part from genetic polymorphisms in various Na+ regulatory genes leading to a decrease in natriuretic activity and an increase in renal tubular Na+ reabsorption leading to an increase in BP. This article reviews the potential mechanisms of a new pathophysiologic entity, inverse salt sensitivity of BP, which affects approximately 15% of the general adult population.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA.
| | - John J Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Wei Yue
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Ines Armando
- Department of Medicine and Department of Physiology/Pharmacology, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert M Carey
- Department of Medicine, Division of Endocrinology and Metabolism, The University of Virginia, Charlottesville, VA, USA
| | - Pedro A Jose
- Department of Medicine and Department of Physiology/Pharmacology, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
6
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
7
|
Bądzyńska B, Sadowski J. Reinvestigation of the tonic natriuretic action of intrarenal dopamine: comparison of two variants of salt-dependent hypertension and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2021; 48:1280-1287. [PMID: 34056731 DOI: 10.1111/1440-1681.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023]
Abstract
The intrarenal dopamine system has been thoroughly investigated at all levels, especially its role in salt-dependent and other forms of hypertension. However, the evidence regarding dopamine's tonic influence on renal tubular transport of sodium remains equivocal. We reinvestigated its tonic influence on sodium excretion and systemic and renal haemodynamics. Early effects of dopamine D1 receptor blockade using 90-min Schering 23390 (SCH) infusion were examined in anaesthetized rats on 7 days' high salt diet (HS), early uninephrectomized rats on 14 days' HS diet, drinking 1% saline (HS/UNX), and in spontaneously hypertensive rats (SHR). In the HS group (baseline BP ~133 mm Hg) renal intracortical SCH promptly decreased sodium, water and total solute excretion (UNa V, V, Uosm V), with significant difference from the solvent-infused group. BP and renal artery blood flow (RBF, Transonic probe) did not change. In HS/UNX model (baseline BP ~150 mm Hg), characterized by hypertrophy of the remaining kidney, the excretion parameters only tended to decrease whereas SCH induced an ~20% fall in RBF. In SHR (BP ~180 mm Hg), UNa V and V tended to increase in solvent-infused rats; this increasing tendency was abolished by SCH infusion. During experiments the renal vascular resistance increased significantly in SCH- and solvent-infused SHR. Despite some contradictory findings regarding the genuine tonic control of renal excretion by intrarenal dopamine, our results clearly support such role in rats on HS diet and in SHR, the model resembling human essential hypertension. The observations strengthen the experimental basis and the rationale for targeting the intrarenal dopamine system in attempts to combat arterial hypertension.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Effects of Virgin Olive Oil on Blood Pressure and Renal Aminopeptidase Activities in Male Wistar Rats. Int J Mol Sci 2021; 22:ijms22105388. [PMID: 34065436 PMCID: PMC8161085 DOI: 10.3390/ijms22105388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
High saturated fat diets have been associated with the development of obesity and hypertension, along with other pathologies related to the metabolic syndrome. In contrast, the Mediterranean diet, characterized by its high content of monounsaturated fatty acids, has been proposed as a dietary factor capable of positively regulating cardiovascular function. These effects have been linked to changes in the local renal renin angiotensin system (RAS) and the activity of the sympathetic nervous system. The main goal of this study was to analyze the role of two dietary fat sources on aminopeptidases activities involved in local kidney RAS. Male Wistar rats (six months old) were fed during 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or the standard diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). Kidney samples were separated in medulla and cortex for aminopeptidase activities (AP) assay. Urine samples were collected for routine analysis by chemical tests. Aminopeptidase activities were determined by fluorometric methods in soluble (sol) and membrane-bound (mb) fractions of renal tissue, using arylamide derivatives as substrates. After the experimental period, the systolic blood pressure (SBP) values were similar in standard and VOO animals, and significantly lower than in the Bch group. At the same time, a significant increase in GluAP and IRAP activities were found in renal medulla of Bch animals. However, in VOO group the increase of GluAP activity in renal medulla was lower, while AspAP activity decreased in the renal cortex. Furthermore, the VOO diet also affected other aminopeptidase activities, such as TyrAP and pGluAP, related to the regulation of the sympathetic nervous system and the metabolic rate. These results support the beneficial effect of VOO in the regulation of SBP through changes in local AP activities of the kidney.
Collapse
|
9
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
10
|
Lipid Rafts and Dopamine Receptor Signaling. Int J Mol Sci 2020; 21:ijms21238909. [PMID: 33255376 PMCID: PMC7727868 DOI: 10.3390/ijms21238909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The renal dopaminergic system has been identified as a modulator of sodium balance and blood pressure. According to the Centers for Disease Control and Prevention, in 2018 in the United States, almost half a million deaths included hypertension as a primary or contributing cause. Renal dopamine receptors, members of the G protein-coupled receptor family, are divided in two groups: D1-like receptors that act to keep the blood pressure in the normal range, and D2-like receptors with a variable effect on blood pressure, depending on volume status. The renal dopamine receptor function is regulated, in part, by its expression in microdomains in the plasma membrane. Lipid rafts form platforms within the plasma membrane for the organization and dynamic contact of molecules involved in numerous cellular processes such as ligand binding, membrane sorting, effector specificity, and signal transduction. Understanding all the components of lipid rafts, their interaction with renal dopamine receptors, and their signaling process offers an opportunity to unravel potential treatment targets that could halt the progression of hypertension, chronic kidney disease (CKD), and their complications.
Collapse
|
11
|
Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z. New roles for dopamine D 2 and D 3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry 2020; 25:2070-2085. [PMID: 30626912 PMCID: PMC6616020 DOI: 10.1038/s41380-018-0344-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic β-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic β-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in β-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in β-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which β-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, β-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Antonella Maffei
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Alain J. De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Pattama Wiriyasermkul
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Collaborative Research, Nara Medical University, Kashihara, Nara, Japan
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise Sorisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin P. Inbar
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Eugene V. Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Gary J. Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Schmauss
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Holly Moore
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Pushpakumar S, Ahmad A, Ketchem CJ, Jose PA, Weinman EJ, Sen U, Lederer ED, Khundmiri SJ. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sci 2020; 243:117226. [PMID: 31904366 PMCID: PMC7015806 DOI: 10.1016/j.lfs.2019.117226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium‑hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Asrar Ahmad
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Utpal Sen
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Eleanor D Lederer
- Department of Physiology, University of Louisville, Louisville, KY, United States of America; Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America; Robley Rex VA Medical Center, Louisville, KY, United States of America
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America.
| |
Collapse
|
13
|
Abstract
Background Oxidative stress and high salt intake could be independent or intertwined risk factors in the origin of hypertension. Kidneys are the major organ to regulate sodium homeostasis and blood pressure and the renal dopamine system plays a pivotal role in sodium regulation during sodium replete conditions. Oxidative stress has been implicated in renal dopamine dysfunction and development of hypertension, especially in salt‐sensitive animal models. Here we show the nexus between high salt intake and oxidative stress causing renal tubular dopamine oxidation, which leads to mitochondrial and lysosomal dysfunction and subsequently causes renal inflammation and hypertension. Methods and Results Male Sprague Dawley rats were divided into the following groups, vehicle (V)—tap water, high salt (HS)—1% NaCl, L‐buthionine‐sulfoximine (BSO), a prooxidant, and HS plus BSO without and with antioxidant resveratrol (R) for 6 weeks. Oxidative stress was significantly higher in BSO and HS+BSO–treated rat compared with vehicle; however, blood pressure was markedly higher in the HS+BSO group whereas an increase in blood pressure in the BSO group was modest. HS+BSO–treated rats had significant renal dopamine oxidation, lysosomal and mitochondrial dysfunction, and increased renal inflammation; however, HS alone had no impact on organelle function or inflammation. Resveratrol prevented oxidative stress, dopamine oxidation, organelle dysfunction, inflammation, and hypertension in BSO and HS+BSO rats. Conclusions These data suggest that dopamine oxidation, especially during increased sodium intake and oxidative milieu, leads to lysosomal and mitochondrial dysfunction and renal inflammation with subsequent increase in blood pressure. Resveratrol, while preventing oxidative stress, protects renal function and mitigates hypertension.
Collapse
Affiliation(s)
- Anees A Banday
- Heart and Kidney Institute College of Pharmacy University of Houston TX
| | | |
Collapse
|
14
|
Gildea JJ, Xu P, Kemp BA, Carey RM, Jose PA, Felder RA. The Dopamine D 1 Receptor and Angiotensin II Type-2 Receptor are Required for Inhibition of Sodium Transport Through a Protein Phosphatase 2A Pathway. Hypertension 2019; 73:1258-1265. [PMID: 31030607 DOI: 10.1161/hypertensionaha.119.12705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Activation of the renal D1R (dopamine D1-like receptor) or AT2R (angiotensin II type-2 receptor), individually or both, simultaneously, is necessary in the normal regulation of renal sodium (Na+) transport and blood pressure. However, little is known regarding the precise mechanism of this interaction. Pharmacological stimulation, membrane biotinylation, and cell surface immunofluorescence were used to study the effect of the D1R/AT2R interaction in human renal proximal tubule cells. D1R activation of GαS stimulates AC (adenylyl cyclase) and induces apical plasma membrane recruitment of AT2Rs. We now show for the first time the reciprocal reaction, AT2R stimulation with Ang III (angiotensin III) leads to the apical plasma membrane recruitment of the D1R. The cell-permeable second messenger analogs of cAMP (8-Br-cAMP) or cGMP (8-Br-cGMP) induce translocation of both D1R and AT2R to the plasma membrane. Inhibition of PKA (protein kinase A) with Rp-cAMPS and PKG (protein kinase G) with Rp-8-CPT-cGMPS blocks D1R and AT2R recruitment, respectively, indicating that both PKA and PKG are necessary for D1R and AT2R trafficking. Both 8-Br-cAMP and 8-Br-cGMP activate PP2A (protein phosphatase 2A), which is necessary for both plasma membrane recruitment of D1R and AT2R and the inhibition of sodium hydrogen exchanger 3-dependent Na+ transport. These studies provide insights into the D1R/AT2R transregulation mechanisms that play a crucial role in maintaining Na+ and ultimately blood pressure homeostasis.
Collapse
Affiliation(s)
- John J Gildea
- From the Departments of Pathology (J.J.G., P.X., R.A.F.)
| | - Peng Xu
- From the Departments of Pathology (J.J.G., P.X., R.A.F.)
| | - Brandon A Kemp
- Medicine (B.A.K., R.M.C.), University of Virginia, Charlottesville, VA
| | - Robert M Carey
- Medicine (B.A.K., R.M.C.), University of Virginia, Charlottesville, VA
| | - Pedro A Jose
- Division of Renal Disease & Hypertension Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington DC (P.A.J.)
| | - Robin A Felder
- From the Departments of Pathology (J.J.G., P.X., R.A.F.)
| |
Collapse
|
15
|
Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I. Dopamine D 2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 2019; 9:16861. [PMID: 31727925 PMCID: PMC6856370 DOI: 10.1038/s41598-019-52528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
The Wnt/β-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via β-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/β-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/β-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/β-catenin signal transduction with broad implications for health and development of new therapeutics.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Transfection
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fei Han
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Prasad Konkalmatt
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Chaitanya Mokashi
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megha Kumar
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Yanrong Zhang
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Allen Ko
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laureano D Asico
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Gaosi Xu
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiaoxu Zheng
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
16
|
Atari E, Perry MC, Jose PA, Kumarasamy S. Regulated Endocrine-Specific Protein-18, an Emerging Endocrine Protein in Physiology: A Literature Review. Endocrinology 2019; 160:2093-2100. [PMID: 31294787 DOI: 10.1210/en.2019-00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/04/2019] [Indexed: 01/10/2023]
Abstract
Regulated endocrine-specific protein-18 (RESP18), a novel 18-kDa protein, was first identified in neuroendocrine tissue. Subsequent studies showed that Resp18 is expressed in the adrenal medulla, brain, pancreas, pituitary, retina, stomach, superior cervical ganglion, testis, and thyroid and also circulates in the plasma. Resp18 has partial homology with the islet cell antigen 512, also known as protein tyrosine phosphatase, receptor type N (PTPRN), but does not have phosphatase activity. Resp18 might serve as an intracellular signal; however, its function is unclear. It is regulated by dopamine, glucocorticoids, and insulin. We recently reported that the targeted disruption of the Resp18 locus in Dahl salt-sensitive rats increased their blood pressure and caused renal injury. The aim of the present review was to provide a comprehensive summary of the reported data currently available, especially the expression and proposed organ-specific function of Resp18.
Collapse
Affiliation(s)
- Ealla Atari
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Mitchel C Perry
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Pedro A Jose
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC
- Department of Pharmacology and Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC
| | - Sivarajan Kumarasamy
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
17
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
18
|
Watson AMD, Gould EAM, Penfold SA, Lambert GW, Pratama PR, Dai A, Gray SP, Head GA, Jandeleit-Dahm KA. Diabetes and Hypertension Differentially Affect Renal Catecholamines and Renal Reactive Oxygen Species. Front Physiol 2019; 10:309. [PMID: 31040788 PMCID: PMC6477025 DOI: 10.3389/fphys.2019.00309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
Patients with diabetic hypertensive nephropathy have accelerated disease progression. Diabetes and hypertension have both been associated with changes in renal catecholamines and reactive oxygen species. With a specific focus on renal catecholamines and oxidative stress we examined a combined model of hypertension and diabetes using normotensive BPN/3J and hypertensive BPH/2J Schlager mice. Induction of diabetes (5 × 55 mg/kg streptozotocin i.p.) did not change the hypertensive status of BPH/2J mice (telemetric 24 h avg. MAP, non-diabetic 131 ± 2 vs. diabetic 129 ± 1 mmHg, n.s at 9 weeks of study). Diabetes-associated albuminuria was higher in BPH/2J vs. diabetic BPN/3J (1205 + 196/-169 versus 496 + 67/-59 μg/24 h, p = 0.008). HPLC measurement of renal cortical norepinephrine and dopamine showed significantly greater levels in hypertensive mice whilst diabetes was associated with significantly lower catecholamine levels. Diabetic BPH/2J also had greater renal catecholamine levels than diabetic BPN/3J (diabetic: norepinephrine BPN/3J 40 ± 4, BPH/2J 91 ± 5, p = 0.010; dopamine: BPN/3J 2 ± 1; BPH/2J 3 ± 1 ng/mg total protein, p < 0.001 after 10 weeks of study). Diabetic BPH/2J showed greater cortical tubular immunostaining for monoamine oxidase A and cortical mitochondrial hydrogen peroxide formation was greater in both diabetic and non-diabetic BPH/2J. While cytosolic catalase activity was greater in non-diabetic BPH/2J it was significantly lower in diabetic BPH/2J (cytosolic: BPH/2J 127 ± 12 vs. 63 ± 6 nmol/min/ml, p < 0.001). We conclude that greater levels of renal norepinephrine and dopamine associated with hypertension, together with diabetes-associated compromised anti-oxidant systems, contribute to increased renal oxidative stress in diabetes and hypertension. Elevations in renal cortical catecholamines and reactive oxygen species have important therapeutic implications for hypertensive diabetic patients.
Collapse
Affiliation(s)
- Anna M D Watson
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Sally A Penfold
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Stephen P Gray
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karin A Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Taveira-da-Silva R, da Silva Sampaio L, Vieyra A, Einicker-Lamas M. L-Tyr-Induced Phosphorylation of Tyrosine Hydroxylase at Ser40: An Alternative Route for Dopamine Synthesis and Modulation of Na+/K+-ATPase in Kidney Cells. Kidney Blood Press Res 2019; 44:1-11. [PMID: 30808844 DOI: 10.1159/000497806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). METHODS Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. RESULTS LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. CONCLUSION The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.
Collapse
Affiliation(s)
| | - Luzia da Silva Sampaio
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Center for Structural Biology and Bio Imaging (CENABIO), Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine (REGENERA), Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Biophysics Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil,
| |
Collapse
|
20
|
Tiu AC, Bishop MD, Asico LD, Jose PA, Villar VAM. Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Curr Hypertens Rep 2017; 19:70. [PMID: 28780627 PMCID: PMC6314210 DOI: 10.1007/s11906-017-0768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA.
| | - Michael D Bishop
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| |
Collapse
|
21
|
Watanabe S, Ogasawara T, Tamura Y, Saito T, Ikeda T, Suzuki N, Shimosawa T, Shibata S, Chung UI, Nangaku M, Uchida S. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments. PLoS One 2017; 12:e0168638. [PMID: 28253301 PMCID: PMC5333796 DOI: 10.1371/journal.pone.0168638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023] Open
Abstract
Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene therapy in the kidney tubule diseases.
Collapse
Affiliation(s)
- Sumiyo Watanabe
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
- * E-mail:
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Yoshifuru Tamura
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Toshiyuki Ikeda
- Department of Blood Transfusion, Faculty of Medicine, The University of Tokyo, Japan
| | - Nobuchika Suzuki
- Department of Bioregulation, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Tatsuo Shimosawa
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Shibata
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Ung-il Chung
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shunya Uchida
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
22
|
Jose PA. Gastrorenal communication: sniffing and tasting. Exp Physiol 2016; 101:457-8. [PMID: 27038295 DOI: 10.1113/ep085762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
A video slideshow introduction to the Symposium by organiser Pedro A. Jose can be found here.
Collapse
|
23
|
Arreola R, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garcés-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabián S, Pavón L. Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016; 2016:3160486. [PMID: 27795960 PMCID: PMC5067323 DOI: 10.1155/2016/3160486] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Collapse
Affiliation(s)
- Rodrigo Arreola
- Psychiatric Genetics Department, National Institute of Psychiatry “Ramón de la Fuente”, Clinical Research Branch, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Samantha Alvarez-Herrera
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Gilberto Pérez-Sánchez
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Enrique Becerril-Villanueva
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Carlos Cruz-Fuentes
- Psychiatric Genetics Department, National Institute of Psychiatry “Ramón de la Fuente”, Clinical Research Branch, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Enrique Octavio Flores-Gutierrez
- National Institute of Psychiatry “Ramón de la Fuente”, Clinical Research Branch, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - María Eugenia Garcés-Alvarez
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Dora Luz de la Cruz-Aguilera
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, Mexico
| | - Emilio Medina-Rivero
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V. Cruce de Carreteras Acatzingo-Zumpahuacán S/N, 52400 Tenancingo, MEX, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Iztapalapa, 09340 Mexico City, Mexico
| | - Saray Quintero-Fabián
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, Av. del Iman No. 1, Cuarto Piso, 04530 Mexico City, Mexico
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| |
Collapse
|
24
|
McDonough AA. ISN Forefronts Symposium 2015: Maintaining Balance Under Pressure-Hypertension and the Proximal Tubule. Kidney Int Rep 2016; 1:166-176. [PMID: 27840855 PMCID: PMC5102061 DOI: 10.1016/j.ekir.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Renal control of effective circulating volume (ECV) is key for circulatory performance. When renal sodium excretion is inadequate, blood pressure rises and serves as a homeostatic signal to drive natriuresis to re-establish ECV. Recognizing that hypertension involves both renal and vascular dysfunction, this report concerns proximal tubule sodium hydrogen exchanger 3 (NHE3) regulation during acute and chronic hypertension. NHE3 is distributed in tall microvilli (MV) in the proximal tubule, where it reabsorbs a significant fraction of the filtered sodium. NHE3 redistributes, in the plane of the MV membrane, between the MV body, where NHE3 is active, and the MV base, where NHE3 is less active. A high-salt diet and acute hypertension both retract NHE3 to the base and reduce proximal tubule sodium reabsorption independent of a change in abundance. The renin angiotensin system provokes NHE3 redistribution independent of blood pressure: The angiotensin-converting enzyme (ACE) inhibitor captopril redistributes NHE3 to the base and subsequent angiotensin II (AngII) infusion returns NHE3 to the body of the MV and restores reabsorption. Chronic AngII infusion presents simultaneous AngII stimulation and hypertension; that is, NHE3 remains in the body of the MV, due to the high local AngII level and inflammation, and exhibits a compensatory decrease in abundance driven by the hypertension. Genetically modified mice with blunted hypertensive responses to chronic AngII infusion (due to lack of the proximal tubule AngII receptors interleukin-17A or interferon-γ expression) exhibit reduced local AngII accumulation and inflammation and larger decreases in NHE3 abundance, which improves the pressure natriuresis response and reduces the need for elevated blood pressure to facilitate circulating volume balance.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California
| |
Collapse
|
25
|
Konkalmatt PR, Asico LD, Zhang Y, Yang Y, Drachenberg C, Zheng X, Han F, Jose PA, Armando I. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight 2016; 1. [PMID: 27358912 DOI: 10.1172/jci.insight.85888] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure.
Collapse
Affiliation(s)
- Prasad R Konkalmatt
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Laureano D Asico
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanrong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Yang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Xiaoxu Zheng
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fei Han
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Pedro A Jose
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, The George Washington University, Washington, DC, USA, and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ines Armando
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Cherubini E, Di Napoli A, Noto A, Osman GA, Esposito MC, Mariotta S, Sellitri R, Ruco L, Cardillo G, Ciliberto G, Mancini R, Ricci A. Genetic and Functional Analysis of Polymorphisms in the Human Dopamine Receptor and Transporter Genes in Small Cell Lung Cancer. J Cell Physiol 2016; 231:345-56. [PMID: 26081799 DOI: 10.1002/jcp.25079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 01/11/2023]
Abstract
The regulatory role of dopamine (DA) in endocrine, cardiovascular and renal functions has been extensively studied and used for clinical purposes. More recently DA has been indicated as a regulatory molecule for immune cells and malignant cell proliferation. We assessed the expression and the functional role DA, DA receptors, and transporters in primary small cell lung cancer (SCLC). By HPLC DA plasma levels were more elevated in SCLC patients in comparison with NSCLC patients and healthy controls. SCLC cell expressed DA D1- and D2-like receptors and membrane and vesicular transporters at protein and mRNA levels. We also investigated the effects of independent D1- or D2-like receptor stimulation on SCLC cell cultures. DA D1 receptor agonist SKF38393 induced the increase of cAMP levels and DARPP-32 protein expression without affecting SCLC growth rate. Cell treatment with the DA D1 receptor antagonist SCH23390 inhibited SKF38393 effects. In contrast, the DA D2 receptor agonist quinpirole (10 μM) counteracted, in a dose and time dependent way, SCLC cell proliferation, it did not affect cAMP levels and decreased phosphorylated AKT that was induced by DA D2 receptor antagonist sulpiride. However, in only one SCLC line, stimulation of DA D2 receptor failed to inhibit cell proliferation in vitro. This effect was associated to the existence of rs6275 and rs6277 polymorphisms in the D2 gene. These results gave more insight into DA control of lung cancer cell behavior and suggested the existence of different SCLC phenotypes.
Collapse
Affiliation(s)
- Emanuela Cherubini
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Arianna Di Napoli
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Alessia Noto
- Dipartimento di Chirurgia Pietro Valdoni, Sapienza Università di Roma, Rome, Italy.,IRCCS Istituto Nazionale Tumori, Fondazione G. Pascale, Napoli, Italy
| | - Giorgia Amira Osman
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | | | - Salvatore Mariotta
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Rossella Sellitri
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Luigi Ruco
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | | | - Gennaro Ciliberto
- IRCCS Istituto Nazionale Tumori, Fondazione G. Pascale, Napoli, Italy
| | - Rita Mancini
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Chirurgia Pietro Valdoni, Sapienza Università di Roma, Rome, Italy
| | - Alberto Ricci
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
28
|
Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, Henning RH. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming – The role of renal H2S-producing enzymes. Eur J Pharmacol 2015; 769:225-33. [DOI: 10.1016/j.ejphar.2015.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/11/2023]
|
29
|
Pytka K, Podkowa K, Rapacz A, Podkowa A, Żmudzka E, Olczyk A, Sapa J, Filipek B. The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacol Rep 2015; 68:263-74. [PMID: 26922526 DOI: 10.1016/j.pharep.2015.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 01/11/2023]
Abstract
Depression is a serious global illness, becoming more and more common in developed countries. Because of specific symptoms it is considered as a leading cause of disability all over the world with a high death factor due to suicides. There are many antidepressants used in the therapy, but still more than 30% of patients do not respond to the treatment. The heterogeneous nature of the illness and its complex, unclear aetiology may be responsible for these difficulties. Next to the main monoaminergic hypothesis of depression there are also many other approaches connected with the pathophysiology of the disease, including hypothalamic-pituitary-adrenal axis dysregulation, dopaminergic, cholinergic, glutamatergic or GABA-ergic neurotransmission. Nevertheless, it can be unambiguously stated that serotonergic, noradrenergic and dopaminergic systems are precisely connected with pathogenesis of depression, and should be therefore considered as valuable targets in patients' treatment. Bearing that in mind, this review presents the role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Karolina Podkowa
- Department of Neurobiology, Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Adrian Podkowa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Adrian Olczyk
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
30
|
Choi MR, Kouyoumdzian NM, Rukavina Mikusic NL, Kravetz MC, Rosón MI, Rodríguez Fermepin M, Fernández BE. Renal dopaminergic system: Pathophysiological implications and clinical perspectives. World J Nephrol 2015; 4:196-212. [PMID: 25949933 PMCID: PMC4419129 DOI: 10.5527/wjn.v4.i2.196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent.
Collapse
|
31
|
Shayman JA. Challenges and opportunities in the development of therapeutics for chronic kidney disease. Transl Res 2015; 165:482-7. [PMID: 25218118 DOI: 10.1016/j.trsl.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022]
Affiliation(s)
- James A Shayman
- Nephrology Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich.
| |
Collapse
|