1
|
Rappaport AR, Bekerman E, Boucher GR, Sung J, Carr B, Corzo CA, Larson H, Kachura MA, Scallan CD, Geleziunas R, SenGupta D, Jooss K. Differential shaping of T cell responses elicited by heterologous ChAd68/self-amplifying mRNA SIV vaccine in macaques in combination with αCTLA4, αPD-1, or FLT3R agonist. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae052. [PMID: 40073084 DOI: 10.1093/jimmun/vkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025]
Abstract
While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines. We evaluated the immunogenicity of a ChAd68/samRNA-based simian immunodeficiency virus (SIV) vaccine regimen alone and in combination with a series of immune modulators in a preclinical rhesus macaque (M. mulatta) model. The vaccine was co-delivered with the checkpoint inhibitors αPD-1 or αCTLA-4, or with a FLT3 receptor agonist (FLT3Ra) shown to differentiate and expand dendritic cells and improve T cell priming. We demonstrate that the magnitude, breadth and functionality of SIV-specific vaccine-elicited CD8+ T cell responses were enhanced by combination with either αPD-1, αCTLA-4, or FLT3Ra. Combination with FLT3Ra also expanded polyfunctional CD4+ T cell responses. Our data demonstrate enhanced and distinct shaping of vaccine-elicited immune responses by immune modulators with implications for developing a functional HIV cure.
Collapse
Affiliation(s)
| | | | | | - Janette Sung
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Brian Carr
- Gilead Sciences, Inc, Foster City, CA, United States
| | | | | | | | | | | | - Devi SenGupta
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Karin Jooss
- Gritstone Bio, Inc, Emeryville, CA, United States
| |
Collapse
|
2
|
Akbari E, Milani A, Moradi Pordanjani P, Seyedinkhorasani M, Agi E, Bolhassani A. Immunostimulatory effects of Hsp70 fragments-modified DCs: A computational and experimental study in HIV vaccine design. Microbes Infect 2025:105480. [PMID: 39956447 DOI: 10.1016/j.micinf.2025.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Dendritic cells (DCs) loaded with HIV-1 antigens have been explored as a promising therapeutic approach to overcome HIV-1 infection. Heat shock proteins (Hsps) can improve cross-presentation of linked antigens by DCs. Our aim was a comprehensive in silico, in vitro, and in vivo evaluation of fusion proteins comprising the N- and C-terminal regions of Hsp70 (i.e., NT-Hsp70 and CT-Hsp70) as an adjuvant linked to HIV-1 Nef antigen in development of DCs-based vaccine candidates. METHODS Computational analyses of the NT-Hsp70-Nef and CT-Hsp70-Nef fusion constructs were performed, and their structural features and docking ability with toll-like or endocytic receptors were evaluated. The effectiveness of DCs loaded with the fusion proteins in eliciting immunity was assessed in mice. Cytokine secretion levels from splenocytes exposed to single-cycle replicable (SCR) HIV-1 were also measured in vitro. RESULTS The DCs pulsed with the fusion constructs induced robust cellular and humoral immune responses in mice and infected splenocytes. The CT-Hsp70 region showed better docking scores with immune receptors and superior adjuvanticity for inducing Nef-specific immune responses (Th1 and CTL activity) compared to the NT-Hsp70 region in DC-based immunization. CONCLUSIONS The CT-Hsp70-Nef protein demonstrated promising results in both computational and experimental analyses compared to the NT-Hsp70-Nef protein.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Elnaz Agi
- Blood Diseases Research Center (BDRC), Iranian Comprehensive Hemophilia Care Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Vemparala B, Guedj J, Dixit NM. Advances in the mathematical modeling of posttreatment control of HIV-1. Curr Opin HIV AIDS 2025; 20:92-98. [PMID: 39633541 DOI: 10.1097/coh.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Several new intervention strategies have shown significant improvements over antiretroviral therapy (ART) in eliciting lasting posttreatment control (PTC) of HIV-1. Advances in mathematical modelling have offered mechanistic insights into PTC and the workings of these interventions. We review these advances. RECENT FINDINGS Broadly neutralizing antibody (bNAb)-based therapies have shown large increases over ART in the frequency and the duration of PTC elicited. Early viral dynamics models of PTC with ART have been advanced to elucidate the underlying mechanisms, including the role of CD8+ T cells. These models characterize PTC as an alternative set-point, with low viral load, and predict routes to achieving it. Large-scale omic datasets have offered new insights into viral and host factors associated with PTC. Correspondingly, new classes of models, including those using learning techniques, have helped exploit these datasets and deduce causal links underlying the associations. Models have also offered insights into therapies that either target the proviral reservoir, modulate immune responses, or both, assessing their translatability. SUMMARY Advances in mathematical modeling have helped better characterize PTC, elucidated and quantified mechanisms with which interventions elicit it, and informed translational efforts.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Marín-Sánchez N, Paredes R, Borgognone A. Exploring potential associations between the human microbiota and reservoir of latent HIV. Retrovirology 2024; 21:21. [PMID: 39614246 PMCID: PMC11605983 DOI: 10.1186/s12977-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The rapid establishment and persistence of latent HIV-1 reservoirs is one of the main obstacles towards an HIV cure. While antiretroviral therapy supresses viral replication, it does not eradicate the latent reservoir of HIV-1-infected cells. Recent evidence suggests that the human microbiome, particularly the gut microbiome, may have the potential to modulate the HIV-1 reservoir. However, literature is limited and the exact mechanisms underlying the role of the microbiome in HIV immunity and potential regulation of the viral reservoir remain poorly understood. RESULTS Here, we review updated knowledge on the associations between the human microbiome and HIV reservoir across different anatomical sites, including the gut, the lungs and blood. We provide an overview of the predominant taxa associated with prominent microbiome changes in the context of HIV infection. Based on the current evidence, we summarize the main study findings, with specific focus on consistent bacterial and related byproduct associations. Specifically, we address the contribution of immune activation and inflammatory signatures on HIV-1 persistence. Furthermore, we discuss possible scenarios by which bacterial-associated inflammatory mediators, related metabolites and host immune signatures may modulate the HIV reservoir size. Finally, we speculate on potential implications of microbiome-based therapeutics for future HIV-1 cure strategies, highlighting challenges and limitations inherent in this research field. CONCLUSIONS Despite recent advances, this review underscores the need for further research to deepen the understanding of the complex interplay between the human microbiome and HIV reservoir. Further integrative multi-omics assessments and functional studies are crucial to test the outlined hypothesis and to identify potential therapeutic targets ultimately able to achieve an effective cure for HIV.
Collapse
Affiliation(s)
- Nel Marín-Sánchez
- IrsiCaixa, Badalona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Catalonia, Spain.
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain.
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
5
|
Wang C, Rao J, Fang Z, Zhang H, Yin J, Li T, Zhang C. Evaluation of the MAGLUMI HIV Ab/Ag combi test for the detection of HIV infection. Virol J 2024; 21:290. [PMID: 39538348 PMCID: PMC11562348 DOI: 10.1186/s12985-024-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection screening and diagnosis are critical to control the HIV epidemic. Testing for anti-HIV antibodies (Ab) and antigens (Ag) in blood samples is the first step to screen people who have been potentially exposed to the virus. This study aimed to evaluate the performance of the MAGLUMI HIV Ab/Ag Combi for detection of HIV antibodies and antigens. METHODS We used residual samples to assess the diagnostic specificity and sensitivity of the MAGLUMI HIV Ab/Ag Combi retrospectively. All samples that met the test criteria were tested with the MAGLUMI HIV Ab/Ag Combi according to manufacturer's instruction. Results of the MAGLUMI HIV Ab/Ag Combi were compared with the Architect HIV Ag/Ab Combo test. RESULTS The specificity of the MAGLUMI HIV Ab/Ag Combi was 99.85% in 5,057 unselected blood donors and 100.00% in 213 hospitalized patient samples, respectively. The sensitivity of the Test in 614 HIV-1 Ab, HIV-1 Ag or HIV-2 Ab positive samples was 100.00%. Seroconversion sensitivity from results of 30 panels was comparable between the MAGLUMI HIV Ab/Ag Combi and the Architect assay. CONCLUSIONS The reactivity of the MAGLUMI HIV Ab/Ag Combi test is comparable to the Architect HIV Ag/Ab Combo assay.
Collapse
Affiliation(s)
- Chunling Wang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jie Rao
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Zhonggang Fang
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Hongwei Zhang
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Jun Yin
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China
| | - Tinghua Li
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe), No.23, Jinxiu East Road, Pingshan District, Shenzhen, 518122, People's Republic of China.
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
Weerarathna IN, Doelakeh ES, Kiwanuka L, Kumar P, Arora S. Prophylactic and therapeutic vaccine development: advancements and challenges. MOLECULAR BIOMEDICINE 2024; 5:57. [PMID: 39527305 PMCID: PMC11554974 DOI: 10.1186/s43556-024-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Biomedical research is fundamental in developing preventive and therapeutic vaccines, serving as a cornerstone of global public health. This review explores the key concepts, methodologies, tools, and challenges in the vaccine development landscape, focusing on transitioning from basic biomedical sciences to clinical applications. Foundational disciplines such as virology, immunology, and molecular biology lay the groundwork for vaccine creation, while recent innovations like messenger RNA (mRNA) technology and reverse vaccinology have transformed the field. Additionally, it highlights the role of pharmaceutical advancements in translating lab discoveries into clinical solutions. Techniques like CRISPR-Cas9, genome sequencing, monoclonal antibodies, and computational modeling have significantly enhanced vaccine precision and efficacy, expediting the development of vaccines against infectious diseases. The review also discusses challenges that continue to hinder progress, including stringent regulatory pathways, vaccine hesitancy, and the rapid emergence of new pathogens. These obstacles underscore the need for interdisciplinary collaboration and the adoption of innovative strategies. Integrating personalized medicine, nanotechnology, and artificial intelligence is expected to revolutionize vaccine science further. By embracing these advancements, biomedical research has the potential to overcome existing challenges and usher in a new era of therapeutic and prophylactic vaccines, ultimately improving global health outcomes. This review emphasizes the critical role of vaccines in combating current and future health threats, advocating for continued investment in biomedical science and technology.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department of Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India.
| | - Elijah Skarlus Doelakeh
- Department of Anesthesia, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Lydia Kiwanuka
- Department of Medical Radiology and Imaging Technology, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, FEAT, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Sanvi Arora
- Faculty of Medicine, Jawaharlal Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
7
|
Nel C, Frater J. Enhancing broadly neutralising antibody suppression of HIV by immune modulation and vaccination. Front Immunol 2024; 15:1478703. [PMID: 39575236 PMCID: PMC11578998 DOI: 10.3389/fimmu.2024.1478703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Although HIV infection can be managed with antiretroviral drugs, there is no cure and therapy has to be taken for life. Recent successes in animal models with HIV-specific broadly neutralising antibodies (bNAbs) have led to long-term virological remission and even possible cures in some cases. This has resulted in substantial investment in human studies to explore bNAbs as a curative intervention for HIV infection. Emerging data are encouraging, but suggest that combinations of bNAbs with other immunomodulatory agents may be needed to induce and sustain long-term viral control. As a result, a number of clinical trials are currently underway exploring these combinations. If successful, the impact for the millions of people living with HIV could be substantial. Here, we review the background to the use of bNAbs in the search for an HIV cure and how different adjunctive agents might be used together to enhance their efficacy.
Collapse
Affiliation(s)
- Carla Nel
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
8
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
9
|
Lindegger DJ. Advanced Therapies for Human Immunodeficiency Virus. Med Sci (Basel) 2024; 12:33. [PMID: 39051379 PMCID: PMC11270269 DOI: 10.3390/medsci12030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) remains a significant global health challenge with approximately 38 million people currently having the virus worldwide. Despite advances in treatment development, the virus persists in the human population and still leads to new infections. The virus has a powerful ability to mutate and hide from the human immune system in reservoirs of the body. Current standard treatment with antiretroviral therapy effectively controls viral replication but requires lifelong adherence and does not eradicate the virus. This review explores the potential of Advanced Therapy Medicinal Products as novel therapeutic approaches to HIV, including cell therapy, immunisation strategies and gene therapy. Cell therapy, particularly chimeric antigen receptor T cell therapy, shows promise in preclinical studies for targeting and eliminating HIV-infected cells. Immunisation therapies, such as broadly neutralising antibodies are being investigated to control viral replication and reduce reservoirs. Despite setbacks in recent trials, vaccines remain a promising avenue for HIV therapy development. Gene therapy using technologies like CRISPR/Cas9 aims to modify cells to resist HIV infection or eliminate infected cells. Challenges such as off-target effects, delivery efficiency and ethical considerations persist in gene therapy for HIV. Future directions require further research to assess the safety and efficacy of emerging therapies in clinical trials. Combined approaches may be necessary to achieve complete elimination of the HIV reservoir. Overall, advanced therapies offer new hope for advancing HIV treatment and moving closer to a cure.
Collapse
Affiliation(s)
- Daniel Josef Lindegger
- Independent Researcher, 6000 Lucerne, Switzerland;
- Independent Researcher, London SW1A2JR, UK
| |
Collapse
|
10
|
Julg B, Stephenson KE, Tomaka F, Walsh SR, Sabrina Tan C, Lavreys L, Sarnecki M, Ansel JL, Kanjilal DG, Jaegle K, Speidel T, Nkolola JP, Borducchi EN, Braams E, Pattacini L, Burgess E, Ilan S, Bartsch Y, Yanosick KE, Seaman MS, Stieh DJ, van Duijn J, Willems W, Robb ML, Michael NL, Walker BD, Pau MG, Schuitemaker H, Barouch DH. Immunogenicity of 2 therapeutic mosaic HIV-1 vaccine strategies in individuals with HIV-1 on antiretroviral therapy. NPJ Vaccines 2024; 9:89. [PMID: 38782902 PMCID: PMC11116546 DOI: 10.1038/s41541-024-00876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mosaic HIV-1 vaccines have been shown to elicit robust humoral and cellular immune responses in people living with HIV-1 (PLWH), that had started antiretroviral therapy (ART) during acute infection. We evaluated the safety and immunogenicity of 2 mosaic vaccine regimens in virologically suppressed individuals that had initiated ART during the chronic phase of infection, exemplifying the majority of PLWH. In this double-blind, placebo-controlled phase 1 trial (IPCAVD013/HTX1002) 25 ART-suppressed PLWH were randomized to receive Ad26.Mos4.HIV/MVA-Mosaic (Ad26/MVA) (n = 10) or Ad26.Mos4.HIV/Ad26.Mos4.HIV plus adjuvanted gp140 protein (Ad26/Ad26+gp140) (n = 9) or placebo (n = 6). Primary endpoints included safety and tolerability and secondary endpoints included HIV-specific binding and neutralizing antibody titers and HIV-specific T cell responses. Both vaccine regimens were well tolerated with pain/tenderness at the injection site and fatigue, myalgia/chills and headache as the most commonly reported solicited local and grade 3 systemic adverse events, respectively. In the Ad26/Ad26+gp140 group, Env-specific IFN-γ T cell responses showed a median 12-fold increase while responses to Gag and Pol increased 1.8 and 2.4-fold, respectively. The breadth of T cell responses to individual peptide subpools increased from 11.0 pre-vaccination to 26.0 in the Ad26/Ad26+gp140 group and from 10.0 to 14.5 in the Ad26/MVA group. Ad26/Ad26+gp140 vaccination increased binding antibody titers against vaccine-matched clade C Env 5.5-fold as well as augmented neutralizing antibody titers against Clade C pseudovirus by 7.2-fold. Both vaccine regimens were immunogenic, while the addition of the protein boost resulted in additional T cell and augmented binding and neutralizing antibody titers. These data suggest that the Ad26/Ad26+gp140 regimen should be tested further.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Kathryn E Stephenson
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Frank Tomaka
- Janssen Research & Development, Titusville, NJ, USA
| | | | - C Sabrina Tan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Kate Jaegle
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tessa Speidel
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Esmee Braams
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | - Eleanor Burgess
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Shlomi Ilan
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Yannic Bartsch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Bruce D Walker
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Dan H Barouch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
11
|
Deng Q, Guo T, Qiu Z, Chen Y. A mathematical model for HIV dynamics with multiple infections: implications for immune escape. J Math Biol 2024; 89:6. [PMID: 38762831 DOI: 10.1007/s00285-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024]
Abstract
Multiple infections enable the recombination of different strains, which may contribute to viral diversity. How multiple infections affect the competition dynamics between the two types of strains, the wild and the immune escape mutant, remains poorly understood. This study develops a novel mathematical model that includes the two strains, two modes of viral infection, and multiple infections. For the representative double-infection case, the reproductive numbers are derived and global stabilities of equilibria are obtained via the Lyapunov direct method and theory of limiting systems. Numerical simulations indicate similar viral dynamics regardless of multiplicities of infections though the competition between the two strains would be the fiercest in the case of quadruple infections. Through sensitivity analysis, we evaluate the effect of parameters on the set-point viral loads in the presence and absence of multiple infections. The model with multiple infections predict that there exists a threshold for cytotoxic T lymphocytes (CTLs) to minimize the overall viral load. Weak or strong CTLs immune response can result in high overall viral load. If the strength of CTLs maintains at an intermediate level, the fitness cost of the mutant is likely to have a significant impact on the evolutionary dynamics of mutant viruses. We further investigate how multiple infections alter the viral dynamics during the combination antiretroviral therapy (cART). The results show that viral loads may be underestimated during cART if multiple-infection is not taken into account.
Collapse
Affiliation(s)
- Qi Deng
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
- Department of Mathematics, Wilfrid Laurier University, Waterloo, N2L 3C5, Canada
| | - Ting Guo
- Aliyun School of Big Data, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Zhipeng Qiu
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yuming Chen
- Department of Mathematics, Wilfrid Laurier University, Waterloo, N2L 3C5, Canada.
| |
Collapse
|
12
|
Libera M, Caputo V, Laterza G, Moudoud L, Soggiu A, Bonizzi L, Diotti RA. The Question of HIV Vaccine: Why Is a Solution Not Yet Available? J Immunol Res 2024; 2024:2147912. [PMID: 38628675 PMCID: PMC11019575 DOI: 10.1155/2024/2147912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 02/24/2024] [Indexed: 04/19/2024] Open
Abstract
Ever since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market. Vaccination has proven to be a potent tool in combating infectious diseases, as evidenced by its success against other pathogens. However, despite ongoing efforts and research, the unique viral characteristics have prevented the development of an effective anti-HIV-1 vaccine. In this review, we aim to provide an historical overview of the various approaches attempted to create an effective anti-HIV-1 vaccine. Our objective is to explore the reasons why specific methods have failed to induce a protective immune response and to analyze the different modalities of immunogen presentation. This trial is registered with NCT05414786, NCT05471076, NCT04224701, and NCT01937455.
Collapse
Affiliation(s)
- Martina Libera
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Valeria Caputo
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Giulia Laterza
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Louiza Moudoud
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- SC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20133 Milan, Italy
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Roberta A. Diotti
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| |
Collapse
|
13
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
14
|
Akbari E, Seyedinkhorasani M, Bolhassani A. Conserved multiepitope vaccine constructs: A potent HIV-1 therapeutic vaccine in clinical trials. Braz J Infect Dis 2023; 27:102774. [PMID: 37156468 PMCID: PMC10188636 DOI: 10.1016/j.bjid.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/25/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Despite the success of Antiretroviral Therapy (ART) in preventing HIV-1-associated clinical progression to AIDS, it is unable to eliminate the viral reservoirs and eradicate the HIV-1 infection. Therapeutic vaccination is an alternative approach to alter the HIV-1 infection course. It can induce effective HIV-1-specific immunity to control viremia and eliminate the need for lifelong ART. Immunological data from spontaneous HIV-1 controllers have shown that cross-reactive T-cell responses are the key immune mechanism in HIV-1 control. Directing these responses toward preferred HIV-1 epitopes is a promising strategy in therapeutic vaccine settings. Designing novel immunogens based on the HIV-1 conserved regions containing a wide range of critical T- and B-cell epitopes of the main viral antigens (conserved multiepitope approaches) supplies broad coverage of global diversity in HIV-1 strains and Human Leukocyte Antigen (HLA) alleles. It can also prevent immune induction to undesirable decoy epitopes theoretically. The efficacy of different novel HIV-1 immunogens based on the conserved and/or functional protective site of HIV-1 proteome has been evaluated in multiple clinical trials. Most of these immunogens were generally safe and able to induce potent HIV-1-specific immunity. However, despite these findings, several candidates have demonstrated limited efficacy in viral replication control. In this study, we used the PubMed and ClinicalTrial.gov databases to review the rationale of designing curative HIV-1 vaccine immunogens based on the conserved favorable site of the virus. Most of these studies evaluate the efficacy of vaccine candidates in combination with other therapeutics and/or with new formulations and immunization protocols. This review briefly describes the design of conserved multiepitope constructs and outlines the results of these vaccine candidates in the recent clinical pipeline.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
16
|
Valentin A, Bergamaschi C, Rosati M, Angel M, Burns R, Agarwal M, Gergen J, Petsch B, Oostvogels L, Loeliger E, Chew KW, Deeks SG, Mullins JI, Pavlakis GN, Felber BK. Comparative immunogenicity of an mRNA/LNP and a DNA vaccine targeting HIV gag conserved elements in macaques. Front Immunol 2022; 13:945706. [PMID: 35935984 PMCID: PMC9355630 DOI: 10.3389/fimmu.2022.945706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
Immunogenicity of HIV-1 mRNA vaccine regimens was analyzed in a non-human primate animal model. Rhesus macaques immunized with mRNA in lipid nanoparticle (mRNA/LNP) formulation expressing HIV-1 Gag and Gag conserved regions (CE) as immunogens developed robust, durable antibody responses but low adaptive T-cell responses. Augmentation of the dose resulted in modest increases in vaccine-induced cellular immunity, with no difference in humoral responses. The gag mRNA/lipid nanoparticle (LNP) vaccine provided suboptimal priming of T cell responses for a heterologous DNA booster vaccination regimen. In contrast, a single immunization with gag mRNA/LNP efficiently boosted both humoral and cellular responses in macaques previously primed by a gag DNA-based vaccine. These anamnestic cellular responses were mediated by activated CD8+ T cells with a phenotype of differentiated T-bet+ cytotoxic memory T lymphocytes. The heterologous prime/boost regimens combining DNA and mRNA/LNP vaccine modalities maximized vaccine-induced cellular and humoral immune responses. Analysis of cytokine responses revealed a transient systemic signature characterized by the release of type I interferon, IL-15 and IFN-related chemokines. The pro-inflammatory status induced by the mRNA/LNP vaccine was also characterized by IL-23 and IL-6, concomitant with the release of IL-17 family of cytokines. Overall, the strong boost of cellular and humoral immunity induced by the mRNA/LNP vaccine suggests that it could be useful as a prophylactic vaccine in heterologous prime/boost modality and in immune therapeutic interventions against HIV infection or other chronic human diseases.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cncer Institute, Bethesda, MD, United States
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Mahesh Agarwal
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | | | | | | | | | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- *Correspondence: Barbara K. Felber,
| |
Collapse
|
17
|
Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, Phan CT, Dankwa S, Byrd AU, Garrido C, Amara RR, Chahroudi A, Permar SR, Fouda GG. Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure. Front Immunol 2022; 13:885272. [PMID: 35911681 PMCID: PMC9325996 DOI: 10.3389/fimmu.2022.885272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.
Collapse
Affiliation(s)
- Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Bhrugu Yagnik
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Tiffany M. Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Margaret A. Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Alliyah U. Byrd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States,Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| |
Collapse
|
18
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
19
|
Akbari E, Ajdary S, Ardakani EM, Agi E, Milani A, Seyedinkhorasani M, Khalaj V, Bolhassani A. Immunopotentiation by linking Hsp70 T-cell epitopes to Gag-Pol-Env-Nef-Rev multiepitope construct and increased IFN-gamma secretion in infected lymphocytes. Pathog Dis 2022; 80:6608937. [PMID: 35704612 DOI: 10.1093/femspd/ftac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Therapeutic human immunodeficiency virus (HIV) vaccines can boost the anti-HIV host immunity to control viral replication and eliminate viral reservoirs in the absence of anti-retroviral therapy. In this study, two computationally designed multiepitope Gag-Pol-Env-Nef-Rev and Hsp70-Gag-Pol-Env-Nef-Rev constructs harboring immunogenic and highly conserved HIV T cell epitopes were generated in E. coli as polypeptide vaccine candidates. Furthermore, the multiepitope gag-pol-env-nef-rev and hsp70-gag-pol-env-nef-rev DNA vaccine constructs were prepared and complexed with MPG cell-penetrating peptide. The immunogenicity of the multiepitope constructs were evaluated using the homologous and heterologous prime/boost strategies in mice. Moreover, the secretion of IFN-γ was assessed in infected lymphocytes in vitro. Our data showed that the homologous polypeptide regimens could significantly induce a mixture of IgG1 and IgG2a antibody responses, activate T cells to secret IFN-γ, IL-5, IL-10, and generate Granzyme B. Moreover, IFN-γ secretion was significantly enhanced in single-cycle replicable (SCR) HIV-1 virions-infected splenocytes in these groups compared to uninfected splenocytes. The linkage of heat shock protein 70 (Hsp70) epitopes to Gag-Pol-Env-Nef-Rev polypeptide in the homologous regimen increased significantly cytokines and Granzyme B levels, and IFN-γ secretion in virions-infected splenocytes. Briefly, both designed constructs in the homologous regimens can be used as a promising vaccine candidate against HIV infection.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Despite improvements in the effectiveness of antiretroviral therapy (ART), there are still unmet needs for people living with HIV which drive the search for a cure for HIV infection. The goal of this review is to discuss the challenges and recent immunotherapeutic advances towards developing a safe, effective and durable cure strategy for HIV. RECENT FINDINGS In recent years, advances have been made in uncovering the mechanisms of persistence of latent HIV and in developing more accurate assays to measure the intact proviral reservoir. Broadly neutralising antibodies and modern techniques to enhance antibody responses have shown promising results. Other strategies including therapeutic vaccination, latency reversal agents, and immunomodulatory agents have shown limited success, but newer interventions including engineered T cells and other immunotherapies may be a potent and flexible strategy for achieving HIV cure. SUMMARY Although progress with newer cure strategies may be encouraging, challenges remain and it is essential to achieve a high threshold of safety and effectiveness in the era of safe and effective ART. It is likely that to achieve sustained HIV remission or cure, a multipronged approach involving a combination of enhancing both adaptive and innate immunity is required.
Collapse
Affiliation(s)
- Ming J Lee
- Department of Infectious Disease, Imperial College London
| | - S Fidler
- Department of Infectious Disease, Imperial College London
- Imperial College NIHR BRC, London
| | - John Frater
- Peter Medawar School of Pathogen Research, Nuffield Department of Medicine, University of Oxford
- Oxford NIHR BRC, Oxford, UK
| |
Collapse
|
21
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
22
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|