1
|
Miele S, Polasek T, Mantovani S, Camp SM, Garcia JGN. Safety, Tolerability and Pharmacokinetics of the eNAMPT-Neutralizing ALT-100 Mab in Healthy Volunteers. JOURNAL OF CLINICAL RESEARCH AND CLINICAL TRIALS 2024; 3:https://bioresscientia.com/article/safety-tolerability-and-pharmacokinetics-of-the-enampt-neutralizing-alt-100-mab-in-healthy-volunteers. [PMID: 39950187 PMCID: PMC11823460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Introduction Human and preclinical studies have highlighted eNAMPT (extracellular nicotinamide phosphoribosyl transferase) as a druggable TLR4 ligand and DAMP involved in the pathobiology of diverse inflammatory, fibrotic and cancer disorders. This Phase 1 study assesses the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of the humanized eNAMPT-neutralizing ALT-100 mAb as a strategy to address the unmet need for effective anti-inflammatory, anti-fibrotic therapeutics. Materials and Methods Healthy male and female volunteers received a single intravenous ALT-100 dose (0.1, 0.4, 1.0, 4.0 mg/kg, n=24 dosed) or placebo (n=12 dosed) with 120-day monitoring (injection site, vital signs, hematology, coagulation, blood chemistry, urinalysis, PK/PD parameters, plasma biomarkers, anti-drug antibodies). Results ALT-100 was well tolerated at all doses without clinically significant changes in local tolerability, vital signs, or laboratory safety parameters. Treatment-emergent adverse events (TEAEs) were unrelated to ALT-100 mAb dose (mild/moderate in severity), and AEs were transient and resolved without clinical sequelae. There were no serious adverse events (SAEs). Median ALT-100 mAb plasma levels peaked at 0.62 hour after dosing (all doses). The mean maximum mAb plasma concentration (Cmax) and mAb elimination half-life (T1/2) all increased in a dose-related manner between 0.4 mg/kg (17 days) and 4 mg/kg (27 days). Conclusions Single intravenous ALT-100 mAb doses are well tolerated in healthy participants with dose proportional PK and elimination half-life.
Collapse
Affiliation(s)
- Stan Miele
- Aqualung Therapeutics Corporation, 120 Scripps Way, Jupiter, FL 33458, United States
| | | | | | - Sara M Camp
- Aqualung Therapeutics Corporation, 120 Scripps Way, Jupiter, FL 33458, United States
| | - Joe G N Garcia
- Aqualung Therapeutics Corporation, 120 Scripps Way, Jupiter, FL 33458, United States
| |
Collapse
|
2
|
Price DR, Garcia JGN. A Razor's Edge: Vascular Responses to Acute Inflammatory Lung Injury/Acute Respiratory Distress Syndrome. Annu Rev Physiol 2024; 86:505-529. [PMID: 38345908 PMCID: PMC11259086 DOI: 10.1146/annurev-physiol-042222-030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.
Collapse
Affiliation(s)
- David R Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Joe G N Garcia
- Center for Inflammation Sciences and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA;
| |
Collapse
|
3
|
Liu Z, Sammani S, Barber CJ, Kempf CL, Li F, Yang Z, Bermudez RT, Camp SM, Herndon VR, Furenlid LR, Martin DR, Garcia JGN. An eNAMPT-neutralizing mAb reduces post-infarct myocardial fibrosis and left ventricular dysfunction. Biomed Pharmacother 2024; 170:116103. [PMID: 38160623 PMCID: PMC10872269 DOI: 10.1016/j.biopha.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Myocardial infarction (MI) triggers adverse ventricular remodeling (VR), cardiac fibrosis, and subsequent heart failure. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is postulated to play a significant role in VR processing via activation of the TLR4 inflammatory pathway. We hypothesized that an eNAMPT specific monoclonal antibody (mAb) could target and neutralize overexpressed eNAMPT post-MI and attenuate chronic cardiac inflammation and fibrosis. We investigated humanized ALT-100 and ALT-300 mAb with high eNAMPT-neutralizing capacity in an infarct rat model to test our hypothesis. ALT-300 was 99mTc-labeled to generate 99mTc-ALT-300 for imaging myocardial eNAMPT expression at 2 hours, 1 week, and 4 weeks post-IRI. The eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg) or saline was administered intraperitoneally at 1 hour and 24 hours post-reperfusion and twice a week for 4 weeks. Cardiac function changes were determined by echocardiography at 3 days and 4 weeks post-IRI. 99mTc-ALT-300 uptake was initially localized to the ischemic area at risk (IAR) of the left ventricle (LV) and subsequently extended to adjacent non-ischemic areas 2 hours to 4 weeks post-IRI. Radioactive uptake (%ID/g) of 99mTc-ALT-300 in the IAR increased from 1 week to 4 weeks (0.54 ± 0.16 vs. 0.78 ± 0.13, P < 0.01). Rats receiving ALT-100 mAb exhibited significantly improved myocardial histopathology and cardiac function at 4 weeks, with a significant reduction in the collagen volume fraction (%LV) compared to controls (21.5 ± 6.1% vs. 29.5 ± 9.9%, P < 0.05). Neutralization of the eNAMPT/TLR4 inflammatory cascade is a promising therapeutic strategy for MI by reducing chronic inflammation, fibrosis, and preserving cardiac function.
Collapse
Affiliation(s)
- Zhonglin Liu
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States.
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christy J Barber
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L Kempf
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Feng Li
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Zhen Yang
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Rosendo T Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M Camp
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Vivian Reyes Herndon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lars R Furenlid
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Diego R Martin
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States.
| | - Joe G N Garcia
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
4
|
Satyamitra MM, Andres DK, Bergmann JN, Hoffman CM, Hogdahl T, Homer MJ, Hu TC, Rios CI, Yeung DT, DiCarlo AL. Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures: Overlapping science in radiation and sulfur mustard injuries to lung and skin. Disaster Med Public Health Prep 2023; 17:e552. [PMID: 37852927 PMCID: PMC10843005 DOI: 10.1017/dmp.2023.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
PURPOSE To summarize presentations and discussions from the 2022 trans-agency workshop titled "Overlapping science in radiation and sulfur mustard (SM) exposures of skin and lung: Consideration of models, mechanisms, organ systems, and medical countermeasures." METHODS Summary on topics includes: (1) an overview of the radiation and chemical countermeasure development programs and missions; (2) regulatory and industry perspectives for drugs and devices; 3) pathophysiology of skin and lung following radiation or SM exposure; 4) mechanisms of action/targets, biomarkers of injury; and 5) animal models that simulate anticipated clinical responses. RESULTS There are striking similarities between injuries caused by radiation and SM exposures. Primary outcomes from both types of exposure include acute injuries, while late complications comprise chronic inflammation, oxidative stress, and vascular dysfunction, which can culminate in fibrosis in both skin and lung organ systems. This workshop brought together academic and industrial researchers, medical practitioners, US Government program officials, and regulators to discuss lung-, and skin- specific animal models and biomarkers, novel pathways of injury and recovery, and paths to licensure for products to address radiation or SM injuries. CONCLUSIONS Regular communications between the radiological and chemical injury research communities can enhance the state-of-the-science, provide a unique perspective on novel therapeutic strategies, and improve overall US Government emergency preparedness.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | | | - Julie N. Bergmann
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Corey M. Hoffman
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | | | - Mary J. Homer
- Radiological/Nuclear Medical Countermeasures Program, Biomedical Advanced Research and Development Authority (BARDA)
| | - Tom C. Hu
- Chemical Medical Countermeasures Program, BARDA
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - David T. Yeung
- Chemical Countermeasures Research Program (CCRP), NIAID, NIH
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
| |
Collapse
|
5
|
Huang T, Zheng D, Song Y, Pan H, Qiu G, Xiang Y, Wang Z, Wang F. Demonstration of the impact of COVID-19 on metabolic associated fatty liver disease by bioinformatics and system biology approach. Medicine (Baltimore) 2023; 102:e34570. [PMID: 37657050 PMCID: PMC10476796 DOI: 10.1097/md.0000000000034570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/13/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Severe coronavirus disease 2019 (COVID-19) has caused a great threat to human health. Metabolic associated fatty liver disease (MAFLD) is a liver disease with a high prevalence rate. Previous studies indicated that MAFLD led to increased mortality and severe case rates of COVID-19 patients, but its mechanism remains unclear. METHODS This study analyzed the transcriptional profiles of COVID-19 and MAFLD patients and their respective healthy controls from the perspectives of bioinformatics and systems biology to explore the underlying molecular mechanisms between the 2 diseases. Specifically, gene expression profiles of COVID-19 and MAFLD patients were acquired from the gene expression omnibus datasets and screened shared differentially expressed genes (DEGs). Gene ontology and pathway function enrichment analysis were performed for common DEGs to reveal the regulatory relationship between the 2 diseases. Besides, the hub genes were extracted by constructing a protein-protein interaction network of shared DEGs. Based on these hub genes, we conducted regulatory network analysis of microRNA/transcription factors-genes and gene - disease relationship and predicted potential drugs for the treatment of COVID-19 and MAFLD. RESULTS A total of 3734 and 589 DEGs were screened from the transcriptome data of MAFLD (GSE183229) and COVID-19 (GSE196822), respectively, and 80 common DEGs were identified between COVID-19 and MAFLD. Functional enrichment analysis revealed that the shared DEGs were involved in inflammatory reaction, immune response and metabolic regulation. In addition, 10 hub genes including SERPINE1, IL1RN, THBS1, TNFAIP6, GADD45B, TNFRSF12A, PLA2G7, PTGES, PTX3 and GADD45G were identified. From the interaction network analysis, 41 transcription factors and 151 micro-RNAs were found to be the regulatory signals. Some mental, Inflammatory, liver diseases were found to be most related with the hub genes. Importantly, parthenolide, luteolin, apigenin and MS-275 have shown possibility as therapeutic agents against COVID-19 and MAFLD. CONCLUSION This study reveals the potential common pathogenesis between MAFLD and COVID-19, providing novel clues for future research and treatment of MAFLD and severe acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
- Tengda Huang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Sichuan, Chengdu, China
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dawei Zheng
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Yujia Song
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoteng Qiu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchu Xiang
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Zichen Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Fang Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
6
|
Ahmed M, Casanova NG, Zaghloul N, Gupta A, Rodriguez M, Robbins IR, Kempf CL, Sun X, Song JH, Hernon VR, Sammani S, Camp SM, Moreira A, Hsu CD, Garcia JGN. The eNAMPT/TLR4 inflammatory cascade drives the severity of intra-amniotic inflammation in pregnancy and predicts infant outcomes. Front Physiol 2023; 14:1129413. [PMID: 37415908 PMCID: PMC10319582 DOI: 10.3389/fphys.2023.1129413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: Intra-amniotic inflammation (IAI) or chorioamnionitis is a common complication of pregnancy producing significant maternal morbidity/mortality, premature birth and neonatal risk of chronic lung diseases such as bronchopulmonary dysplasia (BPD). We examined eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a critical inflammatory DAMP and TLR4 ligand, as a potential therapeutic target to reduce IAI severity and improve adverse fetal/neonatal outcomes. Methods: Blood/tissue samples were examined in: 1) women with histologically-proven chorioamnionitis, 2) very low birth weight (VLBW) neonates, and 3) a preclinical murine pregnancy model of IAI. Groups of pregnant IAI-exposed mice and pups were treated with an eNAMPT-neutralizing mAb. Results: Human placentas from women with histologically-proven chorioamnionitis exhibited dramatic NAMPT expression compared to placentas without chorioamnionitis. Increased NAMPT expression in whole blood from VLBW neonates (day 5) significantly predicted BPD development. Compared to untreated LPS-challenged murine dams (gestational day 15), pups born to eNAMPT mAb-treated dams (gestational days 15/16) exhibited a > 3-fold improved survival, reduced neonate lung eNAMPT/cytokine levels, and reduced development and severity of BPD and pulmonary hypertension (PH) following postnatal exposure to 100% hyperoxia days 1-14. Genome-wide gene expression studies of maternal uterine and neonatal cardiac tissues corroborated eNAMPT mAb-induced reductions in inflammatory pathway genes. Discussion: The eNAMPT/TLR4 inflammatory pathway is a highly druggable contributor to IAI pathobiology during pregnancy with the eNAMPT-neutralizing mAb a novel therapeutic strategy to decrease premature delivery and improve short- and long-term neonatal outcomes. eNAMPT blood expression is a potential biomarker for early prediction of chronic lung disease among premature neonates.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Departments of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Nahla Zaghloul
- Departments of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Akash Gupta
- Departments of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Marisela Rodriguez
- Departments of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Ian R. Robbins
- Departments of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Alvaro Moreira
- Department of Pediatrics, UT Health San Antonio, Long School of Medicine, San Antonio, TX, United States
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| |
Collapse
|
7
|
Sun BL, Sun X, Kempf CL, Song JH, Casanova NG, Camp SM, Hernon VR, Fallon M, Bime C, Martin DR, Travelli C, Zhang DD, Garcia JGN. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis. FASEB J 2023; 37:e22825. [PMID: 36809677 PMCID: PMC11265521 DOI: 10.1096/fj.202201972rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Although the progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to steatohepatitis (NASH) and cirrhosis remains poorly understood, a critical role for dysregulated innate immunity has emerged. We examined the utility of ALT-100, a monoclonal antibody (mAb), in reducing NAFLD severity and progression to NASH/hepatic fibrosis. ALT-100 neutralizes eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel damage-associated molecular pattern protein (DAMP) and Toll-like receptor 4 (TLR4) ligand. Histologic and biochemical markers were measured in liver tissues and plasma from human NAFLD subjects and NAFLD mice (streptozotocin/high-fat diet-STZ/HFD, 12 weeks). Human NAFLD subjects (n = 5) exhibited significantly increased NAMPT hepatic expression and significantly elevated plasma levels of eNAMPT, IL-6, Ang-2, and IL-1RA compared to healthy controls, with IL-6 and Ang-2 levels significantly increased in NASH non-survivors. Untreated STZ/HFD-exposed mice displayed significant increases in NAFLD activity scores, liver triglycerides, NAMPT hepatic expression, plasma cytokine levels (eNAMPT, IL-6, and TNFα), and histologic evidence of hepatocyte ballooning and hepatic fibrosis. Mice receiving the eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg/week, IP, weeks 9 to 12) exhibited marked attenuation of each index of NASH progression/severity. Thus, activation of the eNAMPT/TLR4 inflammatory pathway contributes to NAFLD severity and NASH/hepatic fibrosis. ALT-100 is potentially an effective therapeutic approach to address this unmet NAFLD need.
Collapse
Affiliation(s)
- Belinda L. Sun
- Department of Pathology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carrie L. Kempf
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jin H. Song
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nancy G. Casanova
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M. Camp
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Vivian Reyes Hernon
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Michael Fallon
- Department of Medicine, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Christian Bime
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress. Vaccines (Basel) 2023; 11:218. [PMID: 36851096 PMCID: PMC9966263 DOI: 10.3390/vaccines11020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress. The resulting inflammation and oxidative stress can negatively impact the host. Similarly, cancer cells exhibit a sustained increase in intrinsic ROS generation that maintains the oncogenic phenotype and drives tumor progression. By disrupting endoplasmic reticulum calcium channels, intracellular ROS accumulation can disrupt protein folding and ultimately lead to proteostasis failure. In cancer and COVID-19, MDSCs consist of the same two subtypes (PMN-MSDC and M-MDSC). While the main role of polymorphonuclear MDSCs is to dampen the response of T cells and NK killer cells, they also produce reactive oxygen species ROS and reactive nitrogen species RNS. We here review the origin of MDSCs, their expansion mechanisms, and their suppressive functions in the context of cancer and COVID-19 associated with the presence of superoxide anion •O2- and reactive oxygen species ROS.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Celia Andrés Juan
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
9
|
Flikweert AW, Kobold ACM, van der Sar-van der Brugge S, Heeringa P, Rodenhuis-Zybert IA, Bijzet J, Tami A, van der Gun BTF, Wold KI, Huckriede A, Franke H, Emmen JMA, Emous M, Grootenboers MJJH, van Meurs M, van der Voort PHJ, Moser J. Circulating adipokine levels and COVID-19 severity in hospitalized patients. Int J Obes (Lond) 2023; 47:126-137. [PMID: 36509969 PMCID: PMC9742670 DOI: 10.1038/s41366-022-01246-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a risk factor for adverse outcomes in COVID-19, potentially driven by chronic inflammatory state due to dysregulated secretion of adipokines and cytokines. We investigated the association between plasma adipokines and COVID-19 severity, systemic inflammation, clinical parameters, and outcome of COVID-19 patients. METHODS In this multi-centre prospective cross-sectional study, we collected blood samples and clinical data from COVID-19 patients. The severity of COVID-19 was classified as mild (no hospital admission), severe (ward admission), and critical (ICU admission). ICU non-COVID-19 patients were also included and plasma from healthy age, sex, and BMI-matched individuals obtained from Lifelines. Multi-analyte profiling of plasma adipokines (Leptin, Adiponectin, Resistin, Visfatin) and inflammatory markers (IL-6, TNFα, IL-10) were determined using Luminex multiplex assays. RESULTS Between March and December 2020, 260 SARS-CoV-2 infected individuals (age: 65 [56-74] BMI 27.0 [24.4-30.6]) were included: 30 mild, 159 severe, and 71 critical patients. Circulating leptin levels were reduced in critically ill patients with a high BMI yet this decrease was absent in patients that were administered dexamethasone. Visfatin levels were higher in critical COVID-19 patients compared to non-COVID-ICU, mild and severe patients (4.7 vs 3.4, 3.0, and 3.72 ng/mL respectively, p < 0.05). Lower Adiponectin levels, but higher Resistin levels were found in severe and critical patients, compared to those that did not require hospitalization (3.65, 2.7 vs 7.9 µg/mL, p < 0.001, and 18.2, 22.0 vs 11.0 ng/mL p < 0.001). CONCLUSION Circulating adipokine levels are associated with COVID-19 hospitalization, i.e., the need for oxygen support (general ward), or the need for mechanical ventilation and other organ support in the ICU, but not mortality.
Collapse
Affiliation(s)
- Antine W. Flikweert
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.413711.10000 0004 4687 1426Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
| | - Anneke C. Muller Kobold
- grid.4494.d0000 0000 9558 4598Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Peter Heeringa
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Bijzet
- grid.4494.d0000 0000 9558 4598Department of Rheumatology & Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriana Tami
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernardina T. F. van der Gun
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin I. Wold
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- grid.4494.d0000 0000 9558 4598Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hildegard Franke
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. A. Emmen
- grid.413711.10000 0004 4687 1426Result Laboratory, Amphia Hospital, Breda, The Netherlands
| | - Marloes Emous
- grid.414846.b0000 0004 0419 3743Center Obesity Northern Netherlands (CON), Department of Surgery, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | | | - Matijs van Meurs
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter H. J. van der Voort
- grid.4494.d0000 0000 9558 4598Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Lynn H, Sun X, Casanova NG, Bime C, Reyes Hernon V, Lanham C, Oita RC, Ramos N, Sun B, Coletta DK, Camp SM, Karnes JH, Ellis NA, Garcia JG. Linkage of NAMPT promoter variants to eNAMPT secretion, plasma eNAMPT levels, and ARDS severity. Ther Adv Respir Dis 2023; 17:17534666231181262. [PMID: 37477094 PMCID: PMC10363883 DOI: 10.1177/17534666231181262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/25/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel DAMP and TLR4 ligand, is a druggable ARDS therapeutic target with NAMPT promoter SNPs associated with ARDS severity. This study assesses the previously unknown influence of NAMPT promoter SNPs on NAMPT transcription, eNAMPT secretion, and ARDS severity. METHODS AND DESIGN Human lung endothelial cells (ECs) transfected with NAMPT promoter luciferase reporters harboring SNPs G-1535A, A-1001 C, and C-948A, were exposed to LPS or LPS/18% cyclic stretch (CS) and NAMPT promoter activity, NAMPT protein expression, and secretion assessed. NAMPT genotypes and eNAMPT plasma measurements (Days 0/7) were assessed in two ARDS cohorts (DISCOVERY n = 428; ALVEOLI n = 103). RESULTS Comparisons of minor allelic frequency (MAF) in both ARDS cohorts with the 1000 Human Genome Project revealed the G-1535A and C-948A SNPs to be significantly associated with ARDS in Blacks compared with controls and trended toward significance in non-Hispanic Whites. LPS-challenged and LPS/18% CS-challenged EC harboring the -1535G wild-type allele exhibited significantly increased NAMPT promoter activity (compared with -1535A) with the -1535G/-948A diplotype exhibiting significantly increased NAMPT promoter activity, NAMPT protein expression, and eNAMPT secretion compared with the -1535A/-948 C diplotype. Highly significant increases in Day 0 eNAMPT plasma values were observed in both DISCOVERY and ALVEOLI ARDS cohorts (compared with healthy controls). Among subjects surviving to Day 7, Day 7 eNAMPT values were significantly increased in Day 28 non-survivors versus survivors. The protective -1535A SNP allele drove -1535A/-1001A and -1535A/-948 C diplotypes that confer significantly reduced ARDS risk (compared with -1535G, -1535G/-1001 C, -1535G/-948A), particularly in Black ARDS subjects. NAMPT SNP comparisons within the two ARDS cohorts did not identify significant association with either APACHE III scores or plasma eNAMPT levels. CONCLUSION NAMPT SNPs influence promoter activity, eNAMPT protein expression/secretion, plasma eNAMPT levels, and ARDS severity. NAMPT genotypes are a potential tool for stratification in eNAMPT-focused ARDS clinical trials.
Collapse
Affiliation(s)
- Heather Lynn
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G. Casanova
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Clayton Lanham
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C. Oita
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nikolas Ramos
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Belinda Sun
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dawn K. Coletta
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jason H. Karnes
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nathan A. Ellis
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G.N. Garcia
- Dr. Herbert A. Wertheim Professor of Inflammation Science, Director, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
11
|
Wang Y, Ma J, Jiang Y. Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress Chaperones 2023; 28:11-20. [PMID: 36417098 PMCID: PMC9685020 DOI: 10.1007/s12192-022-01296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Critically ill patients with SARS-COV-2 infection frequently exhibit signs of high oxidative stress and systemic inflammation, which accounts for most of the mortality. Antiviral strategies to inhibit the pathogenic consequences of COVID-19 are urgently required. The nuclear factor erythroid 2-related transcription factor (Nrf2) is a transcription factor that is involved in antioxidant and anti-inflammatory defense in several tissues and cells. This review tries to present an overview of the role of Nrf2 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jing Ma
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
12
|
Vohwinkel CU, Burns N, Coit E, Yuan X, Vladar EK, Sul C, Schmidt EP, Carmeliet P, Stenmark K, Nozik ES, Tuder RM, Eltzschig HK. HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury. JCI Insight 2022; 7:e157855. [PMID: 36326834 PMCID: PMC9869967 DOI: 10.1172/jci.insight.157855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.
Collapse
Affiliation(s)
- Christine U. Vohwinkel
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nana Burns
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Ethan Coit
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center Houston, Houston, Texas, USA
| | - Eszter K. Vladar
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christina Sul
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kurt Stenmark
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Eva S. Nozik
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Cardio Vascular Pulmonary Research Lab and
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Song JH, Mascarenhas JB, Sammani S, Kempf CL, Cai H, Camp SM, Bermudez T, Zhang DD, Natarajan V, Garcia JGN. TLR4 activation induces inflammatory vascular permeability via Dock1 targeting and NOX4 upregulation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166562. [PMID: 36179995 DOI: 10.1016/j.bbadis.2022.166562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.
Collapse
Affiliation(s)
- Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Hua Cai
- Department of Anesthesiology. University of California Los Angeles, Los Angeles, CA, United States of America
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America.
| |
Collapse
|
14
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
15
|
Casanova NG, Reyes-Hernon V, Gregory T, Sun B, Bermudez T, Hufford MK, Oita RC, Camp SM, Hernandez-Molina G, Serrano JR, Sun X, Fimbres J, Mirsaeidi M, Sammani S, Bime C, Garcia JGN. Biochemical and genomic identification of novel biomarkers in progressive sarcoidosis: HBEGF, eNAMPT, and ANG-2. Front Med (Lausanne) 2022; 9:1012827. [PMID: 36388923 PMCID: PMC9640603 DOI: 10.3389/fmed.2022.1012827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Progressive pulmonary fibrosis is a serious complication in subjects with sarcoidosis. The absence of reliable, non-invasive biomarkers that detect early progression exacerbates the difficulty in predicting sarcoidosis severity. To potentially address this unmet need, we evaluated a panel of markers for an association with sarcoidosis progression (HBEGF, NAMPT, IL1-RA, IL-6, IL-8, ANG-2). This panel encompasses proteins related to inflammation, vascular injury, cell proliferation, and fibroblast mitogenesis processes. Methods Plasma biomarker levels and biomarker protein expression in lung and lymph nodes tissues (immunohistochemical studies) from sarcoidosis subjects with limited disease and progressive (complicated) sarcoidosis were performed. Gene expression of the protein-coding genes included in this panel was analyzed using RNAseq in sarcoidosis granulomatous tissues from lung and lymph nodes. Results Except for IL-8, plasma levels of each biomarker—eNAMPT, IL-1RA, IL-6, ANG-2, and HBEGF—were significantly elevated in sarcoidosis subjects compared to controls. In addition, plasma levels of HBEGF were elevated in complicated sarcoidosis, while eNAMPT and ANG-2 were observed to serve as markers of lung fibrosis in a subgroup of complicated sarcoidosis. Genomic studies corroborated HBEGF and NAMPT among the top dysregulated genes and identified cytokine-related and fibrotic pathways in lung granulomatous tissues from sarcoidosis. Conclusion These findings suggest HBEGF, eNAMPT, and ANG-2 may serve as potential novel indicators of the clinical severity of sarcoidosis disease.
Collapse
Affiliation(s)
- Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes-Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Taylor Gregory
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew K. Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Radu C. Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | | | | | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jocelyn Fimbres
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mehdi Mirsaeidi
- Department of Medicine, College of Medicine, University of Florida, Jacksonville, FL, United States
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
16
|
Clinical Characteristics and Outcome of Hospitalized COVID-19 Patients Treated with Standard Dose of Dexamethasone or High Dose of Methylprednisolone. Biomedicines 2022; 10:biomedicines10071548. [PMID: 35884852 PMCID: PMC9312892 DOI: 10.3390/biomedicines10071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The hyperinflammatory phase represents the main cause for the clinical worsening of acute respiratory distress syndrome (ARDS) in Coronavirus disease 2019 (COVID-19), leading to the hypothesis that steroid therapy could be a mainstream treatment in COVID-19 patients. This is an observational study including all consecutive patients admitted to two Italian University Hospitals for COVID-19 from March 2020 to December 2021. The aim of this study was to describe clinical characteristics and outcome parameters of hospitalized COVID-19 patients treated with dexamethasone 6 mg once daily (standard-dose group) or methylprednisolone 40 mg twice daily (high-dose group). The primary outcome was the impact of these different steroid treatments on 30-day mortality. During the study period, 990 patients were evaluated: 695 (70.2%) receiving standard dosage of dexamethasone and 295 (29.8%) receiving a high dose of methylprednisolone. Cox regression analysis showed that chronic obstructive pulmonary disease (HR 1.98, CI95% 1.34−9.81, p = 0.002), chronic kidney disease (HR 5.21, CI95% 1.48−22.23, p = 0.001), oncologic disease (HR 2.81, CI95% 1.45−19.8, p = 0.005) and high-flow nasal cannula, continuous positive airway pressure or non-invasive ventilation oxygen therapy (HR 61.1, CI95% 5.12−511.1, p < 0.001) were independently associated with 30-day mortality; conversely, high-dose steroid therapy was associated with survival (HR 0.42, CI95% 0.38−0.86, p = 0.002) at 30 days. Kaplan−Meier curves for 30-day survival displayed a statistically significant better survival rate in patients treated with high-dose steroid therapy (p = 0.018). The results of this study highlighted that the use of high-dose methylprednisolone, compared to dexamethasone 6 mg once daily, in hospitalized patients with COVID-19 may be associated with a significant reduction in mortality.
Collapse
|
17
|
Sammani S, Bermudez T, Kempf CL, Song JH, Fleming JC, Reyes Hernon V, Hufford M, Tang L, Cai H, Camp SM, Natarajan V, Jacobson JR, Dudek SM, Martin DR, Karmonik C, Sun X, Sun B, Casanova NG, Bime C, Garcia JGN. eNAMPT Neutralization Preserves Lung Fluid Balance and Reduces Acute Renal Injury in Porcine Sepsis/VILI-Induced Inflammatory Lung Injury. Front Physiol 2022; 13:916159. [PMID: 35812318 PMCID: PMC9257134 DOI: 10.3389/fphys.2022.916159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Numerous potential ARDS therapeutics, based upon preclinical successful rodent studies that utilized LPS challenge without mechanical ventilation, have failed in Phase 2/3 clinical trials. Recently, ALT-100 mAb, a novel biologic that neutralizes the TLR4 ligand and DAMP, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), was shown to reduce septic shock/VILI-induced porcine lung injury when delivered 2 h after injury onset. We now examine the ALT-100 mAb efficacy on acute kidney injury (AKI) and lung fluid balance in a porcine ARDS/VILI model when delivered 6 h post injury.Methods/Results: Compared to control PBS-treated pigs, exposure of ALT-100 mAb-treated pigs (0.4 mg/kg, 2 h or 6 h after injury initiation) to LPS-induced pneumonia/septic shock and VILI (12 h), demonstrated significantly diminished lung injury severity (histology, BAL PMNs, plasma cytokines), biochemical/genomic evidence of NF-kB/MAP kinase/cytokine receptor signaling, and AKI (histology, plasma lipocalin). ALT-100 mAb treatment effectively preserved lung fluid balance reflected by reduced BAL protein/tissue albumin levels, lung wet/dry tissue ratios, ultrasound-derived B lines, and chest radiograph opacities. Delayed ALT-100 mAb at 2 h was significantly more protective than 6 h delivery only for plasma eNAMPT while trending toward greater protection for remaining inflammatory indices. Delayed ALT-100 treatment also decreased lung/renal injury indices in LPS/VILI-exposed rats when delivered up to 12 h after LPS.Conclusions: These studies indicate the delayed delivery of the eNAMPT-neutralizing ALT-100 mAb reduces inflammatory lung injury, preserves lung fluid balance, and reduces multi-organ dysfunction, and may potentially address the unmet need for novel therapeutics that reduce ARDS/VILI mortality.
Collapse
Affiliation(s)
- Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Justin C Fleming
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lin Tang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R. Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Steven M. Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Christof Karmonik
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
18
|
Bime C, Casanova NG, Camp SM, Oita RC, Ndukum J, Hernon VR, Oh DK, Li Y, Greer PJ, Whitcomb DC, Papachristou GI, Garcia JGN. Circulating eNAMPT as a biomarker in the critically ill: acute pancreatitis, sepsis, trauma, and acute respiratory distress syndrome. BMC Anesthesiol 2022; 22:182. [PMID: 35705899 PMCID: PMC9198204 DOI: 10.1186/s12871-022-01718-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Background Nicotinamide phosphoribosyltransferase (NAMPT) exhibits dual functionality – as an intracellular enzyme regulating nicotinamide adenine dinucleotide metabolism and as an extracellular secreted protein (eNAMPT) to function as a cytokine regulator of innate immunity via binding to Toll-Like receptor 4 and NF-κB activation. In limited preclinical and clinical studies, eNAMPT was implicated in the pathobiology of acute respiratory distress syndrome (ARDS) suggesting that eNAMPT could potentially serve as a diagnostic and prognostic biomarker. We investigated the feasibility of circulating eNAMPT levels to serve as a biomarker in an expanded cohort of patients with ARDS and ARDS-predisposing conditions that included acute pancreatitis, sepsis, and trauma with comparisons to controls. Methods A total of 671 patients and 179 healthy controls were included in two independent cohorts. Plasma and serum eNAMPT levels were quantified using one of two complementary Enzyme-linked Immunosorbent Assays. After log base 2 variance stabilizing transformation of plasma/serum eNAMPT measurements, differences between healthy controls and each disease cohort were compared using linear regression or a generalized estimating equation (GEE) model where applicable. Complementary analyses included sensitivity, specificity, positive predictive values, negative predictive values, and the area under the receiver operating curve. Results Compared to controls, circulating eNAMPT levels were significantly elevated in subjects with acute pancreatitis, sepsis, trauma, and ARDS (all p < 0.01). In the acute pancreatitis cohort, circulating eNAMPT levels positively correlated with disease severity (p < 0.01). Conclusions Circulating eNAMPT levels are novel biomarker in the critically ill with acute pancreatitis, sepsis, trauma, and/or ARDS with the potential to reflect disease severity. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01718-1.
Collapse
Affiliation(s)
- Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Juliet Ndukum
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dong Kyu Oh
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yansong Li
- US Army Institute of Surgical Research, San Antonio, TX, USA
| | - Phil J Greer
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Ariel Precision Medicine, Pittsburgh, PA, USA
| | - David C Whitcomb
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Georgios I Papachristou
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Ohio State University College of Medicine, Columbus, OH, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
19
|
Belvitch P, Casanova N, Sun X, Camp SM, Sammani S, Brown ME, Mascarhenas J, Lynn H, Adyshev D, Siegler J, Desai A, Seyed-Saadat L, Rizzo A, Bime C, Shekhawat GS, Dravid VP, Reilly JP, Jones TK, Feng R, Letsiou E, Meyer NJ, Ellis N, Garcia JGN, Dudek SM. A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Transl Res 2022; 244:56-74. [PMID: 35181549 PMCID: PMC9119916 DOI: 10.1016/j.trsl.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nancy Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Joseph Mascarhenas
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Heather Lynn
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Djanybek Adyshev
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica Siegler
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Laleh Seyed-Saadat
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alicia Rizzo
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nathan Ellis
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Garcia AN, Casanova NG, Kempf CL, Bermudez T, Valera DG, Song JH, Sun X, Cai H, Moreno-Vinasco L, Gregory T, Oita RC, Hernon VR, Camp SM, Rogers C, Kyubwa EM, Menon N, Axtelle J, Rappaport J, Bime C, Sammani S, Cress AE, Garcia JGN. eNAMPT Is a Novel Damage-associated Molecular Pattern Protein That Contributes to the Severity of Radiation-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 66:497-509. [PMID: 35167418 PMCID: PMC9116358 DOI: 10.1165/rcmb.2021-0357oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-β, TSP1 (thrombospondin-1), NOX4, IL-1β, and NRF2; 3) plasma eNAMPT and IL-1β concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | - Jay Rappaport
- Tulane National Primate Research Center, New Orleans, Louisiana
| | | | | | - Anne E. Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
22
|
Perfilyeva YV, Ostapchuk YO, Tleulieva R, Kali A, Abdolla N, Krasnoshtanov VK, Perfilyeva AV, Belyaev NN. Myeloid-derived suppressor cells in COVID-19: A review. Clin Immunol 2022; 238:109024. [PMID: 35489643 PMCID: PMC9042722 DOI: 10.1016/j.clim.2022.109024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially life-threatening infection characterized by excessive inflammation, coagulation disorders and organ damage. A dysregulated myeloid cell compartment is one of the most striking immunopathologic signatures of this newly emerged infection. A growing number of studies are reporting on the expansion of myeloid cells with immunoregulatory activities in the periphery and airways of COVID-19 patients. These cells share phenotypic and functional similarities with myeloid-derived suppressor cells (MDSCs), which were first described in cancer patients. MDSCs are a heterogeneous population of pathologically activated myeloid cells that exert immunosuppressive activities against mainly effector T cells. The increased frequency of these cells in COVID-19 patients suggests that they are involved in immune regulation during this infection. In this article, we review the current findings on MDSCs in COVID-19 and discuss the complex role of these cells in the immunopathology of COVID-19.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan.
| | - Yekaterina O Ostapchuk
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Aykin Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | | | | | - Nikolai N Belyaev
- Saint-Petersburg Pasteur Institute, 14 Mira St., St. Petersburg 197101, Russia
| |
Collapse
|
23
|
Goel K, Serban KA. The multifaceted protease-anti-protease imbalance in COVID-19. EBioMedicine 2022; 78:103973. [PMID: 35339893 PMCID: PMC8947327 DOI: 10.1016/j.ebiom.2022.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Khushboo Goel
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO; Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, 1400 Jackson St, K825, CO, 80206, USA
| | - Karina A Serban
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO; Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, 1400 Jackson St, K825, CO, 80206, USA.
| |
Collapse
|
24
|
Basu D, Chavda VP, Mehta AA. Therapeutics for COVID-19 and post COVID-19 complications: An update. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100086. [PMID: 35136858 PMCID: PMC8813675 DOI: 10.1016/j.crphar.2022.100086] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Since its inception in late December 2020 in China, novel coronavirus has affected the global socio-economic aspect. Currently, the world is seeking safe and effective treatment measures against COVID-19 to eradicate it. Many established drug molecules are tested against SARS-CoV-2 as a part of drug repurposing where some are proved effective for symptomatic relief while some are ineffective. Drug repurposing is a practical strategy for rapidly developing antiviral agents. Many drugs are presently being repurposed utilizing basic understanding of disease pathogenesis and drug pharmacodynamics, as well as computational methods. In the present situation, drug repurposing could be viewed as a new treatment option for COVID-19. Several new drug molecules and biologics are engineered against SARS-CoV-2 and are under different stages of clinical development. A few biologics drug products are approved by USFDA for emergency use in the covid management. Due to continuous mutation, many of the approved vaccines are not much efficacious to render the individual immune against opportunistic infection of SARS-CoV-2 mutants. Hence, there is a strong need for the cogent therapeutic agent for covid management. In this review, a consolidated summary of the therapeutic developments against SARS-CoV-2 are depicted along with an overview of effective management of post COVID-19 complications.
Collapse
Affiliation(s)
- Debdoot Basu
- Department of Pharmacology, L.M. College of Pharmacy, Gujarat Technological University, Ahmedabad, 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Gujarat Technological University, Ahmedabad, 380009, Gujarat, India
| | - Anita A. Mehta
- Department of Pharmacology, L.M. College of Pharmacy, Gujarat Technological University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
25
|
Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 2022; 12:696. [PMID: 35027578 PMCID: PMC8758770 DOI: 10.1038/s41598-021-04444-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.
Collapse
Affiliation(s)
- Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica Burt
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Julie Alvarez
- Institute of Surgical Research, San Antonio, TX, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yansong Li
- Institute of Surgical Research, San Antonio, TX, USA
| | - Donna D Zhang
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
26
|
Clemente A, Alba-Patiño A, Santopolo G, Barón E, Rojo-Molinero E, Oliver A, Pérez-Bárcena J, Merino de Cos P, Aranda M, Del Castillo A, Socias A, Borges M, de la Rica R. Optimized detection of lung IL-6 via enzymatic liquefaction of low respiratory tract samples: application for managing ventilated patients. Analyst 2021; 146:6537-6546. [PMID: 34581315 DOI: 10.1039/d1an00763g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lung IL-6 is a promising biomarker for predicting respiratory failure during pulmonary infections. This biomarker is found in respiratory samples which need to be liquefied prior to analysis. Traditional liquefying methods use reducing agents such as dithiothreitol (DTT). However, DTT impairs immunodetection and does not liquefy highly viscous samples. We propose an enzymatic method that liquefies samples by means of generating O2 bubbles with endogenous catalase. Low respiratory tract specimens from 48 mechanically ventilated patients (38 with SARS-CoV-2 infection) were treated with DTT or with the enzymatic method. We used turbidimetry to compare the liquefaction degree and IL-6 was quantified with ELISA. Finally, we used AUC-ROC, time-to-event and principal component analysis to evaluate the association between respiratory compromise or local inflammation and IL-6 determined with both methods. Enzymatically treated samples were better liquefied than those reduced by DTT, which resulted in higher ELISA signals. Lung IL-6 levels obtained with the enzymatic procedure were negatively correlated with the oxygenation index (PaO2/FiO2) and the time of mechanical ventilation. The proposed enzymatic liquefaction method improves the sensitivity for lung IL-6 detection in respiratory samples, which increases its predictive power as a biomarker for evaluating respiratory compliance.
Collapse
Affiliation(s)
- Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.
| | - Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain. .,Balearic Islands University, Chemistry Department, Palma de Mallorca, Spain
| | - Giulia Santopolo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain. .,Balearic Islands University, Chemistry Department, Palma de Mallorca, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.
| | - Estrella Rojo-Molinero
- Microbiology Department, Son Espases University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Microbiology Department, Son Espases University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | | | - María Aranda
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Alberto Del Castillo
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Antonia Socias
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain. .,Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain. .,Balearic Islands University, Chemistry Department, Palma de Mallorca, Spain
| |
Collapse
|
27
|
Ahmed M, Zaghloul N, Zimmerman P, Casanova NG, Sun X, Song JH, Hernon VR, Sammani S, Rischard F, Rafikova O, Rafikov R, Makino A, Kempf CL, Camp SM, Wang J, Desai AA, Lussier Y, Yuan JXJ, Garcia JG. Endothelial eNAMPT drives EndMT and preclinical PH: rescue by an eNAMPT-neutralizing mAb. Pulm Circ 2021; 11:20458940211059712. [PMID: 34790349 PMCID: PMC8591779 DOI: 10.1177/20458940211059712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Pharmacologic interventions to halt/reverse the vascular remodeling and right ventricular dysfunction in pulmonary arterial hypertension (PAH) remains an unmet need. We previously demonstrated extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a DAMP (damage-associated molecular pattern protein) contributing to PAH pathobiology via TLR4 ligation. We examined the role of endothelial cell (EC)-specific eNAMPT in experimental PH and an eNAMPT-neutralizing mAb as a therapeutic strategy to reverse established PH. Hemodynamic/echocardiographic measurements and tissue analyses were performed in Sprague Dawley rats exposed to 10% hypoxia/Sugen (three weeks) followed by return to normoxia and weekly intraperitoneal delivery of the eNAMPT mAb (1 mg/kg). WT C57BL/6J mice and conditional EC-cNAMPTec-/- mice were exposed to 10% hypoxia (three weeks). Biochemical and RNA sequencing studies were performed on rat PH lung tissues and human PAH PBMCs. Hypoxia/Sugen-exposed rats exhibited multiple indices of severe PH (right ventricular systolic pressure, Fulton index), including severe vascular remodeling, compared to control rats. PH severity indices and plasma levels of eNAMPT, IL-6, and TNF-α were all significantly attenuated by eNAMPT mAb neutralization. Compared to hypoxia-exposed WT mice, cNAMPTec-/- KO mice exhibited significantly reduced PH severity and evidence of EC to mesenchymal transition (EndMT). Finally, biochemical and RNAseq analyses revealed eNAMPT mAb-mediated rectification of dysregulated inflammatory signaling pathways (TLR/NF-κB, MAP kinase, Akt/mTOR) and EndMT in rat PH lung tissues and human PAH PBMCs. These studies underscore EC-derived eNAMPT as a key contributor to PAH pathobiology and support the eNAMPT/TLR4 inflammatory pathway as a highly druggable therapeutic target to reduce PH severity and reverse PAH.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nahla Zaghloul
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Prisca Zimmerman
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Franz Rischard
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Olga Rafikova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ayako Makino
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jian Wang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- State Key Laboratory of Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A. Desai
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yves Lussier
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jason X.-J. Yuan
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- State Key Laboratory of Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Hazeldine J, Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol 2021; 12:680134. [PMID: 34149717 PMCID: PMC8206563 DOI: 10.3389/fimmu.2021.680134] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|