1
|
Forghani B, Svendsen TC, Pratap-Singh A, Jacobsen C, Undeland I. Biomass recovery from herring brines: Exploring quality and functionality of protein and n-3 polyunsaturated fatty acids. Food Chem 2025; 484:144403. [PMID: 40300404 DOI: 10.1016/j.foodchem.2025.144403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
Protein-enriched biomasses recovered from herring brines using dissolved air flotation (DAF) at native or low pH were studied in terms of nutrients, volatile compounds, emulsion properties, foaming properties and protein structure. Dried biomasses from native or acidified 3 % pre-salting brine (SB and SB-A) and spice brine (SP and SP-A) contained 69-72 % and 20-31 % protein, respectively; 7.8-10.2 % and 9-18 % lipids, respectively, and 4.4-7.5 % and 33-36 % ash, respectively. Of total fatty acids, up to 44 % were long-chain monounsaturated fatty acids (LC MUFA) and 17 % LC n-3 polyunsaturated fatty acids (PUFA). Both emulsion activity index (EAI) and foaming capacity (FC) were higher for SP/SP-A than SB/SB-A. In both cases, there was a minimum at pH 5. The findings suggest that currently wasted herring brine side streams hold promise for production of sustainable, functional protein ingredients which can provide both flavor and nutrients.
Collapse
Affiliation(s)
- Bita Forghani
- Food and Nutrition Science, Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Faculty of Land and Food System, University of British Columbia, Vancouver, Canada; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | | | - Anubhav Pratap-Singh
- Faculty of Land and Food System, University of British Columbia, Vancouver, Canada
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ingrid Undeland
- Food and Nutrition Science, Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
2
|
Williams EG, Alissa M, Alsugoor MH, Albakri GS, Altamimi AA, Alabdullateef AA, Almansour NM, Aldakheel FM, Alessa S, Marber M. Integrative approaches to atrial fibrillation prevention and management: Leveraging gut health for improved cardiovascular outcomes in the aging population. Curr Probl Cardiol 2025; 50:102952. [PMID: 39626858 DOI: 10.1016/j.cpcardiol.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
Atrial fibrillation (AF) is a prevalent clinical arrhythmia associated with a high incidence and severe complications such as cerebral embolism and heart failure. While the etiology and pathogenesis of AF involve numerous factors, recent research emphasizes the significant role of intestinal microbiota imbalance in the emergence and progression of AF, particularly among older adults. This review investigates the mechanisms by which intestinal flora and their metabolites contribute to the onset of AF in the elderly, highlighting novel interactions between gut health and cardiac function. Current literature often overlooks these critical connections, indicating a substantial research gap in understanding how dysbiosis may exacerbate AF and hinder recovery. Furthermore, exploring the bidirectional relationship between the gut microbiome and systemic inflammation in the context of AF provides a unique perspective that has yet to be thoroughly investigated. Future research should focus on longitudinal studies assessing gut microbiota composition and function in AF patients and consider probiotics or prebiotics as potential adjunctive therapies for mitigating AF. This comprehensive approach may pave the way for innovative treatments integrating cardiology with gastroenterology, enhancing patient outcomes through a holistic understanding of health.
Collapse
Affiliation(s)
- Emma Grace Williams
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112; 2 Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali A Altamimi
- Department of Medical Laboratory, Prince Sultan Air Base Hospital, Al-Kharj, Saudi Arabia
| | | | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Salem Alessa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Michael Marber
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
3
|
Noureldein MH, Rumora AE, Teener SJ, Rigan DM, Hayes JM, Mendelson FE, Carter AD, Rubin WG, Savelieff MG, Feldman EL. Dietary Fatty Acid Composition Alters Gut Microbiome in Mice with Obesity-Induced Peripheral Neuropathy. Nutrients 2025; 17:737. [PMID: 40005065 PMCID: PMC11858455 DOI: 10.3390/nu17040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Peripheral neuropathy (PN), a complication of diabetes and obesity, progresses through a complex pathophysiology. Lifestyle interventions to manage systemic metabolism are recommended to prevent or slow PN, given the multifactorial risks of diabetes and obesity. A high-fat diet rich in saturated fatty acids (SFAs) induces PN, which a diet rich in monounsaturated fatty acids (MUFAs) rescues, independent of weight loss, suggesting factors beyond systemic metabolism impact nerve health. Interest has grown in gut microbiome mechanisms in PN, which is characterized by a distinct microbiota signature that correlates with sciatic nerve lipidome. METHODS Herein, we postulated that SFA- versus MUFA-rich diet would impact gut microbiome composition and correlate with PN development. To assess causality, we performed fecal microbiota transplantation (FMT) from donor mice fed SFA- versus MUFA-rich diet to lean recipient mice and assessed metabolic and PN phenotypes. RESULTS We found that the SFA-rich diet altered the microbiome community structure, which the MUFA-rich diet partially reversed. PN metrics correlated with several microbial families, some containing genera with feasible mechanisms of action for microbiome-mediated effects on PN. SFA and MUFA FMT did not impact metabolic phenotypes in recipient mice although SFA FMT marginally induced motor PN. CONCLUSIONS The involvement of diet-mediated changes in the microbiome on PN and gut-nerve axis may warrant further study.
Collapse
Affiliation(s)
- Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E. Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Samuel J. Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew D. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Whitney G. Rubin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Obeid R, Mohr L, White BA, Heine GH, Emrich I, Geisel J, Carter RC. Circulating trimethylamine N-oxide and cardiovascular, cerebral, and renal diseases including mortality: Umbrella review of published systematic reviews and meta-analyses. Nutr Metab Cardiovasc Dis 2025:103908. [PMID: 40118729 DOI: 10.1016/j.numecd.2025.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/23/2025]
Abstract
AIMS Several systematic reviews/meta-analyses of observational studies have demonstrated associations between circulating trimethylamine-N-oxide (TMAO) and cardiovascular, cerebral, and renal diseases, including mortality. However, causal roles for TMAO in these diseases are controversial. Interventions are lacking to show whether lowering TMAO in clinical trials could reduce the risks of these diseases. TMAO could still serve as a prognostic marker for the mentioned outcomes, but investigating this potential role requires robust methodologies. We conducted a systematic search and critical evaluation of published systematic reviews/meta-analyses in the field. DATA SYNTHESIS We identified 27 systematic reviews/meta-analyses on the association between TMAO and stroke (n = 7), cardiovascular disease including cause-specific and/or all-cause mortality (n = 14), and other related outcomes (n = 6). The majority of the systematic reviews/meta-analyses found higher blood TMAO concentrations in patients who were positive for the outcomes. Primary studies included populations with multiple risk factors for the given outcomes and did not sufficiently account for potential confounders. Prospective studies examining associations between baseline TMAO and subsequent disease outcomes in healthy populations were entirely absent. Furthermore, we identified serious flaws in methods, conduct and reporting in the majority of the published systematic reviews/meta-analyses, thus leading to critically low confidence in the results. CONCLUSIONS High quality systematic reviews/meta-analyses examining the associations between TMAO and cardiovascular or cerebral disease are needed to examine potential causal and/or predictive roles of TMAO in these diseases. This study is registered at the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42024534940).
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Saar, Germany.
| | - Lorenz Mohr
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - Bryan A White
- University of Illinois, Department of Animal Sciences; and Fellow American Academy of Microbiology, 1207 W. Gregory Drive, Urbana, Il, 61801, United States
| | - Gunnar H Heine
- Agaplesion Markus Hospital, Medical Clinic II, Wilhelm-Epstein Straße 4, D-60431, Frankfurt am Main, Germany; Department of Internal Medicine IV-Nephrology and Hypertension, Saarland University Hospital and Saarland University Faculty of Medicine, D-66421, Homburg, Germany
| | - Insa Emrich
- Saarland University Medical Center, Department of Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine, Homburg, Germany
| | - Juergen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Saar, Germany
| | - R Colin Carter
- Departments of Pediatrics and Emergency Medicine and the Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States; Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
5
|
Li X, Zhang S, Sheng H, Zhen Y, Wu B, Li Z, Chen D, Zhou H. Oral Fusobacterium nucleatum resists the acidic pH of the stomach due to membrane erucic acid synthesized via enoyl-CoA hydratase-related protein FnFabM. J Oral Microbiol 2025; 17:2453964. [PMID: 39845704 PMCID: PMC11753016 DOI: 10.1080/20002297.2025.2453964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Background and Objective Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease. Methods To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established. This model was used to simulate the acidic conditions encountered by bacteria during their translocation from the mouth to the intestine. Results Fusobacterium nucleatum exhibited the highest survival rate in an acidified fluid mimicking the stomach pH (pH 1.5). The survival was significantly increased in the presence of erucic acid C22:1(n9) in cell membranes. Phylogenetic tree analysis revealed that C22:1(n9) synthesis was significantly associated with FnFabM gene expression in F. nucleatum at pH 1.5. Inhibition of FnFabM expression by cerulenin reduced the C22:1(n9) content and decreased the colonization efficiency of F. nucleatum in the stomach and jejunum of mice. Conclusions Oral F. nucleatum translocate to the intestine by resisting the acidic environment owing to the presence of erucic acid in its cell membrane, which is regulated by FnFabM. These results provide novel insights into the mechanisms underlying the oral bacteria survival in acidic environments and their potential to colonize the intestine; thus, shedding light on the oral-gut axis and its implications on human health.
Collapse
Affiliation(s)
- Xiaocong Li
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
| | - Shipeng Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Huafang Sheng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Yan Zhen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Dingqiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Hongwei Zhou
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| |
Collapse
|
6
|
Lei L, Qin H, Chen Y, Sun Y, Yin W, Tong S. Association Between Adherence to EAT-Lancet Diet and Risk of Hypertension: An 18-Year National Cohort Study in China. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-10. [PMID: 39235386 DOI: 10.1080/27697061.2024.2399826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE The EAT-Lancet Commission has proposed an EAT-Lancet diet (ELD), also known as a planetary health diet (PHD), which is environmentally sustainable and promotes human health. However, the association between this diet and the risk of hypertension remains unclear. This study aimed to determine whether adherence to ELD was associated with a lower risk of hypertension. METHODS 11,402 adults without hypertension at baseline from the China Health and Nutrition Survey were included. The PHD score was used to evaluate ELD adherence, with higher scores reflecting better compliance. Cox proportional hazards regression analysis was utilized to estimate the hazard ratio (HR) with a 95% confidence interval (CI). Additionally, a subgroup analysis was performed to identify the possible effect modifiers, and a mediation analysis was conducted to explore the mediation effects of anthropometric measurements on the association between ELD and hypertension. RESULTS A total of 3993 participants (35%) developed hypertension during 93,058 person-years of follow-up. In the covariate-adjusted model, hypertension risk was reduced in the highest quartile participants compared to the lowest quartile of the PHD score (adjusted HR: 0.79, 95%CI: 0.71-0.87; P-trend < 0.001), which remained significant after sensitivity analysis. Notably, the association was also observed in isolated systolic hypertension, isolated diastolic hypertension, and systolic-diastolic hypertension. Subgroup analysis revealed that the inverse association between the PHD score and hypertension risk was more pronounced in nonsmokers and high-sodium intake consumers than in smokers and low-sodium consumers (P-interaction < 0.05). Additionally, mediation analysis revealed that 23.3% of the association between the PHD score and hypertension risk was mediated by the waist-to-height ratio. CONCLUSION Our findings suggest that a higher adherence to ELD is associated with a lower risk of hypertension. These results emphasize that ELD may serve as a potential strategy to prevent hypertension.
Collapse
Affiliation(s)
- Lifu Lei
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haixia Qin
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yushi Chen
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Sun
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwei Yin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Office of Academic Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Ko G, Unno T, Kim Y, Kim J. Dietary Polycan, a β-glucan originating from Aureobasidium pullulansSM-2001, attenuates high-fat-diet-induced intestinal barrier damage in obese mice by modulating gut microbiota dysbiosis. Food Sci Nutr 2024; 12:5824-5835. [PMID: 39139941 PMCID: PMC11317661 DOI: 10.1002/fsn3.4235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024] Open
Abstract
Various metabolic diseases caused by a high-fat diet (HFD) are closely related to gut microbiota dysbiosis and epithelial barrier dysfunction. Polycan, a type of β-glucan, is effective in treating anti-obesity and metabolic diseases caused by HFD. However, the effect of Polycan on dysbiosis and epithelial barrier damage is still unknown. In this study, the effects of Polycan on dysbiosis and intestinal barrier damage were investigated using HFD-induced obese model mice. C57BL/6 mice were fed a HFD for 12 weeks and treated with two different doses of Polycan (250 and 500 mg/kg) orally administered during weeks 9 to 12. Polycan supplementation increased the expression of tight junction genes (zonula occludens-1, occludin, and claudin-3) and short-chain fatty acid (SCFA) content while reducing toxic substances (phenol, p-cresol, and skatole). Most significantly, Polycan enriched SCFA-producing bacteria (i.e., Phocaeicola, Bacteroides, Faecalibaculum, Oscillibacter, Lachnospiraceae, and Muribaculaceae), and decreased the Firmicutes/Bacteroidetes ratio and toxic substances-producing bacteria (i.e., Olsenella, Clostridium XVIII, and Schaedlerella). Furthermore, microbial functional capacity prediction of the gut microbiota revealed that Polycan enriched many SCFA-related KEGG enzymes while toxic substance-related KEGG enzymes were depleted. These findings indicated that Polycan has the potential to alleviate HFD-induced intestinal barrier damage by modulating the function and composition of the gut microbiota.
Collapse
Affiliation(s)
- Gwang‐Pyo Ko
- Faculty of Biotechnology, School of Life SciencesSARI Jeju National UniversityJejuKorea
| | - Tatsuya Unno
- Department of MicrobiologyChungbuk National UniversityCheongjuKorea
| | | | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank Jeju National UniversityJejuKorea
- Jeju Institute of Korean MedicineJejuKorea
| |
Collapse
|
8
|
Mjaatveit M, Oldernes H, Gudbrandsen OA. Effects of diets containing fish oils or fish oil concentrates with high cetoleic acid content on the circulating cholesterol concentration in rodents. A systematic review and meta-analysis. Br J Nutr 2024; 131:606-621. [PMID: 37737066 PMCID: PMC10803824 DOI: 10.1017/s0007114523002118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Hypercholesterolaemia is a major risk factor for CVD. Fish intake is associated with lower risk of CVD, whereas supplementation with n-3 long-chain PUFA (LC-PUFA) has little effect on the cholesterol concentration. We therefore investigated if cetoleic acid (CA), a long-chain MUFA (LC-MUFA) found especially in pelagic fish species, could lower the circulating total cholesterol (TC) concentration in rodents. A systematic literature search was performed using the databases PubMed, Web of Science and Embase, structured around the population (rodents), intervention (CA-rich fish oils or concentrates), comparator (diets not containing CA) and the primary outcome (circulating TC). Articles were assessed for risk of bias using the SYRCLE's tool. A meta-analysis was conducted in Review Manager v. 5.4.1 (the Cochrane Collaboration) to determine the effectiveness of consuming diets containing CA-rich fish oils or concentrates on the circulating TC concentration. Twelve articles were included in the systematic review and meta-analysis, with data from 288 rodents. Consumption of CA-rich fish oils and concentrates resulted in a significantly lower circulating TC concentration relative to comparator groups (mean difference -0·65 mmol/l, 95 % CI (-0·93, -0·37), P < 0·00001), with high statistical heterogeneity (I2 = 87 %). The risk of bias is unclear since few of the entries in the SYRCLE's tool were addressed. To conclude, intake of CA-rich fish oils and concentrates prevents high cholesterol concentration in rodents and should be further investigated as functional dietary ingredients or supplements to reduce the risk for developing CVD in humans.
Collapse
Affiliation(s)
- Margrete Mjaatveit
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, 5021, Norway
| | - Helle Oldernes
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, 5021, Norway
| | - Oddrun Anita Gudbrandsen
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, Bergen, 5021, Norway
| |
Collapse
|
9
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
10
|
Tobin D, Midtbø LK, Mildenberger J, Svensen H, Stoknes I. The effect of fish oil rich in cetoleic acid on the omega-3 index and skin quality. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102616. [PMID: 38788345 DOI: 10.1016/j.plefa.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The objective of the study was to provide preliminary data on the effect of a long chain monounsaturated oil rich in cetoleic acid on the omega-3 index, a validated measure of EPA and DHA in blood cells, as well as a potential effect of the oil on skin quality. DESIGN Two intervention studies were performed, each as double blinded, placebo controlled, randomised nutritional trials. The CetoIndex study (N = 55) measured omega-3 index using a blood spot collection kit (Omegaquant). The Optihud study (N = 28) measured skin quality parameters in healthy women using the VISIA system. The cetoleic-rich-oil (CRO) was an oil derived from North Atlantic fish with a predominance of long chain mono-unsaturated fatty acids including cetoleic acid (C22:1 n-11) and gondoic acid (C20:1 n-9). RESULTS In a placebo-controlled study, the omega-3 index in healthy volunteers was increased similar to that seen with an oil with higher levels of omega-3 fatty acids. In a separate placebo-controlled study, the CRO reduced erythema in skin, which is a marker of inflammation. CONCLUSIONS The results of this pilot study suggest that the use of a CRO increases the omega-3 index more than expected from the levels of EPA and DHA in the oil. The CRO may potentially have benefits on skin inflammation. SUMMARY Long chain polyunsaturated fatty acids (LCPUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are commonly taken as dietary supplements for a range of health benefits. Other marine fatty acids may also provide health benefits and it is of interest to understand their activity. Long chain mono-unsaturated fatty acids (LCMUFA) have shown biological activity in studies of metabolic health in animal models. Here, we report two intervention studies using a fish oil with a high LCMUFA content where cetoleic acid is the predominant fatty acid (Cetoleic rich oil: CRO). In CetoIndex, a placebo-controlled study in 55 healthy volunteers, the omega-3 index increased similarly to that seen with an oil containing higher levels of omega-3 fatty acids. In Optihud, a placebo-controlled study in 28 female volunteers, the CRO reduced erythema in skin, which is a marker of inflammation. The results of this pilot study support the use of a CRO for increasing the omega-3 index with potential benefits on skin inflammation.
Collapse
Affiliation(s)
- D Tobin
- Epax Norway AS, Ålesund, Norway.
| | | | | | | | | |
Collapse
|
11
|
Yang D, Sun P, Chen Y, Jin H, Xu B, Ma Q, Xue L, Wang Y. Systemic Characterization of the Gut Microbiota Profile after Single Mild Ischemic Stroke and Recurrent Stroke in Mice. Biomedicines 2024; 12:195. [PMID: 38255299 PMCID: PMC10813150 DOI: 10.3390/biomedicines12010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It has been estimated that one in four stroke patients may have recurrent stroke within five years after they experienced the first stroke. Furthermore, clinical studies have shown that recurrent stroke negatively affects patient outcomes; the risk of disability and the death rate increase with each recurrent stroke. Therefore, it is urgent to find effective methods to prevent recurrent stroke. The gut microbiota has been proven to play an essential role after ischemic stroke, while sudden ischemia disrupts microbial dysbiosis, and the metabolites secreted by the microbiota also reshape the gut microenvironment. In the present study, we established a recurrent ischemic mouse model. Using this experimental model, we compared the survival rate and ischemic infarction between single MCAO and recurrent MCAO, showing that, when two surgeries were performed, the mouse survival rate dramatically decreased, while the infarction size increased. Fecal samples were collected on day 1, day 3 and day 7 after the first MCAO and day 9 (2 days after the second MCAO) for 16S sequencing, which provided a relatively comprehensive picture of the microbiota changes. By further analyzing the potential metabolic pathways, our data also highlighted several important pathways that were significantly altered after the first and recurrent stroke. In the present study, using an experimental mouse model, we showed that acute ischemic stroke, especially recurrent ischemia, significantly decreased the diversity of the gut microbiota.
Collapse
Affiliation(s)
- Decao Yang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China (L.X.)
- Medical Research Centre, Peking University Third Hospital, Beijing 100191, China
| | - Panxi Sun
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China (L.X.)
- Ministry-of-Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832099, China
| | - Yong Chen
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China (L.X.)
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100107, China
| | - Baohui Xu
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Qingbian Ma
- Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Lixiang Xue
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China (L.X.)
- Medical Research Centre, Peking University Third Hospital, Beijing 100191, China
- BioBank, Peking University Third Hospital, Beijing 100191, China
| | - Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China (L.X.)
- Medical Research Centre, Peking University Third Hospital, Beijing 100191, China
- Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Nishio E, Iwata A, Kawasaki R, Iwao K, Nishizawa H, Fujii T. Metabolomic and microbiome analysis of cervicovaginal mucus in in vitro fertilization-embryo transfer: Toward predicting pregnancy success. Reprod Med Biol 2024; 23:e12568. [PMID: 38476960 PMCID: PMC10927931 DOI: 10.1002/rmb2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose In the context of in vitro fertilization-embryo transfer (IVF-ET), factors other than egg quality may be key determinants of treatment success, in particular, maternal factors related to uterine endometrial receptivity and unidentified factors. We therefore aimed to analyze the metabolome and microbiome in IVF-ET patients who did and did not achieve pregnancy. Methods Cervicovaginal mucus was collected from patients undergoing IVF-ET. Metabolite analysis was conducted by liquid chromatography-mass spectrometry and the microbiota were determined by the polymerase chain reaction using universal 16S-rRNA gene bacterial primers by MiSeq sequencing. Patients were classified as pregnant (N = 10) or nonpregnant (N = 13). Metabolic pathways were examined by MetaboAnalyst. Results Three metabolic pathways, including alanine-aspartate-glutamate metabolism, arginine biosynthesis, and cysteine-methionine metabolism, were commonly decreased at the time of embryo transfer irrespective pregnant outcomes. Notably, pyruvate was decreased in the pregnant group. Amino acid metabolites showed inverse correlations with the presence of anaerobic microbiota in the nonpregnant group. Conclusions Metabolism decreased during embryo transplantation, with a notable decrease in pyruvate metabolism, particularly in patients who became pregnant. The behavior of metabolites in the pregnant and nonpregnant groups suggests that metabolome analysis in the cervicovaginal mucus may be a diagnostic marker for predicting pregnancy.
Collapse
Affiliation(s)
- Eiji Nishio
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
| | - Aya Iwata
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
- Department of GynecologyFujita Health University Okazaki Medical CenterOkazakiAichiJapan
| | - Rie Kawasaki
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
- Department of GynecologyFujita Health University Okazaki Medical CenterOkazakiAichiJapan
| | - Kukimoto Iwao
- Pathogen Genomics CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Haruki Nishizawa
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
| | - Takuma Fujii
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
- Department of GynecologyFujita Health University Okazaki Medical CenterOkazakiAichiJapan
| |
Collapse
|
13
|
Zhao T, Huang H, Li J, Shen J, Zhou C, Xiao R, Ma W. Association between erythrocyte membrane fatty acids and gut bacteria in obesity-related cognitive dysfunction. AMB Express 2023; 13:148. [PMID: 38123761 PMCID: PMC10733235 DOI: 10.1186/s13568-023-01655-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity increases the risk of cognitive impairment and dementia, and the gut microbiota can affect brain cognitive function and obesity through a variety of pathways such as the gut-brain axis. This study aimed to discover how fatty acid affect cognitive function by regulating intestinal flora in obesity. Obese subjects were recruited for cognitive function assessment, and participants were divided into obese group with cognitive impairment (MCI, n = 49) and obese cognitively normal group (Non_MCI, n = 55). In the erythrocyte membrane, the proportion of polyunsaturated fatty acids (PUFA), linoleic acid (C18:2 n-6) and arachidonic acid (C20:4 n-6) and n-6/n-3 ratio was higher in the MCI group than in the Non_MCI group. However, the α-linolenic acid (C18:3 n-3) percentage of the erythrocyte membrane was lower in the MCI group. We found that Coriobacteriales_Incertae_Sedis was positively correlated with erythrocyte membrane C20:4 n-6 and n-6 PUFA and negatively correlated with cognitive scores in obese patients. In addition, several of the functional pathways we predicted were significantly different in the MCI and Non_MCI groups. Higher levels of n-6/n-3 polyunsaturated fatty acids ratio in the erythrocyte membranes may influence the inflammatory response in the organism causing obesity induced cognitive damage. Moreover, high levels of n-6/n-3 polyunsaturated fatty acids ratio may also affect the intestinal flora of obese patients, which in turn may affect the cognitive function of obese patients.
Collapse
Affiliation(s)
- Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Cui Zhou
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
14
|
Shakiba E, Najafi F, Pasdar Y, Moradinazar M, Navabi J, Shakiba MH, Bagheri A. A prospective cohort study on the association between dietary fatty acids intake and risk of hypertension incident. Sci Rep 2023; 13:21112. [PMID: 38036572 PMCID: PMC10689772 DOI: 10.1038/s41598-023-48256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
There are inconclusive results available on the association between dietary fatty acid intake and the risk of hypertension (HTN) incident. In this study, we investigate the relationship between baseline dietary fatty acids intake including polyunsaturated fatty acid (PUFA), trans fatty acids (TFA), monounsaturated fatty acid (MUFA), and saturated fatty acid (SFA), and the risk of first incidence hypertension. The current prospective cohort study was carried out from the Ravansar Non-Communicable Diseases (RaNCD) cohort. A food frequency questionnaire (FFQ) with 118 items was used for the assessment of dietary data. Cox proportional hazards analyses were done to estimate hazard ratios (HR) and 95% confidence intervals (CIs) of the highest versus lowest quartile intake of SFA, PUFA, MUFA, and SFA and risk of HTN. Out of 7359 eligible participants, 597 new cases of HTN were identified over an average of 6.4 ± 1.33 years of follow-up. No significant relationship was observed between the fourth compared to the first categories of dietary SFA (HR: 0.82, 95% CI 0.55, 1.21; P trend: 0.476), MUFA (HR: 0.71, 95% CI 0.48, 1.06; P trend: 0.252), PUFA (HR: 0.86, 95% CI 0.62, 1.19; P trend: 0.315) and TFA (HR: 0.99, 95% CI 0.76, 1.27; P trend: 0.675), and risk of HTN. However, a significant inverse association between each 1 g per day increase in dietary MUFA intake during 6.4 years of follow up and HTN incident (HR: 0.97; 95% CI 0.94, 0.99; P 0.044) was observed. In brief, our study revealed that higher dietary MUFA intake was protectively associated with HTN incident. Dietary MUFA-rich foods should be encouraged to improve blood pressure.
Collapse
Affiliation(s)
- Ebrahim Shakiba
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradinazar
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Navabi
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amir Bagheri
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Laviano HD, Gómez G, Escudero R, Nuñez Y, García-Casco JM, Muñoz M, Heras-Molina A, López-Bote C, González-Bulnes A, Óvilo C, Rey AI. Maternal Supplementation of Vitamin E or Its Combination with Hydroxytyrosol Increases the Gut Health and Short Chain Fatty Acids of Piglets at Weaning. Antioxidants (Basel) 2023; 12:1761. [PMID: 37760063 PMCID: PMC10526103 DOI: 10.3390/antiox12091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
An adequate intestinal environment before weaning may contribute to diarrhea predisposition and piglet development. This study evaluates how the dietary supplementation of vitamin E (VE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg) or the combined administration (VE + HXT) given to Iberian sows from gestation affects the piglet's faecal characteristics, short chain fatty acids (SCFAs), fatty acid profile or intestinal morphology as indicators of gut health; and quantify the contribution of the oxidative status and colostrum/milk composition to the piglet's SCFAs content and intestinal health. Dietary VE increased isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), and ∑SCFAs, whereas HXT increased iC4 and tended to decrease ∑SCFAs of faeces. Piglets from HXT-supplemented sows also tended to have higher faecal C20:4n-6/C20:2 ratio C22:6 proportion and showed lower occludin gene expression in the duodenum. The combination of both antioxidants had a positive effect on iC4 and iC5 levels. Correlation analyses and regression equations indicate that faecal SCFAs were related to oxidative status (mainly plasma VE) and colostrum and milk composition (mainly C20:2, C20:3, C20:4 n-6). This study would confirm the superiority of VE over HXT supplementation to improve intestinal homeostasis, gut health, and, consequently piglet growth.
Collapse
Affiliation(s)
- Hernan D. Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), 13700 Tomelloso, Spain
| | - Rosa Escudero
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Ana Heras-Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Clemente López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Ana I. Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| |
Collapse
|
17
|
Yang J, Huang J, Huang Z, Xu Y, Li W, Zhu S, Zhao Y, Ye B, Liu L, Zhu J, Xia M, Liu Y. Cardiometabolic benefits of Lacticaseibacillus paracasei 8700:2: A randomized double-blind placebo-controlled trial. Clin Nutr 2023; 42:1637-1646. [PMID: 37506599 DOI: 10.1016/j.clnu.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND & AIMS Modulating microbial metabolism via probiotic supplementation has been proposed as an attractive strategy for the prevention of cardiometabolic diseases. Recently, Lacticaseibacillus paracasei (L. paracasei) was reported to alleviate metabolic disorders in murine models, however, its beneficial effects in humans remain to be determined. This study evaluated whether L. paracasei supplementation could improve endothelial function and cardiometabolic health in subjects with metabolic syndrome (MetS). METHODS In this randomized, double-blind and placebo-controlled trial among 130 participants with MetS, subjects were randomly assigned to placebo or L. paracasei 8700: 2 (10 billion CFU) daily for 12 weeks. Endothelial function was measured by flow-mediated slowing, and cardiometabolic health was determined by both components and severity of MetS. Ideal compliance was defined as consumption no less than 70% of the capsules. RESULTS 130 individuals (mean [SD] age, 45.97 [7.11] years; 95 men [73.1%]) were enrolled and randomized to L. paracasei (n = 66) or placebo control (n = 64). Compared to placebo, L. paracasei supplementation led to a greater reduction in remnant cholesterol (-0.16 mmol/L, 95%CI: -0.29 mmol/L to -0.02 mmol/L; P = 0.024). Such a reduction in remnant cholesterol was significantly associated with improvement in endothelial function (r = -0.23, P = 0.027). In subjects with an ideal compliance with trial protocol, L. paracasei treatment additionally lowered triglycerides, alleviated MetS severity and delayed weight gain. On the contrary, no obvious effect on insulin sensitivity or pancreatic beta-cell function was observed after L. paracasei intervention. Moreover, regarding safety and tolerability, no significant between-group difference in protocol-specified adverse events of interest was observed. CONCLUSIONS L. paracasei supplementation enhanced endothelial function potentially through downregulating remnant cholesterol levels. Our study provides a feasible and safe strategy for the prevention of cardiometabolic diseases in subjects with severe dyslipidemia and endothelial dysfunction. REGISTERED Under ClinicalTrails.gov identifier NCT05005754.
Collapse
Affiliation(s)
- Jialu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Jingyi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Zhihao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Yingxi Xu
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Wenkang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Bingqi Ye
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Ludi Liu
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Jiangyuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China.
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China.
| |
Collapse
|
18
|
Yang Z, Yang K, Zhang X, Yang Q, Zhang Y, Gao J, Qu H, Shi J. Dietary Saturated, Monounsaturated, or Polyunsaturated Fatty Acids and Estimated 10-Year Risk of a First Hard Cardiovascular Event. Am J Med 2023; 136:796-803.e2. [PMID: 37088345 DOI: 10.1016/j.amjmed.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND The effects of dietary saturated, monounsaturated, or polyunsaturated fatty acids on the risk of cardiovascular events remain controversial. METHODS This cross-sectional study was performed in 4211 patients, aged 40 to 79 years, from the National Health and Nutrition Examination Survey between 1999 and 2018. The independent variables were saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The dependent variable was the 10-year risk of a first hard atherosclerotic cardiovascular event. The other variables were considered as the potential confounding factors. Multivariate linear regression models and smooth curve fittings were used to evaluate the association between saturated fatty acids, polyunsaturated fatty acids, or monounsaturated fatty acids and the 10-year risk. RESULTS There was no association between dietary saturated fatty acids and 10-year risk after adjusting for all the potential confounding factors; 10-year risk decreased by 0.022% each 1-g increase in monounsaturated fatty acids intake from 0 to 153.772 g, and 0.025% each 1-g increase in polyunsaturated fatty acids intake from 0 to 98.323 g, respectively. Moreover, subgroup analysis showed that monounsaturated fatty acids and polyunsaturated fatty acids were both negatively correlated to 10-year risk in nondiabetes and non-high-low-density lipoprotein patients; monounsaturated fatty acids were also negatively associated with 10-year risk in hypertensive patients. CONCLUSIONS There was no association between dietary saturated fatty acids and 10-year risk. Increased dietary intake of monounsaturated fatty acids or polyunsaturated fatty acids decreased 10-year risk, particularly in nondiabetes, non-high-low density lipoprotein patients.
Collapse
Affiliation(s)
- Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; Cardiovascular Department, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Beijing Jiaotong University, China
| | | | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Wu G. Nutrition and Gut Health: Recent Advances and Implications for Development of Functional Foods. Int J Mol Sci 2023; 24:10075. [PMID: 37373221 DOI: 10.3390/ijms241210075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The small intestine is a highly differentiated and complex organ with many nutritional, physiological, and immunological functions [...].
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Medical Physiology and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
20
|
Marosvölgyi T, Dergez T, Szentpéteri JL, Szabó É, Decsi T. Higher Availability of Long-Chain Monounsaturated Fatty Acids in Preterm than in Full-Term Human Milk. Life (Basel) 2023; 13:life13051205. [PMID: 37240850 DOI: 10.3390/life13051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
While the role of n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs) in the maturation of the infantile nervous system is extensively studied and relatively well-characterized, data on the potential developmental importance of the n-9 long-chain monounsaturated fatty acid (LCMUFA), nervonic acid (NA, C24:1n-9) are scarce and ambiguous. Therefore, the aim of the present study was to reanalyze our available data on the contribution of NA and its LCMUFA precursors, gondoic acid (C20:1n-9) and erucic acid (EA, C22:1n-9) to the fatty acid composition of human milk (HM) during the first month of lactation in mothers of both preterm (PT) and full-term (FT) infants. HM samples were obtained daily during the first week of lactation, and then on the 14th, 21st, and 28th days. Values of the LCMUFAs, C20:1n-9, EA, and NA were significantly higher in colostrum than in transient and mature HM. Consequently, there were highly significant inverse associations between LCMUFA values and the duration of lactation. Moreover, C20:1n-9, EA, and NA values were monotonously, considerably, and at many timepoints significantly higher in PT than in FT HM samples. By the 28th day of lactation, summarized LCMUFA values in PT HM samples declined to the level measured in FT HM samples on the first day of lactation; however, EA and NA values were still significantly higher in PT than in FT HM on the 28th day. Significantly higher availability of LCMUFAs in PT than in FT HM underpins the potential biological role of this hitherto somewhat neglected group of fatty acids.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Timea Dergez
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - József L Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Decsi
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
| |
Collapse
|
21
|
Zhang H, Jing L, Zhai C, Xiang Q, Tian H, Hu H. Intestinal Flora Metabolite Trimethylamine Oxide Is Inextricably Linked to Coronary Heart Disease. J Cardiovasc Pharmacol 2023; 81:175-182. [PMID: 36607700 PMCID: PMC9988214 DOI: 10.1097/fjc.0000000000001387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Atherosclerotic coronary heart disease is a common cardiovascular disease with high morbidity and mortality. In recent years, the incidence of coronary heart disease has gradually become younger, and biomarkers for predicting coronary heart disease have demonstrated valuable clinical prospects. Several studies have established an association between coronary heart disease and intestinal flora metabolites, including trimethylamine oxide (TMAO), which has attracted widespread attention from researchers. Investigations have also shown that plasma levels of TMAO and its precursors can predict cardiovascular risk in humans; however, TMAO's mechanism of action in causing coronary heart disease is not fully understood. This review examines TMAO's generation, the mechanism through which it causes coronary heart disease, and the approaches used to treat TMAO-caused coronary heart disease to possible avenues for future research on coronary heart disease and find new concepts for the treatment of the condition.
Collapse
Affiliation(s)
- Honghong Zhang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University; and
| | - Lele Jing
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing
| | - Changlin Zhai
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing
| | - Qiannan Xiang
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing
| | - Hongen Tian
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing
| | - Huilin Hu
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing
| |
Collapse
|
22
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|
23
|
Zhang Y, Xi Y, Yang C, Gong W, Wang C, Wu L, Wang D. Short-Chain Fatty Acids Attenuate 5-Fluorouracil-Induced THP-1 Cell Inflammation through Inhibiting NF-κB/NLRP3 Signaling via Glycerolphospholipid and Sphingolipid Metabolism. Molecules 2023; 28:molecules28020494. [PMID: 36677551 PMCID: PMC9864921 DOI: 10.3390/molecules28020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
5-Fluorouracil (5-FU) is a common anti-tumor drug, but there is no effective treatment for its side effect, intestinal mucositis. The inflammatory reaction of macrophages in intestinal mucosa induced by 5-FU is an important cause of intestinal mucositis. In this study, we investigated the anti-inflammatory effects of the three important short-chain fatty acids (SCFAs), including sodium acetate (NaAc), sodium propionate (NaPc), and sodium butyrate (NaB), on human mononuclear macrophage-derived THP-1 cells induced by 5-FU. The expressions of intracellular ROS, pro-inflammatory/anti-inflammatory cytokines, as well as the nuclear factor-κB/NLR family and pyrin domain-containing protein 3 (NF-κB/NLRP3) signaling pathway proteins were determined. Furthermore, the cell metabolites were analyzed by untargeted metabolomics techniques. Our results revealed that the three SCFAs inhibited pro-inflammatory factor expressions, including IL-1β and IL-6, when treated with 5-FU (p < 0.05). The ROS expression and NF-κB activity of 5-FU-treated THP-1 cells were inhibited by the three SCFAs pre-incubated (p < 0.05). Moreover, NLRP3 knockdown abolished 5-FU-induced IL-1β expression (p < 0.05). Further experiments showed that the three SCFAs affected 20 kinds of metabolites that belong to amino acid and phosphatidylcholine metabolism in THP-1 cells. These significantly altered metabolites were involved in amino acid metabolism and glycerolphospholipid and sphingolipid metabolism. It is the first time that three important SCFAs (NaAc, NaPc, and NaB) were identified as inhibiting 5-FU-induced macrophage inflammation through inhibiting ROS/NF-κB/NLRP3 signaling pathways and regulating glycerolphospholipid and sphingolipid metabolism.
Collapse
Affiliation(s)
- Yanyan Zhang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Yue Xi
- Medical Laboratory Department, Huai’an Second People’s Hospital, Huai’an 223022, China
| | - Changshui Yang
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weijuan Gong
- School of Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.G.); (D.W.)
| | - Chengyin Wang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Correspondence: (W.G.); (D.W.)
| |
Collapse
|
24
|
Canet F, Christensen JJ, Victor VM, Hustad KS, Ottestad I, Rundblad A, Sæther T, Dalen KT, Ulven SM, Holven KB, Telle-Hansen VH. Glycated Proteins, Glycine, Acetate, and Monounsaturated Fatty Acids May Act as New Biomarkers to Predict the Progression of Type 2 Diabetes: Secondary Analyses of a Randomized Controlled Trial. Nutrients 2022; 14:5165. [PMID: 36501195 PMCID: PMC9738624 DOI: 10.3390/nu14235165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.
Collapse
Affiliation(s)
- Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
| | - Jacob J. Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Victor M. Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
- Department of Physiology, School of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Kristin S. Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
25
|
Wu H, Forghani B, Abdollahi M, Undeland I. Five cuts from herring ( Clupea harengus): Comparison of nutritional and chemical composition between co-product fractions and fillets. Food Chem X 2022; 16:100488. [PMID: 36345506 PMCID: PMC9636446 DOI: 10.1016/j.fochx.2022.100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Weight distribution, proximate composition, fatty acids, amino acids, minerals and vitamins were investigated in five sorted cuts (head, backbone, viscera + belly flap, tail, fillet) emerging during filleting of spring and fall herring (Clupea harengus). The herring co-product cuts constituted ∼ 60 % of the whole herring weight, with backbone and head dominating. Substantial amounts of lipids (5.8-17.6 % wet weight, ww) and proteins (12.8-19.2 % ww) were identified in the co-products, the former being higher in fall than in spring samples. Co-product cuts contained up to 43.1 % long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of total FA, absolute levels peaking in viscera + belly flap. All cuts contained high levels of essential amino acids (up to 43.3 %), nutritional minerals (e.g., iodine, selenium, calcium, and iron/heme-iron), and vitamins E, D, and B12. Co-products were, in many cases, more nutrient-rich than the fillet and could be excellent sources for both (functional) food and nutraceuticals.
Collapse
|
26
|
Dietary Fats and Cardio-Metabolic Outcomes in a Cohort of Italian Adults. Nutrients 2022; 14:nu14204294. [PMID: 36296979 PMCID: PMC9608185 DOI: 10.3390/nu14204294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Dietary fats, and especially saturated fatty acid (SFA), have been blamed for being the culprit in the dramatic increase in obesity and its associated diseases. However multiple systematic reviews and recent meta-analyses do not support the association between SFA and cardiovascular diseases. Thus, the objective of this study was to test whether specific types and subtypes of dietary fats are associated with metabolic outcomes in a cohort of Italian adults. Methods: Nutritional and demographic data of 1936 adults living in the south of Italy were examined. Food frequency questionnaires (FFQs) were administered to assess the intake of total dietary fat and each specific class of dietary fat, such as SFA, monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA). The intake of fatty acids was also examined according to the carbon-chain length of each individual class. Cases of hypertension, type-2 diabetes and dyslipidemias were collected from previous doctor-confirmed diagnosis records (or direct measurement of blood pressure). Results: After adjustment for potential confounding factors, individuals reporting higher intakes of total and saturated fats were associated with lower likelihood of having hypertension (odds ratio (OR) = 0.57, 95% CI: 0.35, 0.91 and OR = 0.55, 95% CI: 0.34, 0.89, respectively). Moreover, higher intake of short-chain saturated fatty acids (SCSFAs) and medium-chain saturated fatty acids (MCSFAs) was inversely associated with dyslipidemia and diabetes (OR = 0.43, 95% CI: 0.23, 0.82 and OR = 0.25, 95% CI: 0.09, 0.72, respectively). Among MUFAs, C18:1 was inversely associated with hypertension and diabetes (OR = 0.52, 95% CI: 0.30, 0.92 and OR = 0.21, 95% CI: 0.07, 0.67, respectively), while C14:1 intake was inversely associated only with hypertension (OR = 0.57, 95% CI: 0.37, 0.88). In contrast, C20:1 intake was associated with dyslipidemia (OR = 3.35, 95% CI: 1.33, 8.42). Regarding PUFA, C18:2 and 20:5 were inversely associated with hypertension (OR = 0.33, 95% CI: 0.18, 0.60 and OR = 0.30, 95% CI: 0.10, 0.89, respectively). Conclusions: The consumption of SFA does not seem to be harmful to cardio-metabolic health and, on the contrary, SCSFA may exert beneficial effects. Further studies are needed to clearly validate the results of the present study.
Collapse
|
27
|
Wang J, Zhong Y, Zhu H, Mahgoub OK, Jian Z, Gu L, Xiong X. Different gender-derived gut microbiota influence stroke outcomes by mitigating inflammation. J Neuroinflammation 2022; 19:245. [PMID: 36195899 PMCID: PMC9531521 DOI: 10.1186/s12974-022-02606-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background and purpose Stroke is associated with high disability and mortality rates and increases the incidence of organ-related complications. Research has revealed that the outcomes and prognosis of stroke are regulated by the state of the intestinal microbiota. However, the possibility that the manipulation of the intestinal microbiota can alter sex-related stroke outcomes remain unknown. Methods To verify the different effects of microbiota from different sexes on stroke outcomes, we performed mouse fecal microbiota transplantation (FMT) and established a model of ischemic stroke. Male and female mice received either male or female microbiota through FMT. Ischemic stroke was triggered by MCAO (middle cerebral artery occlusion), and sham surgery served as a control. Over the next few weeks, the mice underwent neurological evaluation and metabolite and inflammatory level detection, and we collected fecal samples for 16S ribosomal RNA analysis. Results We found that when the female mice were not treated with FMT, the microbiota (especially the Firmicutes-to-Bacteroidetes ratio) and the levels of three main metabolites tended to resemble those of male mice after experimental stroke, indicating that stroke can induce an ecological imbalance in the biological community. Through intragastric administration, the gut microbiota of male and female mice was altered to resemble that of the other sex. In general, in female mice after MCAO, the survival rate was increased, the infarct area was reduced, behavioral test performance was improved, the release of beneficial metabolites was promoted and the level of inflammation was mitigated. In contrast, mice that received male microbiota were much more hampered in terms of protection against brain damage and the recovery of neurological function. Conclusion A female-like biological community reduces the level of systemic proinflammatory cytokines after ischemic stroke. Poor stroke outcomes can be positively modulated following supplementation with female gut microbiota.
Collapse
Affiliation(s)
- Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.,Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.
| |
Collapse
|
28
|
Sajib M, Trigo JP, Abdollahi M, Undeland I. Pilot-Scale Ensilaging of Herring Filleting Co-Products and Subsequent Separation of Fish Oil and Protein Hydrolysates. FOOD BIOPROCESS TECH 2022; 15:2267-2281. [PMID: 35875173 PMCID: PMC9295090 DOI: 10.1007/s11947-022-02870-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022]
Abstract
In this study, ensilaging of herring (Clupea harengus) filleting co-products was taken from lab-scale to pilot scale (1500 L) while monitoring the protein degree of hydrolysis (DH) and lipid oxidation. Subsequently, the possibility of recovering fish oil and protein hydrolysates using batch centrifugation at different g-forces/times was investigated. Around 38% DH was recorded after 2-day pilot-scale ensilaging of herring co-products at ambient temperature (i.e., ~ 22 °C), which was similar to the DH found in lab-scale (40% after 2 days; 22 °C). The lipid oxidation marker 2-thiobarbituric acid reactive substances (TBARS) reached 20 µmole TBARS/kg silage after 2-day ensilaging. Centrifugation of the silage at 3000-8500 × g for 2-20 min revealed successful separation into fish oil and protein hydrolysates. Heat-treating the silage (85 °C; 30 min) prior to centrifugation resulted in significantly higher oil and hydrolysates recoveries; the same being true for increased g-force. At 8500 × g, the recovery of oil and hydrolysates were 9.7 and 53.0% w/w, respectively, from heat-treated silage, while recoveries were 4.1 and 48.1% w/w, respectively, from non-heat treated silage. At 4500 × g, being a more scalable approach, corresponding numbers were 8.2 and 47.1% (w/w) as well as 2.0 and 40.2% (w/w). The recovered fish oil contained 8% EPA and 11% DHA of total fatty acids. Free fatty acids (FFA), peroxide value (PV), p-anisidine value (p-AV), and total oxidation (TOTOX) values of oils were in the range of 4-7% (FFA), 3.6-3.7 meq/kg oil (PV), 2.5-4.0 (p-AV), and 9.9-11.1 (TOTOX), respectively, which were within the acceptable limits for human consumption specified by the GOED voluntary monograph. The recovered protein hydrolysates contained peptides in the molecular weight range 0.3-6 kDa (~ 37%) and 11-34 kDa (~ 63%). Also, the remaining solids contained 15-17% (w/w) protein, having 44-45% essential amino acids. Overall, the results suggest that herring co-product silage is a valuable source of fish oil and protein hydrolysates, paving the way for ensilaging based-biorefining of herring co-products into multiple products. Supplementary Information The online version contains supplementary material available at 10.1007/s11947-022-02870-9.
Collapse
Affiliation(s)
- Mursalin Sajib
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - João P. Trigo
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Ingrid Undeland
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
29
|
Li Y, Sui L, Zhao H, Zhang W, Gao L, Hu W, Song M, Liu X, Kong F, Gong Y, Wang Q, Guan H, Zhou P. Differences in the Establishment of Gut Microbiota and Metabolome Characteristics Between Balb/c and C57BL/6J Mice After Proton Irradiation. Front Microbiol 2022; 13:874702. [PMID: 35663879 PMCID: PMC9157390 DOI: 10.3389/fmicb.2022.874702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Although proton irradiation is ubiquitous in outer space as well as in the treatment of human diseases, its effects remain largely unclear. This work aimed to investigate and compare the composition of gut microbiota composition of mice in different species exposed to high-dose radiation. Male Balb/c mice and C57BL/6J mice were irradiated at a high dose (5Gy). Fecal specimens before and after irradiation were subjected to high-throughput sequencing (HTS) for the amplification of 16S rRNA gene sequences. We observed substantial changes in gut microbial composition among mice irradiated at high doses compared to non-irradiated controls. The changes included both the alpha and beta diversities. Furthermore, there were 11 distinct alterations in the irradiation group compared to the non-radiation control, including the families Muribaculaceae, Ruminococcaceae, Lactobacillus, Lachnospiraceae_NK4A136, Bacteroides, Alistipes, Clostridiales, Muribaculum, and Alloprevotella. Such alterations in the gut microbiome were accompanied by alterations in metabolite abundances, while at the metabolic level, 32 metabolites were likely to be potential biomarkers. Some alterations may have a positive effect on the repair of intestinal damage. Simultaneously, metabolites were predicted to involve multiple signal pathways, such as Urea Cycle, Ammonia Recycling, Alpha Linolenic Acid and Linoleic Acid Metabolism, Ketone Body Metabolism, Aspartate Metabolism, Phenylacetate Metabolism, Malate-Aspartate Shuttle, Arginine and Proline Metabolism and Carnitine Synthesis. Metabolites produced by proton irradiation in the microbial region play a positive role in repairing damage, making this area worthy of further experimental exploration. The present work offers an analytical and theoretical foundation to investigate how proton radiation affects the treatment of human diseases and identifies potential biomarkers to address the adverse effects of radiation.
Collapse
Affiliation(s)
- Yuchen Li
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hongling Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Gao
- College of Life Sciences, Hebei University, Baoding, China
| | - Weixiang Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Man Song
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochang Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuquan Kong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Yihao Gong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Qiaojuan Wang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hua Guan
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
30
|
Warma S, Lee Y, Brietzke E, McIntyre RS. Microbiome abnormalities as a possible link between diabetes mellitus and mood disorders: Pathophysiology and implications for treatment. Neurosci Biobehav Rev 2022; 137:104640. [PMID: 35353985 DOI: 10.1016/j.neubiorev.2022.104640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus and mental health disorders create an immense burden on society worldwide. Knowledge of the cellular and biochemical connections linking these two pathologies has broadened and the mechanism for diet-induced shifts in the microbiota has become more refined. However, there remains limited understanding of the mechanism wherein changes in the microbiota affect the development and severity of these diseases and their interconnectedness. This review examines current literature to highlight a potential mechanism that links specific changes in the microbiome to mental health disorders and diabetes mellitus. Novel data indicate that alterations in the abundance and concentration of bacterium in the gut result in an elevated risk for developing mental and metabolic disorders. Through the mechanisms and downstream effects of short-chain fatty acids and the tryptophan metabolizing pathway, the onset of diabetes is shown to directly affect the development of mental health disorders. This paper provides a possible physiological mechanism connecting these two disorders, which could inform future research and policy decisions limiting the global impact of these diseases.
Collapse
Affiliation(s)
- Sebastian Warma
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON M5S 3J6, Canada
| | - Yena Lee
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON M5S 3J6, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: From association to therapeutic perspectives. Comput Struct Biotechnol J 2022; 20:2402-2414. [PMID: 35664229 PMCID: PMC9125655 DOI: 10.1016/j.csbj.2022.03.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
Collapse
Key Words
- AMPs, Antimicrobial peptides
- BAs, Bile acids
- BC, Bray Curtis
- CD, Crohn’s disease
- CDI, Clostridioides difficile infection
- DC, Diversion colitis
- DCA, Deoxycholic acid
- DSS, Dextran sulfate sodium
- FAs, Fatty acid
- FMT, Fecal microbiota transplantation
- FODMAP, Fermentable oligosaccharide, disaccharide, monosaccharide, and polyol
- GC–MS, Gas chromatography-mass spectrometry
- Gut microbiota
- HDAC, Histone deacetylase
- IBD, Inflammatory bowel disease
- Inflammatory bowel diseases
- LC-MS, Liquid chromatography-mass spectrometry
- LCA, Lithocholic acid
- LCFAs, Long-chain fatty acids
- MCFAs, Medium-chain fatty acids
- MD, Mediterranean diet
- MS, Mass spectrometry
- Metabolite
- Metabolomics
- Metagenomics
- Microbial therapeutics
- NMR, Nuclear magnetic resonance
- PBAs, Primary bile acids
- SBAs, Secondary bile acids
- SCD, Special carbohydrate diet
- SCFAs, Short-chain fatty acids
- TNBS, 2,4,6-trinitro-benzene sulfonic acid
- UC, Ulcerative colitis
- UDCA, Ursodeoxycholic acid
- UPLC-MS, ultraperformance liquid chromatography coupled to mass spectrometry
- UU, Unweighted UniFrac
- WMS, Whole-metagenome shotgun
Collapse
Affiliation(s)
| | | | | | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
32
|
Wang J, Xu J, Zang G, Zhang T, Wu Q, Zhang H, Chen Y, Wang Y, Qin W, Zhao S, Qin E, Qiu J, Zhang X, Wen L, Wang Y, Wang G. trans-2-Enoyl-CoA Reductase Tecr-Driven Lipid Metabolism in Endothelial Cells Protects against Transcytosis to Maintain Blood-Brain Barrier Homeostasis. RESEARCH 2022; 2022:9839368. [PMID: 35465346 PMCID: PMC9006154 DOI: 10.34133/2022/9839368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
The transport and metabolism of lipids in cerebrovascular endothelial cells (ECs) have been hypothesized to regulate blood-brain barrier (BBB) maturation and homeostasis. Long-chain polyunsaturated fatty acids (LCPUFAs) as the important lipids components of cell membranes are essential for the development and function of BBB, but the direct links of lipid metabolism and ECs barrier function remain to be established. Here, we comprehensively characterize the transcriptomic phenotype of developmental cerebrovascular ECs in single-cell resolution and firstly find that trans-2-enoyl-CoA reductase (Tecr), a very-long-chain fatty acid synthesis, is highly expressed during barriergenesis and decreased after BBB maturation. EC-specific knockout of Tecr compromises angiogenesis due to delayed vascular sprouting. Importantly, EC-specific deletion of Tecr loss restrictive quality of vascular permeability from neonatal stages to adulthood, with high levels of transcytosis, but maintains the vascular tight junctions. Moreover, lipidomic analysis shows that the expression of Tecr in ECs is associated with the containing of omega-3 fatty acids, which directly suppresses caveolae vesicles formation. These results reveal a protective role for Tecr in BBB integrity and suggest that Tecr as a novel therapeutic target in the central nervous system (CNS) diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- Institute of Life Science, Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Tao Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Weixi Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Erdai Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|