1
|
Su S, Cui MY, Gui Z, Guo QQ, Ren H, Ma SF, Mu L, Yu JF, Fu SY, Qi DD. First detection of Candidatus Rickettsia tarasevichiae in Hyalomma marginatum ticks. PLoS One 2024; 19:e0296757. [PMID: 38306367 PMCID: PMC10836667 DOI: 10.1371/journal.pone.0296757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024] Open
Abstract
Ticks are important vectors of zoonotic diseases and play a major role in the circulation and transmission of many rickettsial species. The aim of this study was to investigate the carriage of Candidatus Rickettsia tarasevichiae (CRT) in a total of 1168 ticks collected in Inner Mongolia to elucidate the potential public health risk of this pathogen, provide a basis for infectious disease prevention, control and prediction and contribute diagnostic ideas for clinical diseases that present with fever in populations exposed to ticks. A total of four tick species, Haemaphysalis concinna (n = 21), Dermacentor nuttalli (n = 122), Hyalomma marginatum (n = 148), and Ixodes persulcatus (n = 877), were collected at nine sampling sites in Inner Mongolia, China, and identified by morphological and molecular biological methods. Reverse transcription PCR targeting the 16S ribosomal RNA (rrs), gltA, groEL, ompB and Sca4 genes was used to detect CRT DNA. Sequencing was used for pathogen species confirmation. The molecular epidemiological analysis showed that three species of ticks were infected with CRT, and the overall positive rate was as high as 42%. The positive rate of I. persulcatus collected in Hinggan League city was up to 96%, and that of I. persulcatus collected in Hulun Buir city was 50%. The pool positive rates of D. nuttalli and H. marginatum collected in Bayan Nur city and H. concinna collected in Hulun Buir city were 0%, 28% and 40%, respectively. This study revealed the high prevalence of CRT infection in ticks from Inner Mongolia and the first confirmation of CRT detected in H. marginatum in China. The wide host range and high infection rate in Inner Mongolia may dramatically increase the exposure of CRT to humans and other vertebrates. The role of H. marginatum in the transmission of rickettsiosis and its potential risk to public health should be further considered.
Collapse
Affiliation(s)
- Si Su
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Meng-Yu Cui
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zheng Gui
- First Hospital of Jilin University, Changchun, China
| | - Qi-Qi Guo
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hong Ren
- First Clinical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shi-Fa Ma
- Laboratory of Basic and Clinical Psychiatry, The Third People’s Hospital of Hulunbuir City, Hulunbuir, Inner Mongolia, China
| | - Lan Mu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot Inner Mongolia, China
| | - Jing-Feng Yu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot Inner Mongolia, China
| | - Shao-Yin Fu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot, Inner Mongolia, China
| | - Dong-Dong Qi
- Laboratory of Basic and Clinical Psychiatry, The Third People’s Hospital of Hulunbuir City, Hulunbuir, Inner Mongolia, China
| |
Collapse
|
2
|
Igolkina Y, Yakimenko V, Tikunov A, Epikhina T, Tancev A, Tikunova N, Rar V. Novel Genetic Lineages of Rickettsia helvetica Associated with Ixodes apronophorus and Ixodes trianguliceps Ticks. Microorganisms 2023; 11:1215. [PMID: 37317189 DOI: 10.3390/microorganisms11051215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Ixodes apronophorus is an insufficiently studied nidicolous tick species. For the first time, the prevalence and genetic diversity of Rickettsia spp. in Ixodes apronophorus, Ixodes persulcatus, and Ixodes trianguliceps ticks from their sympatric habitats in Western Siberia were investigated. Rickettsia helvetica was first identified in I. apronophorus with a prevalence exceeding 60%. "Candidatus Rickettsia tarasevichiae" dominated in I. persulcatus, whereas I. trianguliceps were infected with "Candidatus Rickettsia uralica", R. helvetica, and "Ca. R. tarasevichiae". For larvae collected from small mammals, a strong association was observed between tick species and rickettsiae species/sequence variants, indicating that co-feeding transmission in studied habitats is absent or its impact is insignificant. Phylogenetic analysis of all available R. helvetica sequences demonstrated the presence of four distinct genetic lineages. Most sequences from I. apronophorus belong to the unique lineage III, and single sequences cluster into the lineage I alongside sequences from European I. ricinus and Siberian I. persulcatus. Rickettsia helvetica sequences from I. trianguliceps, along with sequences from I. persulcatus from northwestern Russia, form lineage II. Other known R. helvetica sequences from I. persulcatus from the Far East group into the lineage IV. The obtained results demonstrated the high genetic variability of R. helvetica.
Collapse
Affiliation(s)
- Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Valeriy Yakimenko
- Omsk Research Institute of Natural Foci Infections, Mira Avenue 7, 644080 Omsk, Russia
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Aleksey Tancev
- Omsk Research Institute of Natural Foci Infections, Mira Avenue 7, 644080 Omsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Vera Rar
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Cull B, Burkhardt NY, Wang XR, Thorpe CJ, Oliver JD, Kurtti TJ, Munderloh UG. The Ixodes scapularis Symbiont Rickettsia buchneri Inhibits Growth of Pathogenic Rickettsiaceae in Tick Cells: Implications for Vector Competence. Front Vet Sci 2022; 8:748427. [PMID: 35071375 PMCID: PMC8770908 DOI: 10.3389/fvets.2021.748427] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ixodes scapularis is the primary vector of tick-borne pathogens in North America but notably does not transmit pathogenic Rickettsia species. This tick harbors the transovarially transmitted endosymbiont Rickettsia buchneri, which is widespread in I. scapularis populations, suggesting that it confers a selective advantage for tick survival such as providing essential nutrients. The R. buchneri genome includes genes with similarity to those involved in antibiotic synthesis. There are two gene clusters not found in other Rickettsiaceae, raising the possibility that these may be involved in excluding pathogenic bacteria from the tick. This study explored whether the R. buchneri antibiotic genes might exert antibiotic effects on pathogens associated with I. scapularis. Markedly reduced infectivity and replication of the tick-borne pathogens Anaplasma phagocytophilum, R. monacensis, and R. parkeri were observed in IRE11 tick cells hosting R. buchneri. Using a fluorescent plate reader assay to follow infection dynamics revealed that the presence of R. buchneri in tick cells, even at low infection rates, inhibited the growth of R. parkeri by 86-100% relative to R. buchneri-free cells. In contrast, presence of the low-pathogenic species R. amblyommatis or the endosymbiont R. peacockii only partially reduced the infection and replication of R. parkeri. Addition of host-cell free R. buchneri, cell lysate of R. buchneri-infected IRE11, or supernatant from R. buchneri-infected IRE11 cultures had no effect on R. parkeri infection and replication in IRE11, nor did these treatments show any antibiotic effect against non-obligate intracellular bacteria E. coli and S. aureus. However, lysate from R. buchneri-infected IRE11 challenged with R. parkeri showed some inhibitory effect on R. parkeri infection of treated IRE11, suggesting that challenge by pathogenic rickettsiae may induce the antibiotic effect of R. buchneri. This research suggests a potential role of the endosymbiont in preventing other rickettsiae from colonizing I. scapularis and/or being transmitted transovarially. The confirmation that the observed inhibition is linked to R. buchneri's antibiotic clusters requires further investigation but could have important implications for our understanding of rickettsial competition and vector competence of I. scapularis for rickettsiae.
Collapse
Affiliation(s)
- Benjamin Cull
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Nicole Y. Burkhardt
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Xin-Ru Wang
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Cody J. Thorpe
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J. Kurtti
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Ulrike G. Munderloh
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
4
|
Beliavskaia A, Hönig V, Erhart J, Vyhlidalova T, Palus M, Cerny J, Kozlova I, Ruzek D, Palomar AM, Bell-Sakyi L. Spiroplasma Isolated From Third-Generation Laboratory Colony Ixodes persulcatus Ticks. Front Vet Sci 2021; 8:659786. [PMID: 33842580 PMCID: PMC8032855 DOI: 10.3389/fvets.2021.659786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Jan Erhart
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Tereza Vyhlidalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Jiri Cerny
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
| | - Irina Kozlova
- Science Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia.,Veterinary Research Institute, Brno, Czechia
| | - Ana M Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Vikentjeva M, Geller J, Remm J, Golovljova I. Rickettsia spp. in rodent-attached ticks in Estonia and first evidence of spotted fever group Rickettsia species Candidatus Rickettsia uralica in Europe. Parasit Vectors 2021; 14:65. [PMID: 33472659 PMCID: PMC7818765 DOI: 10.1186/s13071-020-04564-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, such as ixodid ticks. Estonia is one of few regions where the distribution area of two medically important tick species, Ixodes persulcatus and I. ricinus, overlaps. The nidicolous rodent-associated Ixodes trianguliceps has also recently been shown to be present in Estonia. Although no data are available on human disease(s) caused by tick-borne Rickettsia spp. in Estonia, the presence of three Rickettsia species in non-nidicolous ticks has been previously reported. The aim of this study was to detect, identify and partially characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents in Estonia. RESULTS Larvae and nymphs of I. ricinus (n = 1004), I. persulcatus (n = 75) and I. trianguliceps (n = 117), all removed from rodents and shrews caught in different parts of Estonia, were studied for the presence of Rickettsia spp. by nested PCR. Ticks were collected from 314 small animals of five species [Myodes glareolus (bank voles), Apodemus flavicollis (yellow necked mice), A. agrarius (striped field mice), Microtus subterranius (pine voles) and Sorex araneus (common shrews)]. Rickettsial DNA was detected in 8.7% (103/1186) of the studied ticks. In addition to identifying R. helvetica, which had been previously found in questing ticks, we report here the first time that the recently described I. trianguliceps-associated Candidatus Rickettsia uralica has been identified west of the Ural Mountains.
Collapse
Affiliation(s)
- Maria Vikentjeva
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia. .,Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia.
| | - Julia Geller
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia
| | - Jaanus Remm
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Irina Golovljova
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia.,Tallinn Children's Hospital, Tallinn, Estonia
| |
Collapse
|
6
|
Piotrowski M, Rymaszewska A. Expansion of Tick-Borne Rickettsioses in the World. Microorganisms 2020; 8:E1906. [PMID: 33266186 PMCID: PMC7760173 DOI: 10.3390/microorganisms8121906] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century.
Collapse
|
7
|
Rar V, Livanova N, Sabitova Y, Igolkina Y, Tkachev S, Tikunov A, Babkin I, Golovljova I, Panov V, Tikunova N. Ixodes persulcatus/pavlovskyi natural hybrids in Siberia: Occurrence in sympatric areas and infection by a wide range of tick-transmitted agents. Ticks Tick Borne Dis 2019; 10:101254. [PMID: 31327746 DOI: 10.1016/j.ttbdis.2019.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 01/24/2023]
Abstract
Ixodes persulcatus and Ixodes pavlovskyi ticks, two closely related species of the I. ricinus - I. persulcatus group, are widely distributed in the southern part of Western Siberia. Recently, the existence of natural hybrids of I. persulcatus and I. pavlovskyi ticks has been demonstrated. The aim of this study was to evaluate the abundance of I. persulcatus/pavlovskyi hybrids in several locations with different ratios of parental tick species and to investigate the prevalence and genetic variability of a wide range of infectious agents in these hybrids compared to the parental tick species. Natural hybrids of I. persulcatus and I. pavlovskyi ticks were identified in all examined locations in Altai and Novosibirsk, Western Siberia, Russia. The abundance of hybrids varied from 7% to 40% in different locations and was maximal in a location with similar proportions of I. persulcatus and I. pavlovskyi ticks. For the first time, it was shown that hybrids can be infected with the same agents as their parental tick species: tick-borne encephalitis and Kemerovo viruses, Borrelia afzelii, Borrelia bavariensis, Borrelia garinii, Borrelia miyamotoi, Rickettsia helvetica, Rickettsia raoultii, Rickettsia sibirica, "Candidatus Rickettsia tarasevichiae", Anaplasma phagocytophilum, Ehrlichia muris, "Candidatus Neoehrlichia mikurensis", and Babesia microti. The prevalence of most bacterial agents in hybrids was intermediate compared to their parental tick species. Most genetic variants of the identified agents have been previously found in the parental tick species. Wide distribution of I. persulcatus/pavlovskyi natural hybrids implies that I. persulcatus, I. pavlovskyi and their hybrids coexist in all I. persulcatus - I. pavlovskyi sympatric areas.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Natalia Livanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Yuliya Sabitova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Igor Babkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Irina Golovljova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Department of Virology, National Institute for Health Development, Tallinn, Estonia
| | - Victor Panov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| |
Collapse
|
8
|
Zhang X, Geng J, Du J, Wang Y, Qian W, Zheng A, Zou Z. Molecular Identification of Rickettsia Species in Haemaphysalis Ticks Collected from Southwest China. Vector Borne Zoonotic Dis 2018; 18:663-668. [PMID: 30129891 DOI: 10.1089/vbz.2017.2231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rickettsia species are obligate intracellular Gram-negative bacteria that can infect a wide range of vertebrate hosts, including humans, through arthropod vectors such as Ixodid ticks. These ticks are a threat to humans and animals because they are the primary vectors or reservoirs for rickettsiae, which is of public health importance. In this study, we report the identification and percent of positive of Rickettsia spp. in ticks collected from Cangxi County, Southwest China. Haemaphysalis longicornis comprised 48.4% of the 188 ticks collected followed by Haemaphysalis flava (29.3%), H. doenitzi (12.2%), and Haemaphysalis hystricis (10.1%). A total of 63 (33.5%) ticks were positive with Rickettsia spp., with 48 (57%) of those being H. longicornis and 15 (27.3%) being H. flava. The other two tick species, however, did not have any ticks positive for rickettsial DNA. In addition, two different Rickettsia spp. were identified using gltA and ompA as molecular markers. The sequence of Rickettsia sp. infecting H. longicornis ticks was found to be identical to the Rickettsia sequences from Northeastern China and Japan (KF728367, AB516964). Phylogenetic analyses using these molecular markers support the notion that Rickettsia species from H. flava is the most close to a member of the Candidatus Rickettsia gannanii subgroup. The high percentage of Rickettsia positive in this Southwest China region suggests potential public health threat in the future and warrants to be monitored.
Collapse
Affiliation(s)
- Xing Zhang
- 1 College of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Jingjing Geng
- 1 College of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Jie Du
- 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- 2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Weiping Qian
- 3 Sichuan Provincial Center for Disease Control and Prevention , Sichuan, China
| | - Aihua Zheng
- 1 College of Life Sciences, University of Chinese Academy of Sciences , Beijing, China .,2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- 1 College of Life Sciences, University of Chinese Academy of Sciences , Beijing, China .,2 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Igolkina Y, Rar V, Vysochina N, Ivanov L, Tikunov A, Pukhovskaya N, Epikhina T, Golovljova I, Tikunova N. Genetic variability of Rickettsia spp. in Dermacentor and Haemaphysalis ticks from the Russian Far East. Ticks Tick Borne Dis 2018; 9:1594-1603. [PMID: 30121164 DOI: 10.1016/j.ttbdis.2018.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 11/18/2022]
Abstract
The Russian Far East is an endemic region for tick-borne rickettsioses. However, the prevalence and genetic variability of Rickettsia species in this region have not been extensively investigated. In this study, 188 Dermacentor silvarum, 439 Haemaphysalis concinna, and 374 Haemaphysalis japonica adult ticks were collected from four locations in Khabarovsk Province and three locations in Amur Province in the Russian Far East. These ticks were examined for the presence of Rickettsia spp. by amplifying a fragment of the gltA gene. Identified rickettsiae were genotyped by sequencing of the gltA, 16S rRNA, ompA, ompB, and sca4 genes. In the examined ticks, Rickettsia heilongjiangensis, the causative agent of Far-Eastern tick-borne rickettsiosis, was found in 10.5% of H. concinna and in 1.9% of H. japonica ticks, while Rickettsia sibirica, the agent of Siberian tick typhus, was detected in only one H. concinna tick. In addition, Rickettsia raoultii was found predominantly in D. silvarum (>70%) and significantly less frequently in Haemaphysalis ticks (<3%). "Candidatus Rickettsia tarasevichiae" was found in all examined tick species (1.6-5.3% in different species). Notably, this study is the first observation of "Candidatus R. tarasevichiae" in D. silvarum ticks. Moreover, DNA of Rickettsia canadensis was found for the first time in a H. japonica tick; DNA of Rickettsia aeschlimannii was revealed for the first time in H. concinna and H. japonica ticks. "Candidatus Rickettsia principis" and "Candidatus Rickettsia rara" were found in Haemaphysalis spp. ticks. "Candidatus R. principis" was associated with H. japonica and identified in 5.6% of the examined ticks, while "Candidatus R. rara" was found more frequently in H. concinna (3.0%) compared to H. japonica ticks (1.1%). In this study, "Candidatus R. principis" and "Candidatus R. rara" were characterized for the first time by the 16S rRNA, ompA, ompB, and sca4 genes.
Collapse
Affiliation(s)
- Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Nelya Vysochina
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - Leonid Ivanov
- Khabarovsk Antiplague Station, Khabarovsk, Russian Federation
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | | | - Tamara Epikhina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Irina Golovljova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Department of Virology, National Institute for Health Development, Estonia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
Kuo CC, Lin YF, Yao CT, Shih HC, Chung LH, Liao HC, Hsu YC, Wang HC. Tick-borne pathogens in ticks collected from birds in Taiwan. Parasit Vectors 2017; 10:587. [PMID: 29178908 PMCID: PMC5702202 DOI: 10.1186/s13071-017-2535-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Background A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Methods Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Results Nineteen ticks (all larvae) were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus). A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis) not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Conclusion Our study demonstrates the paucity of information on ticks of birds and emphasizes the need for more research on ticks of birds in Taiwan and Southeast Asia. Moreover, some newly recorded ticks and tick-borne pathogens were found only on migratory birds, demonstrating the necessity of further surveillance on these highly mobile species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2535-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi-Chien Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Yi-Fu Lin
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Te Yao
- Endemic Species Research Institute, Council of Agriculture, Chi-chi, Nantou, Taiwan
| | - Han-Chun Shih
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Lo-Hsuan Chung
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsien-Chun Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Cheng Hsu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan.
| | - Hsi-Chieh Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|
11
|
Sui S, Yang Y, Sun Y, Wang X, Wang G, Shan G, Wang J, Yu J. On the core bacterial flora of Ixodes persulcatus (Taiga tick). PLoS One 2017; 12:e0180150. [PMID: 28692666 PMCID: PMC5503197 DOI: 10.1371/journal.pone.0180150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/09/2017] [Indexed: 12/02/2022] Open
Abstract
Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups–wild, reared for a single generation or R1, and reared for eight generations or R8 –we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics.
Collapse
Affiliation(s)
- Shuo Sui
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Yang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yi Sun
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guangle Shan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiancheng Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Igolkina Y, Krasnova E, Rar V, Savelieva M, Epikhina T, Tikunov A, Khokhlova N, Provorova V, Tikunova N. Detection of causative agents of tick-borne rickettsioses in Western Siberia, Russia: identification of Rickettsia raoultii and Rickettsia sibirica DNA in clinical samples. Clin Microbiol Infect 2017; 24:199.e9-199.e12. [PMID: 28606645 DOI: 10.1016/j.cmi.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The main causative agent of tick-borne rickettsioses in Siberia is considered to be Rickettsia sibirica; however, only a few cases have been genetically confirmed. Other pathogenic species of Rickettsia have been detected in ixodid ticks in Western Siberia. The aim of this study was to detect the aetiological agents of tick-borne rickettsioses in Western Siberia and compare their clinical manifestations. METHODS A total of 273 blood and 44 cerebrospinal fluid (CSF) samples from 273 patients hospitalized because of tick-transmitted infection in April-September 2016 were examined for the presence of Rickettsia spp., using nested PCR with subsequent sequencing. RESULTS DNA of Rickettsia spp. was found in samples from 10 patients. The gltA gene fragment sequence analysis revealed R. sibirica DNA in seven patients (blood samples) and Rickettsia raoultii DNA in three patients (two blood and one CSF sample). Most patients infected with R. sibirica showed typical clinical symptoms, including high-grade fever (38.9-39.5°С), myalgia, rash, eschar at the site of the tick bite, and elevated levels of serum aminotransferases. In contrast, patients infected with R. raoultii showed nonspecific symptoms with short-term fever (37.2-37.7°С); one patient had a short episode of meningeal syndrome. CONCLUSIONS We report the first finding of R. raoultii DNA in clinical samples from Russian patients. The clinical manifestations of this rickettsiosis were nonspecific and differed from those caused by R. sibirica.
Collapse
Affiliation(s)
- Y Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation.
| | - E Krasnova
- Novosibirsk State Medical University, Novosibirsk, Russian Federation; Novosibirsk Municipal Clinical Hospital of Infectious Diseases No. 1, Novosibirsk, Russian Federation
| | - V Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - M Savelieva
- Novosibirsk Municipal Clinical Hospital of Infectious Diseases No. 1, Novosibirsk, Russian Federation
| | - T Epikhina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - A Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - N Khokhlova
- Novosibirsk State Medical University, Novosibirsk, Russian Federation; Novosibirsk Municipal Clinical Hospital of Infectious Diseases No. 1, Novosibirsk, Russian Federation
| | - V Provorova
- Novosibirsk State Medical University, Novosibirsk, Russian Federation; Novosibirsk Municipal Clinical Hospital of Infectious Diseases No. 1, Novosibirsk, Russian Federation
| | - N Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation; Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
13
|
Rar V, Livanova N, Tkachev S, Kaverina G, Tikunov A, Sabitova Y, Igolkina Y, Panov V, Livanov S, Fomenko N, Babkin I, Tikunova N. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasit Vectors 2017; 10:258. [PMID: 28545549 PMCID: PMC5445278 DOI: 10.1186/s13071-017-2186-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/11/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Ixodes pavlovskyi tick species, a member of the I. persulcatus/I. ricinus group, was discovered in the middle of the 20th century in the Russian Far East. Limited data have been reported on the detection of infectious agents in this tick species. The aim of this study was to investigate the prevalence and genetic variability of a wide range of infectious agents in I. pavlovskyi ticks collected in their traditional and recently invaded habitats, the Altai Mountains and Novosibirsk Province, respectively, which are both located within the Western Siberian part of the I. pavlovskyi distribution area. RESULTS This study reports the novel discovery of Borrelia bavariensis, Rickettsia helvetica, R. heilongjiangensis, R. raoultii, "Candidatus Rickettsia tarasevichiae", Anaplasma phagocytophilum, Ehrlichia muris, "Candidatus Neoehrlichia mikurensis" and Babesia microti in I. pavlovskyi ticks. In addition, we confirmed the previous identification of B. afzelii, B. garinii and B. miyamotoi, as well as tick-borne encephalitis and Kemerovo viruses in this tick species. The prevalence and some genetic characteristics of all of the tested agents were compared with those found in I. persulcatus ticks that were collected at the same time in the same locations, where these tick species occur in sympatry. It was shown that the prevalence and genotypes of many of the identified pathogens did not significantly differ between I. pavlovskyi and I. persulcatus ticks. However, I. pavlovskyi ticks were significantly more often infected by B. garinii and less often by B. bavariensis, B. afzelii, "Ca. R. tarasevichiae", and E. muris than I. persulcatus ticks in both studied regions. Moreover, new genetic variants of B. burgdorferi (sensu lato) and Rickettsia spp. as well as tick-borne encephalitis and Kemerovo viruses were found in both I. pavlovskyi and I. persulcatus ticks. CONCLUSION Almost all pathogens that were previously detected in I. persulcatus ticks were identified in I. pavlovskyi ticks; however, the distribution of species belonging to the B. burgdorferi (sensu lato) complex, the genus Rickettsia, and the family Anaplasmataceae was different between the two tick species. Several new genetic variants of viral and bacterial agents were identified in I. pavlovskyi and I. persulcatus ticks.
Collapse
Affiliation(s)
- Vera Rar
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Natalia Livanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Galina Kaverina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Yuliya Sabitova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Yana Igolkina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Victor Panov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Stanislav Livanov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russian Federation
| | - Nataliya Fomenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Igor Babkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|