1
|
Chiarlone SA, Garcia-Vozmediano A, Ebani VV, Pussini N, Dellepiane M, Guardone L, Razzuoli E. Canine Vector-Borne Diseases (CVBDs) in Liguria, North-West Italy: A Retrospective Study over an 11-Year Period (2013-2023). Animals (Basel) 2024; 14:3539. [PMID: 39682504 DOI: 10.3390/ani14233539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Canine vector-borne diseases (CVBDs) pose a global threat to both canine and public health. This study evaluates the prevalence of Anaplasma spp., Ehrlichia spp., Borrelia burgdorferi sensu lato (s.l.), Rickettsia conorii, and Dirofilaria immitis in domestic dogs in Liguria, north-west Italy, a region where data were lacking. From 2013 to 2023, 8584 blood samples from shelter (74%) and owned dogs (26%) were submitted to the Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta (IZSPLV) for serological testing (indirect immunofluorescence and/or rapid immunochromatographic tests). Overall, 18.8% (95% CI: 18.0-19.7) of the dogs tested positive for at least one pathogen, with positivity against R. conorii antigen being the most frequently recorded (24.4%, 95% CI: 23.3-25.5). Lower prevalence levels were observed for Anaplasma spp. (1.82%, 95% CI: 1.47-2.23), Ehrlichia spp., (1.25%, 95% CI: 0.97-1.60), B. burgdorferi s.l. (0.22%, 95% CI: 0.11-0.39), and D. immitis (0.84%, 95% CI: 0.65-1.06). Positive cases for all pathogens increased over time, with prevalence differing significantly between owned and shelter dogs. Topographical factors, land use, and monthly relative humidity appeared to influence the positivity in the dogs. These results update the epidemiology of the investigated CVBDs in Liguria, indicating a widespread exposure to Rickettsia spp. among local dogs.
Collapse
Affiliation(s)
- Sara A Chiarlone
- S.S. Ponente Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Martini 6, 17056 Savona, Italy
| | - Aitor Garcia-Vozmediano
- S.S. Epidemiologia Sicurezza Alimentare, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 220 c/o Lanificio di Torino, 10154 Torino, Italy
| | - Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, 56124 Pisa, Italy
| | - Nicola Pussini
- S.S. Ponente Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Martini 6, 17056 Savona, Italy
| | - Monica Dellepiane
- S.S. Ponente Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Martini 6, 17056 Savona, Italy
| | - Lisa Guardone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- S.S. Genova e Portualità Marittima, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Elisabetta Razzuoli
- S.S. Genova e Portualità Marittima, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
2
|
Sgroi G, D'Alessio N, Veneziano V, Rofrano G, Fusco G, Carbonara M, Dantas-Torres F, Otranto D, Iatta R. Ehrlichia canis in Human and Tick, Italy, 2023. Emerg Infect Dis 2024; 30:2651-2654. [PMID: 39592414 PMCID: PMC11616671 DOI: 10.3201/eid3012.240339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
In August 2023, ehrlichiosis was confirmed in a patient in Italy with a Haemaphysalis punctata tick attached to his neck. Gene sequences of Ehrlichia canis from the tick and the patient were identical, indicating a potential risk for this uncommon infection for persons participating in outdoor activities.
Collapse
|
3
|
Chisu V, Tanda A, Sechi S, Pinna Parpaglia ML, Masu G, Loi F, Masala G. Clinical Study and Serological Diagnosis of Vector-Borne Pathogens in Sardinian Dogs. Vet Sci 2024; 11:313. [PMID: 39057997 PMCID: PMC11281559 DOI: 10.3390/vetsci11070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Canine vector-borne diseases (CVBDs) comprise a group of infectious diseases caused by a wide range of pathogens transmitted by arthropod vectors. Clinical signs commonly involve symptoms such as fever, anorexia, weight loss, blood disorders, hepatosplenomegaly, and others that can lead to death in dogs with comorbidities. Some pathogens responsible for CVBDs constitute a serious threat to human health due to their zoonotic transmission. This study aimed to determine the prevalence of zoonotic vector-borne diseases (Rickettsia rickettsii, Anaplasma phagocytophilum, Ehrlichia canis, Bartonella henselae, and Leishmania infantum) in domestic Sardinian dogs with and without clinical signs of these pathogens. Blood serum samples were collected from 142 dogs and examined through serological analysis. Clinical signs suggestive of these pathogens were also evaluated. The results obtained showed that 33 (33/140; 23.6%), 22 (22/134; 16.4%), 14 (14/142; 9.9%), 20 (20/66; 30.3%), and 26 (26/108; 24.1%) dogs were seropositive for Rickettsia sp., Anaplasma sp., Ehrlichia sp., Bartonella sp., and Leishmania sp. antibodies, respectively. Among these dogs, 12 dogs presented with at least one clinical sign (8.5%), while 18 (12.7%) showed more than two symptoms at the same time. Furthermore, among the asymptomatic dogs (93/142; 65.5%), 13% (n = 12) tested positive for A. phagocytophilum, 12% (n = 11) tested positive for B. henselae, 9% (n = 8) tested positive for E. canis, 12% (n = 11) tested positive for L. infantum, and 19% (n = 18) tested positive for R. rickettsii. This survey represents the first study assessing different canine vector-borne pathogens in dogs from North Sardinia. Since the pathogens detected here represent emerging zoonotic diseases, these results highlight the need to undertake further studies to increase the knowledge of these under-reported vector-borne pathogens in Sardinia.
Collapse
Affiliation(s)
- Valentina Chisu
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (V.C.); (A.T.); (G.M.); (G.M.)
| | - Antonio Tanda
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (V.C.); (A.T.); (G.M.); (G.M.)
| | - Sara Sechi
- Teaching Veterinary Hospital, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (S.S.); (M.L.P.P.)
| | | | - Gabriella Masu
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (V.C.); (A.T.); (G.M.); (G.M.)
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (V.C.); (A.T.); (G.M.); (G.M.)
| |
Collapse
|
4
|
Habib J, Zenner L, Garel M, Mercier A, Poirel MT, Itty C, Appolinaire J, Amblard T, Benedetti P, Sanchis F, Benabed S, Abi Rizk G, Gibert P, Bourgoin G. Prevalence of tick-borne pathogens in ticks collected from the wild mountain ungulates mouflon and chamois in 4 regions of France. Parasite 2024; 31:21. [PMID: 38602373 PMCID: PMC11008225 DOI: 10.1051/parasite/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
Ticks are major vectors of various pathogens of health importance, such as bacteria, viruses and parasites. The problems associated with ticks and vector-borne pathogens are increasing in mountain areas, particularly in connection with global climate change. We collected ticks (n = 2,081) from chamois and mouflon in 4 mountainous areas of France. We identified 6 tick species: Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata and Dermacentor marginatus. We observed a strong variation in tick species composition among the study sites, linked in particular to the climate of the sites. We then analysed 791 ticks for DNA of vector-borne pathogens: Babesia/Theileria spp., Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, and Rickettsia of the spotted fever group (SFG). Theileria ovis was detected only in Corsica in Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) and Anaplasma phagocytophilum (3 sites) were detected in I. ricinus. Anaplasma ovis was detected at one site in I. ricinus and Rh. sanguineus s.l. SFG Rickettsia were detected at all the study sites: R. monacensis and R. helvetica in I. ricinus at the 3 sites where this tick is present; R. massiliae in Rh. sanguineus s.l. (1 site); and R. hoogstraalii and Candidatus R. barbariae in Rh. bursa in Corsica. These results show that there is a risk of tick-borne diseases for humans and domestic and wild animals frequenting these mountain areas.
Collapse
Affiliation(s)
- Jad Habib
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Lionel Zenner
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Mathieu Garel
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Antoine Mercier
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Christian Itty
- Office Français de la Biodiversité, Service Appui aux Acteurs et Mobilisation des Territoires, Direction Régionale Occitanie 7 rue du Four, Fagairolles 34610 Castanet-le-Haut France
| | - Joël Appolinaire
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Thibaut Amblard
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Pierre Benedetti
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Frédéric Sanchis
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Slimania Benabed
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Georges Abi Rizk
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Philippe Gibert
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Gilles Bourgoin
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| |
Collapse
|
5
|
Chisu V, Giua L, Bianco P, Masala G, Sechi S, Cocco R, Piredda I. Molecular Survey of Hepatozoon canis Infection in Domestic Dogs from Sardinia, Italy. Vet Sci 2023; 10:640. [PMID: 37999463 PMCID: PMC10674782 DOI: 10.3390/vetsci10110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Tick-borne protozoans of the genus Hepatozoon have been associated with infections of domestic and wild animals over the world. The occurrence of these apicomplexan agents in Sardinia has been poorly explored so far. In this study, the occurrence of Hepatozoon spp. has been investigated in domestic dogs from nine cities of Sardinia, Italy. Blood samples from each dog were collected and tested molecularly for the presence of Hepatozoon and Babesia/Theileria DNAs. Out of fifty-one dogs, nine were positive for Hepatozoon species based on the molecular detection of the parasite in blood samples. The phylogenetic relationships of strains detected here were also established. The PCR for amplification of the 18S rRNA fragment gene of Babesia/Theileria spp. did not give amplicons in any of the analyzed samples. Our results report the first molecular confirmation of Hepatozoon canis in Sardinian pet dogs and contribute to better understand the presence of these protozoans on the island. This study highlights the importance of recognizing and predicting the risk levels for the canine population, thus increasing the development of specific control measures. Also, since the distribution of hepatozoonosis is closely related to that of the definitive tick host, Rhipicephalus sanguineus, more accurate studies on Rhipicephalus ticks will be needed due to increasing the epidemiological knowledge of Hepatozoon species on the island.
Collapse
Affiliation(s)
- Valentina Chisu
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (L.G.); (P.B.); (G.M.)
| | - Laura Giua
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (L.G.); (P.B.); (G.M.)
| | - Piera Bianco
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (L.G.); (P.B.); (G.M.)
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (L.G.); (P.B.); (G.M.)
| | - Sara Sechi
- Teaching Veterinary Hospital, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (S.S.); (R.C.)
| | - Raffaella Cocco
- Teaching Veterinary Hospital, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (S.S.); (R.C.)
| | - Ivana Piredda
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (L.G.); (P.B.); (G.M.)
| |
Collapse
|
6
|
Chisu V, Dei Giudici S, Foxi C, Chessa G, Peralta F, Sini V, Masala G. Anaplasma Species in Ticks Infesting Mammals of Sardinia, Italy. Animals (Basel) 2023; 13:ani13081332. [PMID: 37106895 PMCID: PMC10135370 DOI: 10.3390/ani13081332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Ticks are hematophagous ectoparasites that are recognized for their ability to vector a wide variety of pathogens of viral, bacterial, protozoal, and helminthic nature to vertebrate hosts. Among the different diseases transmitted by ticks, also called "Tick-Borne Diseases" (TBD), many are zoonotic. Pathogens of the genus Anaplasma refer to obligate intracellular bacteria within the Rickettsiales order transmitted mainly through tick bites and considered as well-established threats to domestic animals, livestock, and humans, worldwide. In this retrospective study, 156 ticks collected from twenty goats, one marten, and one cattle from several Sardinian sites, were examined by molecular analyses to detect the presence of Anaplasma species. A total of 10 (10/156; 6.4%) ticks were shown to be Anaplasma-positive by PCR screening. After sequence analyses, A. phagocytophilum was detected in four Rhipicephalus sanguineus s.l. (3.3%) and four Rh. bursa (11%) ticks from goats, while one Rh. sanguineus s.l. (0.8%) and one Rh. bursa (2.8%) collected from the marten and cattle, respectively, exhibited 100% of identity with A. marginale strains. In this study, we provide the first description and molecular detection of A. marginale and A. phagocytophilum in ticks of the Rhiphicephalus genus in Sardinia. Considering the growing impact of tick-borne Anaplasma pathogens on human health, further studies are necessary to monitor the prevalence of these pathogens in Sardinia.
Collapse
Affiliation(s)
- Valentina Chisu
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Silvia Dei Giudici
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Cipriano Foxi
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Giovanna Chessa
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Francesca Peralta
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Valentina Sini
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| | - Giovanna Masala
- Dipartimento di Sanità Animale, Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
7
|
Kratou M, Belkahia H, Selmi R, Andolsi R, Dhibi M, Mhadhbi M, Messadi L, Ben Said M. Diversity and Phylogeny of Cattle Ixodid Ticks and Associated Spotted Fever Group Rickettsia spp. in Tunisia. Pathogens 2023; 12:pathogens12040552. [PMID: 37111438 PMCID: PMC10146803 DOI: 10.3390/pathogens12040552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Tick-borne rickettsioses are mainly caused by obligate intracellular bacteria belonging to the spotted fever group (SFG) of the Rickettsia genus. So far, the causative agents of SFG rickettsioses have not been detected in cattle ticks from Tunisia. Therefore, the aim of this study was to investigate the diversity and phylogeny of ticks associated with cattle from northern Tunisia and their associated Rickettsia species. Adult ticks (n = 338) were collected from cattle in northern Tunisia. The obtained ticks were identified as Hyalomma excavatum (n = 129), Rhipicephalus sanguineus sensu lato (n = 111), Hyalomma marginatum (n = 84), Hyalomma scupense (n = 12) and Hyalomma rufipes (n = 2). After DNA extraction from the ticks, 83 PCR products based on the mitochondrial 16S rRNA gene were sequenced and a total of four genotypes for Rh. sanguineus s.l., two for Hy. marginatum and Hy. excavatum and only one for Hy. scupense and Hy. rufipes were recorded, with the occurrence of one, two and three novel genotypes, respectively, for Hy. marginatum, Hy. excavatum and Rh. sanguineus s.l. mitochondrial 16S rRNA partial sequences. The tick DNA was tested for the presence of Rickettsia spp. by using PCR measurements and sequencing targeting three different genes (ompB, ompA and gltA). Of the 338 analyzed ticks, 90 (26.6%), including 38 (34.2%) Rh. sanguineus s.l., 26 (20.1%) Hy. excavatum, 25 (29.8%) Hy. marginatum and one (50%) Hy. rufipes tick, were positive for Rickettsia spp. Based on 104 partial sequences of the three analyzed genes, the BLAST analysis and phylogenetic study showed the infection of Hy. excavatum, Hy. marginatum and Rh. sanguineus s.l. tick specimens with R. massiliae, R. aeschlimannii and R. sibirica subsp. mongolitimonae and one Hy. rufipes tick specimen with R. aeschlimannii. In addition, coinfection with R. massiliae and R. aeschlimannii was reported in one Hy. marginatum and one Rh. sanguineus s.l. tick specimen, while a coinfection with R. massiliae and R. sibirica subsp. mongolitimonae was recorded in one Rh. sanguineus s.l. tick specimen. In conclusion, our study reports, for the first time in Tunisia, the infection of cattle ticks belonging to Hyalomma and Rhipicephalus genera with zoonotic Rickettsia species belonging to the SFG group.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Hanene Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Ministry of National Defense, General Directorate of Military Health, Veterinary Service, Tunis 1008, Tunisia
| | - Rihab Andolsi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Mokhtar Dhibi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Moez Mhadhbi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
8
|
Bonnet SI, Bertagnoli S, Falchi A, Figoni J, Fite J, Hoch T, Quillery E, Moutailler S, Raffetin A, René-Martellet M, Vourc’h G, Vial L. An Update of Evidence for Pathogen Transmission by Ticks of the Genus Hyalomma. Pathogens 2023; 12:pathogens12040513. [PMID: 37111399 PMCID: PMC10146795 DOI: 10.3390/pathogens12040513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Current and likely future changes in the geographic distribution of ticks belonging to the genus Hyalomma are of concern, as these ticks are believed to be vectors of many pathogens responsible for human and animal diseases. However, we have observed that for many pathogens there are no vector competence experiments, and that the level of evidence provided by the scientific literature is often not sufficient to validate the transmission of a specific pathogen by a specific Hyalomma species. We therefore carried out a bibliographical study to collate the validation evidence for the transmission of parasitic, viral, or bacterial pathogens by Hyalomma spp. ticks. Our results show that there are very few validated cases of pathogen transmission by Hyalomma tick species.
Collapse
|
9
|
Adepoju OA, Afinowi OA, Tauheed AM, Danazumi AU, Dibba LBS, Balogun JB, Flore G, Saidu U, Ibrahim B, Balogun OO, Balogun EO. Multisectoral Perspectives on Global Warming and Vector-borne Diseases: a Focus on Southern Europe. CURRENT TROPICAL MEDICINE REPORTS 2023; 10:47-70. [PMID: 36742193 PMCID: PMC9883833 DOI: 10.1007/s40475-023-00283-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Purpose of Review The climate change (CC) or global warming (GW) modifies environment that favors vectors' abundance, growth, and reproduction, and consequently, the rate of development of pathogens within the vectors. This review highlights the threats of GW-induced vector-borne diseases (VBDs) in Southern Europe (SE) and the need for mitigation efforts to prevent potential global health catastrophe. Recent Findings Reports showed astronomical surges in the incidences of CC-induced VBDs in the SE. The recently (2022) reported first cases of African swine fever in Northern Italy and West Nile fever in SE are linked to the CC-modified environmental conditions that support vectors and pathogens' growth and development, and disease transmission. Summary VBDs endemic to the tropics are increasingly becoming a major health challenge in the SE, a temperate region, due to the favorable environmental conditions caused by CC/GW that support vectors and pathogens' biology in the previously non-endemic temperate regions.
Collapse
Affiliation(s)
- Oluwafemi A. Adepoju
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | | | - Abdullah M. Tauheed
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Ammar U. Danazumi
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Lamin B. S. Dibba
- Department of Physical and Natural Sciences, School of Arts and Sciences, University of the Gambia, Serrekunda, The Gambia
| | - Joshua B. Balogun
- Department of Biological Sciences, Federal University Dutse, Jigawa State Dutse, Nigeria
| | - Gouegni Flore
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Umar Saidu
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| | - Olukunmi O. Balogun
- Department of Health Policy, National Center for Child Health and Development, Tokyo, Japan
| | - Emmanuel O. Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, 2222 Kaduna State Nigeria
| |
Collapse
|
10
|
First serological evidence of Q fever in large ruminants and its associated risk factors in Punjab, Pakistan. Sci Rep 2022; 12:17278. [PMID: 36241681 PMCID: PMC9568511 DOI: 10.1038/s41598-022-21405-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023] Open
Abstract
Coxiellosis, also known as Q fever, is a zoonotic disease caused by Coxiella burnetii, a gram-negative bacterium that exerts a significant deleterious impact on the productive and reproductive capabilities of livestock, severely effecting the economics of this sector. In this study, 448 sera samples from cattle (n = 224) and buffalo (n = 224) were collected from 112 farms in Pakistan and examined for antibodies against C. burnetii using an indirect ELISA. Ticks were also collected from these animals. Serological analysis revealed a 23.66% and 27.23% seroprevalence of Q fever in cattle and buffalo, respectively. Odds ratio (OR) analysis of the factors associated with C. burnetii seropositivity was performed, and a multivariable logistic model identified five main variables associated with the seropositivity for coxiellosis. These were: (i) the absence of acaricide use (OR 5.61; 95% CI 2.97-10.94); (ii) the presence of ticks (OR 3.23; 95% CI 1.87-5.69); (iii) the abortion history during the preceding year on the farm (OR 14.96; 95% CI 8.09-29.34); (iv) the presence of sheep and goats (OR 2.47; 95% CI 1.20-5.35); and (v) the absence of a separate parturition area (OR 3.17; 95% CI 1.76-5.86). This study provides new insights into the seroprevalence of Q fever in large ruminants across seven studied districts of Punjab, Pakistan, also providing baseline data to inform improved herd management and on-farm practices for the prevention and control of Q fever in large ruminants in the region. Results of this work suggest that further molecular investigation of coxiellosis is warranted to provide a more thorough evaluation of C. burnetii epidemiology in Pakistan.
Collapse
|
11
|
A Systematic Review of the Distribution of Tick-Borne Pathogens in Wild Animals and Their Ticks in the Mediterranean Rim between 2000 and 2021. Microorganisms 2022; 10:microorganisms10091858. [PMID: 36144460 PMCID: PMC9504443 DOI: 10.3390/microorganisms10091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tick-borne pathogens (TBPs) can be divided into three groups: bacteria, parasites, and viruses. They are transmitted by a wide range of tick species and cause a variety of human, animal, and zoonotic diseases. A total of 148 publications were found on tick-borne pathogens in wild animals, reporting on 85 species of pathogens from 35 tick species and 17 wild animal hosts between 2000 and February 2021. The main TBPs reported were of bacterial origin, including Anaplasma spp. and Rickettsia spp. A total of 72.2% of the TBPs came from infected ticks collected from wild animals. The main tick genus positive for TBPs was Ixodes. This genus was mainly reported in Western Europe, which was the focus of most of the publications (66.9%). It was followed by the Hyalomma genus, which was mainly reported in other areas of the Mediterranean Rim. These TBPs and TBP-positive tick genera were reported to have come from a total of 17 wild animal hosts. The main hosts reported were game mammals such as red deer and wild boars, but small vertebrates such as birds and rodents were also found to be infected. Of the 148 publications, 12.8% investigated publications on Mediterranean islands, and 36.8% of all the TBPs were reported in seven tick genera and 11 wild animal hosts there. The main TBP-positive wild animals and tick genera reported on these islands were birds and Hyalomma spp. Despite the small percentage of publications focusing on ticks, they reveal the importance of islands when monitoring TBPs in wild animals. This is especially true for wild birds, which may disseminate their ticks and TBPs along their migration path.
Collapse
|
12
|
Distribution of Tick-Borne Pathogens in Domestic Animals and Their Ticks in the Countries of the Mediterranean Basin between 2000 and 2021: A Systematic Review. Microorganisms 2022; 10:microorganisms10061236. [PMID: 35744755 PMCID: PMC9228937 DOI: 10.3390/microorganisms10061236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Tick-borne pathogens (TBPs) include a wide range of bacteria, parasites and viruses that cause a large spectrum of animal, human and zoonotic tick-borne diseases (TBDs). The object of this review was to establish an inventory and an analysis of TBPs found in domestic animals in the countries of the Mediterranean Basin. This geographic area occupies a central position between several continents and is an area of movement for animals, humans and pathogens of interest and their vectors, which is important in terms of animal and human health. In this systematic review, we included a total of 271 publications produced between 2000–2021 concerning TBPs in domestic animals. Among this literature, we found a total of 90 pathogen species (known as TBPs) reported in the 20 countries of the area; these were detected in tick species from domestic animals and were also directly detected in domestic animals. In all, 31 tick species were recorded and 12 domestic animal species, the latter comprising nine livestock and three pet species. More than 50% of the publications were from Western Europe. Island data were extracted and assessed, as islands of the Mediterranean Basin were represented in 16% of the publications and 77.8% of the TBPs reported. Our results show the importance of islands in the monitoring of TBPs, despite the low percentage of publications.
Collapse
|
13
|
Freitas N, Legros V, Cosset FL. Crimean-Congo hemorrhagic fever: a growing threat to Europe. C R Biol 2022; 345:17-36. [DOI: 10.5802/crbiol.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
|
14
|
Molecular Detection of Zoonotic and Non-Zoonotic Pathogens from Wild Boars and Their Ticks in the Corsican Wetlands. Pathogens 2021; 10:pathogens10121643. [PMID: 34959598 PMCID: PMC8707423 DOI: 10.3390/pathogens10121643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Corsica is the main French island in the Mediterranean Sea and has high levels of human and animal population movement. Among the local animal species, the wild boar is highly prevalent in the Corsican landscape and in the island’s traditions. Wild boars are the most commonly hunted animals on this island, and can be responsible for the transmission and circulation of pathogens and their vectors. In this study, wild boar samples and ticks were collected in 17 municipalities near wetlands on the Corsican coast. A total of 158 hunted wild boars were sampled (523 samples). Of these samples, 113 were ticks: 96.4% were Dermacentor marginatus, and the remainder were Hyalomma marginatum, Hyalomma scupense and Rhipicephalus sanguineus s.l. Of the wild boar samples, only three blood samples were found to be positive for Babesia spp. Of the tick samples, 90 were found to be positive for tick-borne pathogens (rickettsial species). These results confirm the importance of the wild boar as a host for ticks carrying diseases such as rickettsiosis near wetlands and recreational sites. Our findings also show that the wild boar is a potential carrier of babesiosis in Corsica, a pathogen detected for the first time in wild boars on the island.
Collapse
|
15
|
Chisu V, Mura L, Foxi C, Masala G. Coxiellaceae in Ticks from Human, Domestic and Wild Hosts from Sardinia, Italy: High Diversity of Coxiella-like Endosymbionts. Acta Parasitol 2021; 66:654-663. [PMID: 33492605 DOI: 10.1007/s11686-020-00324-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Coxiella burnetii is known for its potential as veterinary and human bacterial pathogen. The bacteria have been described in ticks, but their role in transmission of Q fever in humans is considered low. Coxiella endosymbionts closely related to C. burnetii have been also isolated from an extensive range of tick species and evidence is growing that these endosymbionts could be linked to human bacteremia. The aim of this study was to get new information on the presence of Coxiella species in ticks infesting wild and domestic hosts in Sardinia, Italy. METHODS Here, 138 ticks collected from the study area were analyzed for the presence of C. burnetii and Coxiella-like bacteria by polymerase chain reaction (PCR), sequencing and philogenetic analyses using a set of primers targeting the 16S rRNA gene. RESULTS DNA of Coxiella species was detected in 69% of the total ticks examined. Based on phylogenetic analysis, the 16S rRNA Coxiella genotypes identified in this study grouped in strongly supported monophyletic clades with identified reference sequences of CLEs detected from Rhipicephalus, Dermacentor, Haemaphysalis and Ornithodoros species and with Coxiella burnetii strains isolated worldwide. CONCLUSION This study reports the molecular detection of a high diversity of Coxiella-like bacteria in Sardinian ticks and confirms also the presence of C. burnetii in tick species previously identified in the island. The role that Coxiella-like endosymbionts play in Sardinian ticks and in their vertebrate hosts needs to be explored further.
Collapse
|
16
|
Belkahia H, Selmi R, Zamiti S, Daaloul-Jedidi M, Messadi L, Ben Said M. Zoonotic Rickettsia Species in Small Ruminant Ticks From Tunisia. Front Vet Sci 2021; 8:676896. [PMID: 34124229 PMCID: PMC8187766 DOI: 10.3389/fvets.2021.676896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Tick-borne rickettsioses present a significant public health threat among emerging tick-borne diseases. In Tunisia, little is known about tick-borne Rickettsia pathogens. Therefore, the aim of this study was to investigate the presence of Rickettsia species in small ruminant ticks from Tunisia. Adult ticks (n = 694) were collected from goats and sheep in northern Tunisia. Obtained ticks were identified as Rhipicephalus turanicus (n = 434) and Rhipicephalus sanguineus sensu lato (n = 260). Selected ticks (n = 666) were screened for the presence of Rickettsia spp. by PCR targeting a partial sequence of the ompB gene followed by sequence analysis. Rickettsial DNA was detected in 122 (18.3%) tested tick samples. The infection rates in Rh. turanicus and Rh. sanguineus s.l. ticks were 23.4 and 9.5%, respectively. The overall prevalence of rickettsial DNA was markedly higher in ticks collected from goats (23.2%) compared to those infesting sheep (7.9%). The detection of rickettsial DNA was significantly higher in ticks from the governorate of Beja (39.0%) than those from the governorate of Bizerte (13.9%). Two additional genes, the outer membrane protein A gene (ompA) and the citrate synthase gene (gltA), were also targeted for further characterization of the detected Rickettsia species. Genotyping and phylogenetic analysis based on partial sequences (n = 106) of the three different genes revealed that positive ticks are infected with different isolates of two Spotted Fever Group (SFG) Rickettsia, namely, Rickettsia massiliae and Rickettsia monacensis, closely related to those infecting camels and associated ticks from Tunisia, and humans and small ruminant ticks from neighboring countries like Italy, France, and Spain.
Collapse
Affiliation(s)
- Hanène Belkahia
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia.,Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisia
| | - Sayed Zamiti
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Monia Daaloul-Jedidi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisia.,Département des Sciences Fondamentales, Institut Supérieur de Biotechnologie de Sidi Thabet, University of Manouba, Sidi Thabet, Tunisia
| |
Collapse
|
17
|
Chisu V, Loi F, Mura L, Tanda A, Chessa G, Masala G. Molecular detection of Theileria sergentii/orientalis/buffeli and Ehrlichia canis from aborted ovine and caprine products in Sardinia, Italy. Vet Med Sci 2021; 7:1762-1768. [PMID: 33955696 PMCID: PMC8464253 DOI: 10.1002/vms3.510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 11/11/2022] Open
Abstract
The economic impact and losses caused by abortion of small ruminants represent an important threat to livestock industry worldwide. Infectious agents are the most commonly causes of small ruminant abortion and many of which pose a serious threat to human health. The management of abortion outbreaks is essential to understand the transmission, prevention and control of the zoonotic diseases. This study aimed to increase the knowledge about the common known zoonotic pathogens causing abortion (Coxiella burnetii, Chlamydia abortus and Toxoplasma gondii) circulating in Sardinia. In addition, the occurrence of other infectious agents that, until now, had never been identified in abortion samples and which might be cocirculating during the abortion outbreaks were also considered. In this study, 125 abortion samples collected from 91 small ruminant farms were screened for the presence of Babesia/Theileria spp., Ehrlichia canis, Anaplasma spp., Chlamydia spp., C. burnetii and T. gondii by PCR analyses and sequencing. This is the first evidence on the presence of Theileria sergenti/orientalis/buffeli group and Eh. canis in 22 (22/125; 18%) and 26 (26/125; 21%) abortion products from small ruminants, respectively. Chlamydia abortus, C. burnetii and T. gondii were also detected in brain, liver, spleen and placentae at 46% (58/125), 34% (42/125) and 2% (2/125), respectively. This study highlights that pathogens with epizootic and zoonotic potential are circulating in the island and could be involved directly or in association with other pathogens as possible cause of ruminant abortion. Further studies are needed to fully assess the impact of Theileria sergenti/orientalis/buffeli group and Eh. canis on ruminant abortion and their real zoonotic risk in the island.
Collapse
Affiliation(s)
- Valentina Chisu
- Istituto Zooprofilattico Sperimentale della Sardegna 'G. Pegreffi', Sassari, Italy
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, Cagliari, Italy
| | - Lorena Mura
- Istituto Zooprofilattico Sperimentale della Sardegna 'G. Pegreffi', Sassari, Italy
| | - Antonio Tanda
- Istituto Zooprofilattico Sperimentale della Sardegna 'G. Pegreffi', Sassari, Italy
| | - Giovanna Chessa
- Istituto Zooprofilattico Sperimentale della Sardegna 'G. Pegreffi', Sassari, Italy
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale della Sardegna 'G. Pegreffi', Sassari, Italy
| |
Collapse
|
18
|
Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited-A Systematic Review. Front Vet Sci 2021; 8:655715. [PMID: 33981744 PMCID: PMC8109271 DOI: 10.3389/fvets.2021.655715] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.
Collapse
Affiliation(s)
- Sophia Körner
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| | - Gustavo R. Makert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
19
|
Abstract
There is no updated information on the spread of Rickettsiales in Italy. The purpose of our study is to take stock of the situation on Rickettsiales in Italy by focusing attention on the species identified by molecular methods in humans, in bloodsucking arthropods that could potentially attack humans, and in animals, possible hosts of these Rickettsiales. A computerized search without language restriction was conducted using PubMed updated as of December 31, 2020. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was followed. Overall, 36 species of microorganisms belonging to Rickettsiales were found. The only species identified in human tissues were Anaplasma phagocytophilum,Rickettsia conorii, R. conorii subsp. israelensis, R. monacensis, R. massiliae, and R. slovaca. Microorganisms transmissible by bloodsucking arthropods could cause humans pathologies not yet well characterized. It should become routine to study the pathogens present in ticks that have bitten a man and at the same time that molecular studies for the search for Rickettsiales can be performed routinely in people who have suffered bites from bloodsucking arthropods.
Collapse
|
20
|
Chisu V, Loi F, Foxi C, Chessa G, Masu G, Rolesu S, Masala G. Coexistence of Tick-Borne Pathogens in Ticks Collected from their Hosts in Sardinia: an Update. Acta Parasitol 2020; 65:999-1004. [PMID: 32557083 DOI: 10.1007/s11686-020-00240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE In recent decades, the incidence and distribution of tick-borne diseases have increased worldwide, attracting the attention of both clinicians and veterinarians. In Sardinia, notifiable tick-borne diseases are spreading and Mediterranean spotted fever (MSF) rickettsiosis continues to be endemic with an incidence of 10/10,000 inhabitants per year. Furthermore, ticks can transfer more than one pathogen after a single blood meal from a coinfected host or after multiple feeding on different infected hosts. The aim of this study was to update information on ticks and tick-borne diseases, focusing also on the presence of coinfection in Sardinian ticks. METHODS The presence of protozoan (Theileria and Babesia species) and bacterial pathogens (Rickettsia spp., Anaplasma spp., Ehrlichia canis, Chlamydia spp., Bartonella spp., and Coxiella burnetii) was evaluated in 230 ticks collected from different hosts in Sardinia. RESULTS PCR and sequencing analyses highlighted that the 59% of ticks were infected with at least one pathogen while the 15% resulted in coinfection by double and triple pathogens. Among the double co-infections, those of E. canis/C. burnetii, Babesia sp. Anglona/Ch. psittaci and Babesia sp. Anglona/C. burnetii revealed a statistically significant index of coinfection. CONCLUSION This study identifies new pathogens in Sardinian ticks and updates the information about tick-borne diseases in the island. We also provide new results on the presence of coinfections in collected ticks. The knowledge about the diversity of ticks and tick-borne diseases circulating in Sardinia is a necessary step toward implementing effective tick-borne disease prevention and control programs.
Collapse
Affiliation(s)
- Valentina Chisu
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy.
| | - Federica Loi
- OEVR-Osservatorio Epidemiologico Veterinario Regionale Della Sardegna, Cagliari, Italy
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| | - Giovanna Chessa
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| | - Gabriella Masu
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| | - Sandro Rolesu
- OEVR-Osservatorio Epidemiologico Veterinario Regionale Della Sardegna, Cagliari, Italy
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| |
Collapse
|
21
|
Coimbra-Dores MJ, Jaarsma RI, Carmo AO, Maia-Silva M, Fonville M, da Costa DFF, Brandão RML, Azevedo F, Casero M, Oliveira AC, Afonso SMDS, Sprong H, Rosa F, Dias D. Mitochondrial sequences of Rhipicephalus and Coxiella endosymbiont reveal evidence of lineages co-cladogenesis. FEMS Microbiol Ecol 2020; 96:5824628. [PMID: 32329790 DOI: 10.1093/femsec/fiaa072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Rhipicephalus ticks are competent vectors of several pathogens, such as Spotted Fever Group Rickettsiae (SFGR) and many Babesia species. Within this genus, different R. sanguineus s.l. lineages show an unequal vector competence and resistance regarding some pathogenic strains. Current literature supports that tick endosymbionts may play an essential role in the transmission ability of a vector. Indeed, the microbial community of Rhipicephalus seems to be dominated by Coxiella-like endosymbionts (CLE). Still, their co-evolutionary associations with the complicated phylogeny of Rhipicephalus lineages and their transmissible pathogens remain unclear. We performed a phylogenetic congruence analysis to address whether divergent R. sanguineus s.l. lineages had a different symbiont composition. For that, we applied a PCR based approach to screen part of the microbial community present in 279 Rhipicephalus ticks from the Iberian Peninsula and Africa. Our analyses detected several qPCR-positive signals for both SFGR and Babesia species, of which we suggest R. sanguineus-tropical lineage as a natural vector of Babesia vogeli and R. sanguineus-temperate lineage of SFGR. The acquisition of 190 CLE sequences allowed to evaluate co-phylogenetic associations between the tick and the symbiont. With this data, we observed a strong but incomplete co-cladogenesis between CLE strains and their Rhipicephalus tick lineages hosts.
Collapse
Affiliation(s)
- Maria João Coimbra-Dores
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ryanne Isolde Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Anderson Oliveira Carmo
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana Maia-Silva
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Manoj Fonville
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | | | - Ricardo Manuel Lemos Brandão
- Wild Animal Ecology, Rehabilitation and Surveillance Center (CERVAS), Serra da Estrela Natural Park, 6290-909 Gouveia, Portugal
| | - Fábia Azevedo
- Wildlife Rehabilitation and Investigation Center (RIAS), Ria Formosa Natural Park, 8700-225 Olhão, Portugal
| | - María Casero
- Wildlife Rehabilitation and Investigation Center (RIAS), Ria Formosa Natural Park, 8700-225 Olhão, Portugal
| | - Ana Cristina Oliveira
- Casa dos Animais Veterinary Clinic, Travessa Quinta da Rosa Linda, Morro Bento, Luanda, Angola
| | | | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Fernanda Rosa
- Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.,Centre for Environmental and Marine Studies (CESAM), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Deodália Dias
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
22
|
Garcia-Vozmediano A, Giglio G, Ramassa E, Nobili F, Rossi L, Tomassone L. Dermacentor marginatus and Dermacentor reticulatus, and Their Infection by SFG Rickettsiae and Francisella-Like Endosymbionts, in Mountain and Periurban Habitats of Northwestern Italy. Vet Sci 2020; 7:E157. [PMID: 33081422 PMCID: PMC7712301 DOI: 10.3390/vetsci7040157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
We investigated the distribution of Dermacentor spp. and their infection by zoonotic bacteria causing SENLAT (scalp eschar neck lymphadenopathy) in Turin province, northwestern Italy. We collected ticks in a mountain and in a periurban park, from vegetation and different animal sources, and we sampled tissues from wild boar. Dermacentor marginatus (n = 121) was collected in both study areas, on vegetation, humans, and animals, while D. reticulatus (n = 13) was exclusively collected on wild boar from the periurban area. Rickettsia slovaca and Candidatus Rickettsia rioja infected 53.1% of the ticks, and R. slovaca was also identified in 11.3% of wild boar tissues. Bartonella spp. and Francisella tularensis were not detected, however, Francisella-like endosymbionts infected both tick species (9.2%). Our findings provide new insights on the current distribution of Dermacentor spp. and their infection with a spotted-fever group rickettsiae in the Alps region. Wild boar seem to play a major role in their eco-epidemiology and dispersion in the study area. Although further studies are needed to assess the burden of rickettsial diseases, our results highlight the risk of contracting SENLAT infection through Dermacentor spp. bites in the region.
Collapse
Affiliation(s)
- Aitor Garcia-Vozmediano
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, Italy; (G.G.); (L.R.)
| | - Giorgia Giglio
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, Italy; (G.G.); (L.R.)
| | - Elisa Ramassa
- Ente di gestione delle aree protette delle Alpi Cozie, Via Fransuà Fontan, 1, 10050 Salbertrand, Italy;
| | - Fabrizio Nobili
- Ente di Gestione delle Aree Protette del Po Torinese, Corso Trieste, 98, 10024 Moncalieri, Italy;
| | - Luca Rossi
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, Italy; (G.G.); (L.R.)
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, Italy; (G.G.); (L.R.)
| |
Collapse
|
23
|
Pintore E, Olivieri E, Floriano AM, Sassera D, Sanna N, Garippa G. First detection of Amblyomma variegatum and molecular finding of Rickettsia africae in Sardinia, Italy. Ticks Tick Borne Dis 2020; 12:101561. [PMID: 33007667 DOI: 10.1016/j.ttbdis.2020.101561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Here we present the first detection of a male Amblyomma variegatum tick infesting a sheep on the island of Sardinia, as well as the detection of a pathogen, Rickettsia africae, in DNA extracted from this tick. The tick, the second individual of this species reported in Italy (the first one was reported in Sicily by Albanese in 1971) was collected in August 2018 from the inguinal region of an adult female sheep in a farm located near Sassari (North-West Sardinia). The tick was identified as an adult A. variegatum male under a stereomicroscope using morphological keys. A phylogenetic analysis showed that the 12S sequence clustered with that of African A. variegatum individuals and was embedded within the previously identified West African group. We tested the tick for the presence of microorganisms of the genera Ehrlichia, Rickettsia, Anaplasma, Theileria and Babesia, using published PCR protocols. The tick was found positive to Rickettsia and the obtained sequence matched at 100 % identity with R. africae. The area where the tick was detected was inspected on multiple occasions, looking for other specimens of A. variegatum, without any results. In the same period another male specimen of A. variegatum was found in Haute Corse in 2019. The authors' hypothesis is that the presence of the A. variegatum specimen is an occasional finding, probably linked to the migrating birds that cross Sardinia and Corsica from Africa during summer. Although this may have been an incidental finding, it must be considered that global warming could increase the risk of establishment of colonies of these ticks, that show a strong spreading capability. It is also important to emphasize that this tick species is a proven vector and reservoir of R. africae, an uncommon zoonotic pathogen in Italy, thus additional monitoring must be performed as the establishment of a stable population in Sardinia could represent a serious veterinary and public health issue.
Collapse
Affiliation(s)
- Elisabetta Pintore
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | - Emanuela Olivieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Nino Sanna
- Independent Veterinarian, Sassari, Italy.
| | - Giovanni Garippa
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| |
Collapse
|
24
|
Chisu V, Foxi C, Masu G, D' Amaddio B, Masala G. Detection of potentially pathogenic bacteria from Ixodes ricinus carried by pets in Tuscany, Italy. Vet Rec Open 2020; 7:e000395. [PMID: 33024565 PMCID: PMC7500295 DOI: 10.1136/vetreco-2020-000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/03/2022] Open
Abstract
Background Ticks are vectors of disease-causing pathogens that pose a serious threat to animals and people. Dogs and cats are exposed to tick infestation in multiple ways and can easily transport infected ticks into domestic environments and potentially transfer them to people. Pet owners are at increased risk of picking up ticks from their pets and developing tickborne diseases. This study aims to detect the presence of pathogens of potential public health interest in ticks removed from cats and dogs in Tuscany, Italy. Methods The collected ticks were screened for the presence of protozoan (Theileria species and Babesia species) and bacterial (Rickettsia species, Anaplasma species, Ehrlichia species, Chlamydia species, Bartonella species and Coxiella burnetii) pathogens using PCR. Results PCR and sequencing analysis revealed that 3 per cent of the ticks were PCR-positive for the presence of Rickettsia helvetica DNA, 5 per cent of ticks were PCR-positive for Bartonella henselae DNA, and 46 per cent of ticks were PCR-positive for Chlamydia psittaci and Chlamydia abortus DNA. None of the examined ticks was PCR-positive for Theileria species, Babesia species, Anaplasma species, Ehrlichia canis or Coxiella burnetii DNA. Conclusion The results of this preliminary study highlight the importance of monitoring companion animals as indicators to evaluate the health status of their owners. Preventive measures are necessary to limit the spread of zoonotic pathogens from companion animals to people within the home environment.
Collapse
Affiliation(s)
- Valentina Chisu
- Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna G Pegreffi, Sassari, Italy
| | - Cipriano Foxi
- Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna G Pegreffi, Sassari, Italy
| | - Gabriella Masu
- Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna G Pegreffi, Sassari, Italy
| | | | - Giovanna Masala
- Animal Health Department, Istituto Zooprofilattico Sperimentale della Sardegna G Pegreffi, Sassari, Italy
| |
Collapse
|
25
|
Zobba R, Chisu V, Pinna Parpaglia ML, Spezzigu A, Masala G, Schianchi E, Alberti A. Molecular characterization and phylogenetic analysis of Babesia and Theileria spp. in Sardinian ruminants. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 22:100453. [PMID: 33308718 DOI: 10.1016/j.vprsr.2020.100453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Tick-borne diseases (TBDs) caused by Theileria and Babesia spp. are common in tropical and subtropical regions. This study investigates the presence of Theileria and Babesia spp. in ruminants from a subtropical Mediterranean region (Sardinia, Italy), a hotspot for ticks infestations. A total of 141 blood samples from healthy and symptomatic ruminants (showing symptoms consistent with tick-borne disease) were screened using a polymerase chain reaction test based on the amplification of the 18 s rRNA fragment. A total of 19/50 sheep (38%), 34/43 bovine (79.1%), and 5/48 goats (10.4%) tested positive to Babesia/Theileria. Phylogenetic analysis assigned all sequences obtained from sheep to the T. ovis cluster, while bovine and goats sequence types grouped in the Theileria buffeli/sergenti/orientalis group. One sequence type, isolated from a symptomatic bovine, clustered with B. major. Information on presence and frequency of piroplasms in ruminants increase our knowledge about the circulation of these pathogens in Sardinian animals and add up to previous studies conducted in ticks in the same area. Results also highlight the importance of subtropical Mediterranean environments as hotspots for ruminants piroplasmosis with potential impact on Veterinary Health.
Collapse
Affiliation(s)
- Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control (MCDC), University of Sassari, Italy
| | - Valentina Chisu
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Antonio Spezzigu
- Embryo Sardegna, Technology, Reproduction and Fertility, 07034 Perfugas, Località Suiles, Sassari, Italy
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Eleonora Schianchi
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control (MCDC), University of Sassari, Italy.
| |
Collapse
|
26
|
Valcárcel F, González J, González MG, Sánchez M, Tercero JM, Elhachimi L, Carbonell JD, Olmeda AS. Comparative Ecology of Hyalomma lusitanicum and Hyalomma marginatum Koch, 1844 (Acarina: Ixodidae). INSECTS 2020; 11:insects11050303. [PMID: 32414220 PMCID: PMC7290797 DOI: 10.3390/insects11050303] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/25/2022]
Abstract
The genus Hyalomma belongs to the Ixodidae family and includes many tick species. Most species in this genus are African species, but two of them, Hyalomma lusitanicum and Hyalomma marginatum, are also found in Europe and, owing to their morphological similarity, it is very difficult to tell them apart. This is a major concern because their phenology and vector capacities are quite different. Moreover, they share many habitats and both are currently spreading to new areas, probably due to climate change and animal/human movements. In this study, we review the described ecology of the two species and provide further interesting data on H. lusitanicum based on the authors' experience, which could be useful in assessing the risk they pose to humans and animals.
Collapse
Affiliation(s)
- Félix Valcárcel
- Grupo de Parasitología Animal, Animalario del Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain; (M.G.G.); (M.S.)
- Correspondence:
| | - Julia González
- Villamagna S.A., Finca ‘‘La Garganta’’, 14440 Villanueva de Córdoba, Spain; (J.G.); (J.M.T.)
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Marta G. González
- Grupo de Parasitología Animal, Animalario del Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain; (M.G.G.); (M.S.)
- Villamagna S.A., Finca ‘‘La Garganta’’, 14440 Villanueva de Córdoba, Spain; (J.G.); (J.M.T.)
| | - María Sánchez
- Grupo de Parasitología Animal, Animalario del Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain; (M.G.G.); (M.S.)
- Villamagna S.A., Finca ‘‘La Garganta’’, 14440 Villanueva de Córdoba, Spain; (J.G.); (J.M.T.)
| | - José María Tercero
- Villamagna S.A., Finca ‘‘La Garganta’’, 14440 Villanueva de Córdoba, Spain; (J.G.); (J.M.T.)
| | - Latifa Elhachimi
- Département de Parasitologie et Santé Publique, Institut Agronomique et Vétérinaire Hassan II, Rabat-Instituts B.P. 6202, Morocco;
| | - Juan D. Carbonell
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCM, 28040 Madrid, Spain; (J.D.C.); (A.S.O.)
| | - A. Sonia Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCM, 28040 Madrid, Spain; (J.D.C.); (A.S.O.)
| |
Collapse
|
27
|
Grech-Angelini S, Stachurski F, Vayssier-Taussat M, Devillers E, Casabianca F, Lancelot R, Uilenberg G, Moutailler S. Tick-borne pathogens in ticks (Acari: Ixodidae) collected from various domestic and wild hosts in Corsica (France), a Mediterranean island environment. Transbound Emerg Dis 2019; 67:745-757. [PMID: 31630482 DOI: 10.1111/tbed.13393] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Corsica is a mountainous French island in the north-west of the Mediterranean Sea presenting a large diversity of natural environments where many interactions between humans, domestic animals and wild fauna occur. Despite this favourable context, tick-borne pathogens (TBPs) have not systematically been investigated. In this study, a large number of TBPs were screened in ticks collected over a period of one year from domestic and wild hosts in Corsica. More than 1,500 ticks belonging to nine species and five genera (Rhipicephalus, Hyalomma, Dermacentor, Ixodes and Haemaphysalis) were analysed individually or pooled (by species, gender, host and locality). A real-time microfluidic PCR was used for high-throughput screening of TBP DNA. This advanced methodology enabled the simultaneous detection of 29 bacterial and 12 parasitic species (including Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia and Theileria). The Crimean-Congo haemorrhagic fever (CCHF) virus was investigated individually in tick species known to be vectors or carriers of this virus. In almost half of the tick pools (48%), DNA from at least one pathogen was detected and eleven species of TBPs from six genera were reported. TBPs were found in ticks from all collected hosts and were present in more than 80% of the investigated area. The detection of DNA of certain species confirmed the previous identification of these pathogens in Corsica, such as Rickettsia aeschlimannii (23% of pools), Rickettsia slovaca (5%), Anaplasma marginale (4%) and Theileria equi (0.4%), but most TBP DNA identified had not previously been reported in Corsican ticks. This included Anaplasma phagocytophilum (16%), Rickettsia helvetica (1%), Borrelia afzelii (0.7%), Borrelia miyamotoi (1%), Bartonella henselae (2%), Babesia bigemina (2%) and Babesia ovis (0.5%). The high tick infection rate and the diversity of TBPs reported in this study highlight the probable role of animals as reservoir hosts of zoonotic pathogens and human exposure to TBPs in Corsica.
Collapse
Affiliation(s)
| | - Frédéric Stachurski
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - François Casabianca
- INRA, UR045 Laboratoire de Recherches sur le Développement de l'élevage, Corte, France
| | - Renaud Lancelot
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France
| | | | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
28
|
Chisu V, Foxi C, Masala G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:245-254. [PMID: 31650337 DOI: 10.1007/s10493-019-00427-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Ticks are vectors of a wide variety of human and animal pathogens as well as non-pathogenic microorganisms acting as endosymbionts and whose role in ticks is still little known. Symbionts such as Francisella-like endosymbionts (FLEs) are members of Francisellaceae family with unknown pathogenicity, detected in both hard and soft ticks. A total of 236 ticks collected from several sites in Sardinia were screened for Francisella species by PCR using primers targeting a fragment of the 16S rRNA gene. DNA of Francisella was detected in 5.1% (12/236) of the ticks tested. Sequencing results revealed that seven Rhipicephalus sanguineus s.l., three Hyalomma marginatum, one Hy. lusitanicum, and one Rh. bursa ticks exhibited DNA with 99-100% similarity to Francisella-like endosymbionts isolated from different tick species all over the world. Further research is needed in order to better characterize FLE strains obtained in Sardinia and to better understand if their presence could be related to the infection with other zoonotic pathogens.
Collapse
Affiliation(s)
- Valentina Chisu
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, 8, 07100, Sassari, Italy.
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, 8, 07100, Sassari, Italy
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, 8, 07100, Sassari, Italy
| |
Collapse
|
29
|
Chisu V, Alberti A, Zobba R, Foxi C, Masala G. Molecular characterization and phylogenetic analysis of Babesia and Theileria spp. in ticks from domestic and wild hosts in Sardinia. Acta Trop 2019; 196:60-65. [PMID: 31100271 DOI: 10.1016/j.actatropica.2019.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
Abstract
Piroplasmoses are tick-borne protozoan diseases caused by hemoprotozoan parasites with considerable economic, veterinary and medical impact worldwide. Here, the presence and diversity of piroplasmids was investigated in ticks collected from domestic and wild hosts in a typical subtropical environment of Sardinia island by standard PCR, sequencing, and phylogenetic analyses. We demonstrate the presence of strains closely related to the Theileria buffeli/sergentii/orientalis complex in Rhipicephalus sanguineus s.l., Rh. bursa, Rh. annulatus, Hyalomma marginatum, Dermacentor marginatus and Haemaphysalis punctata ticks. A strain detected in two Rh. sanguineus s.l. ticks collected from dogs grouped with T. equi, the agent of equine piroplasmosis. T. ovis, the main etiological agent of ovine theileriosis, was detected in one Rh. bursa tick from a mouflon. Babesia bigemina, the causative agent of bovine babesiosis, was detected in two Rh. sanguineus s.l. ticks from dogs. Our findings expand the knowledge on the repertoire of tick-borne pathogens present in Mediterranean ticks. Further analyses are needed to determine the role of ticks in the biological or mechanical transmission of piroplasmoses in this area.
Collapse
|
30
|
First molecular detection of the human pathogen Rickettsia raoultii and other spotted fever group rickettsiae in Ixodid ticks from wild and domestic mammals. Parasitol Res 2018; 117:3421-3429. [PMID: 30078071 DOI: 10.1007/s00436-018-6036-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Tick-borne rickettsioses are recognized as emerging vector-borne infections capable of infecting both human and animal hosts worldwide. This study focuses on the detection and molecular identification of species belonging to the genus Rickettsia in ticks sampled from human, vegetation, and domestic and wild vertebrates in Sardinia. Ticks were tested by PCR targeting gltA, ompA, and ompB genes, followed by sequencing analysis. The results provide evidences of a great variety of Rickettsia species of the Spotted fever group in Ixodid ticks and allow establishing for the first time the presence of R. raoultii in Rhipicephalus sanguineus s.l. and Dermacentor marginatus ticks in Sardinia island. Rickettsia massiliae was detected on R. sanguineus s.l. and R. aeschlimannii in Hyalomma marginatum and Hy. lusitanicum ticks. In addition, eight D. marginatus ticks were positive for R. slovaca. This study provides further evidence that different Rickettsia species are widespread in Sardinian ticks and that detailed investigations are required to understand the role these tick species play on spotted fever group rickettsiae circulation. More studies will provide new background on molecular epidemiology of zoonotic rickettsiae, the geographical distribution of tick-transmitted rickettsial pathogens, and the involvement of vertebrate hosts in propagation and maintenance of these bacteria in nature.
Collapse
|