1
|
Laatamna A, Rollins RE, Reghaissia N, Chellia H, Rubel F, Chitimia-Dobler L. Ixodes inopinatus infesting cattle in high plateaus areas from North-Eastern Algeria: Sympatric occurrence with Ixodes ricinus, comments on its geographic distribution, and detection of Rickettsia spp. Vet Parasitol Reg Stud Reports 2025; 60:101248. [PMID: 40280685 DOI: 10.1016/j.vprsr.2025.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Ixodes ricinus and Ixodes inopinatus are closely related sister taxa which show high morphological similarity resulting in challenges to proper species determination. It is unclear how these two species are geographically distributed in areas where both species could occur (i.e., North Africa) and what this could mean towards potential pathogenic microorganisms. Here we report on Ixodes ticks (n = 31) collected from cattle in high plateau areas (Guelma province) of north-eastern Algeria. Three Ixodes species (I. ricinus, n = 10; I. inopinatus, n = 19; I. ventalloi, n = 2) were identified morphological and confirmed molecularly through analysis of the trospa gene sequence. Clear morphological markers between the three species were found in line with the original descriptions, although molecular analysis did not support morphological identification for all I. ricinus and I. inopinatus ticks (n = 7). With this we found no significant association between the molecular and morphological identification of I. inopinatus (phi coefficient of rϕ = 0.088, p = 0.71). Taking molecular identification as a standard, a literature search was performed to determine the geographic extent of I. inopinatus and associate this with Köppen and Geiger climate classifications. Geographically, I. inopinatus is likely restricted to the western Mediterranean Basin of North Africa and Europe and most likely adapted to the Mediterranean climate (Csa). The three investigated tick species were tested to be positive for DNA of Rickettsia helvetica and Rickettsia monacensis. This study confirmed the sympatric presence of I. inopinatus and I. ricinus as well as reported, for the first time, the occurrence of I. ventalloi in the high plateaus from north-eastern Algeria. In addition, the present study highlights the detection of R. helvetica and R. monacensis in I. inopinatus infesting cattle, which represent valuable findings of significant epidemiological interest, opening potential questions on the influence I. inopinatus could play in relation to rickettsioses in cattle.
Collapse
Affiliation(s)
- AbdElkarim Laatamna
- Faculty of Nature and Life Sciences, University of Djelfa, Moudjbara Road, BP 3117 Djelfa, Algeria.
| | - Robert E Rollins
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Nassiba Reghaissia
- Institute of Agronomic and Veterinary Sciences, University of Souk Ahras, Annaba Road, 41000 Souk Ahras, Algeria
| | - Houcine Chellia
- Directorate of Agricultural Services of Guelma, Neighborhood Bara Lakhdar, Sedrata Road, Guelma, Algeria
| | - Franz Rubel
- Climate Change & Infectious Diseases Group, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Munich, Germany; Fraunhofer Institute of Immunology, Infection and Pandemic Research, Penzberg, Munich, Germany; Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| |
Collapse
|
2
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
3
|
Daněk O, Hrbatová A, Volfová K, Ševčíková S, Lesiczka P, Nováková M, Ghodrati S, Hrazdilova K, Veneziano V, Napoli E, Otranto D, Montarsi F, Mihalca AD, Mechouk N, Adamík P, Modrý D, Zurek L. Italian peninsula as a hybridization zone of Ixodes inopinatus and I. ricinus and the prevalence of tick-borne pathogens in I. inopinatus, I. ricinus, and their hybrids. Parasit Vectors 2024; 17:196. [PMID: 38685096 PMCID: PMC11059663 DOI: 10.1186/s13071-024-06271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.
Collapse
Affiliation(s)
- Ondřej Daněk
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Alena Hrbatová
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
| | - Karolina Volfová
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sylvie Ševčíková
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Paulina Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Markéta Nováková
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sajjad Ghodrati
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristyna Hrazdilova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Fabrizio Montarsi
- Instituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Noureddine Mechouk
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Peter Adamík
- Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| | - David Modrý
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludek Zurek
- CEITEC University of Veterinary Sciences, Brno, Czech Republic.
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Hrazdilova K, Danek O, Hrbatova A, Cervena B, Noskova E, Adamik P, Votypka J, Mihalca AD, Noureddine M, Modry D, Zurek L. Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus. Parasit Vectors 2023; 16:354. [PMID: 37814284 PMCID: PMC10561450 DOI: 10.1186/s13071-023-05971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Ixodes ricinus is an important vector of several pathogens, primarily in Europe. Recently, Ixodes inopinatus was described from Spain, Portugal, and North Africa and then reported from several European countries. In this study, a multiplex polymerase chain reaction (PCR) was developed to distinguish I. ricinus from I. inopinatus and used in the surveillance of I. inopinatus in Algeria (ALG) and three regions in the Czech Republic (CZ). METHODS A multiplex PCR on TROSPA and sequencing of several mitochondrial (16S rDNA, COI) and nuclear markers (TROSPA, ITS2, calreticulin) were used to differentiate these two species and for a subsequent phylogenetic analysis. RESULTS Sequencing of TROSPA, COI, and ITS2 separated these two species into two subclades, while 16S rDNA and calreticulin could not distinguish I. ricinus from I. inopinatus. Interestingly, 23 nucleotide positions in the TROSPA gene had consistently double peaks in a subset of ticks from CZ. Cloning of these PCR products led to a clear separation of I. ricinus and I. inopinatus indicating hybridization and introgression between these two tick taxa. Based on a multiplex PCR of TROSPA and analysis of sequences of TROSPA, COI, and ITS2, the majority of ticks in CZ were I. ricinus, no I. inopinatus ticks were found, and 10 specimens showed signs of hybridization. In contrast, most ticks in ALG were I. inopinatus, four ticks were I. ricinus, and no signs of hybridization and introgression were detected. CONCLUSIONS We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.
Collapse
Affiliation(s)
- Kristyna Hrazdilova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Ondrej Danek
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
| | - Alena Hrbatova
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic
| | - Barbora Cervena
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Noskova
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Peter Adamik
- Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jan Votypka
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, Budějovice, Czech Republic
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Mechouk Noureddine
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - David Modry
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic.
- CEITEC, University of Veterinary Sciences, Brno, Czech Republic.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Kitryt N, Baltrnait L. Ectoparasitic mites, ticks (Acari: Trombidiformes, Mesostigmata, Ixodida) and insects (Insecta: Psocodea, Siphonaptera) of ground-dwelling small mammals in the Baltic States. An annotated checklist. Zootaxa 2023; 5353:1-46. [PMID: 38221425 DOI: 10.11646/zootaxa.5353.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Indexed: 01/16/2024]
Abstract
This paper presents an annotated checklist of 77 species of ectoparasitic mites, ticks (Acari: Trombidiformes, Mesostigmata, Ixodida) and insects (Insecta: Psocodea, Siphonaptera) found on ground-dwelling small mammals in the Baltic States (Estonia, Latvia, Lithuania). Eight species of five genera of chigger mites (Trombidiformes: Trombiculidae), 26 species of eight genera of laelapid mites (Mesostigmata: Laelapidae), six species of two genera of ixodid ticks (Ixodida: Ixodidae), 11 species of three genera of blood-sucking lice (Psocodea: Hoplopleuridae, Pediculidae, Polyplacidae) and 26 species of 15 genera of fleas (Siphonaptera: Ceratophyllidae, Ctenophthalmidae, Hystrichopsyllidae, Pulicidae) were recorded on ground-dwelling small mammals in the Baltic States. Neotrombicula japonica (Tanaka, Kaiwa, Teramura & Kagaya), Neotrombicula vulgaris (Schluger), Miyatrombicula muris (Oudemans), Hoplopleura edentula Fahrenholz and Polyplax hannswrangeli Eichler are recorded for the first time in the Baltic States.
Collapse
Affiliation(s)
- Neringa Kitryt
- Nature Research Centre; Akademijos Street 2; LT-08412 Vilnius; Lithuania.
| | - Laima Baltrnait
- Nature Research Centre; Akademijos Street 2; LT-08412 Vilnius; Lithuania.
| |
Collapse
|
6
|
Wodecka B, Kolomiiets V. Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland. Life (Basel) 2023; 13:life13040972. [PMID: 37109501 PMCID: PMC10143352 DOI: 10.3390/life13040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector for different Borrelia species. To date, eleven Borreliella species were detected in the natural populations of I. ricinus. Recently, two North American species have been detected in ticks parasitizing bats and red foxes in Europe, i.e., B. lanei and B. californiensis pointing to the necessity for searching for them in natural tick populations. In this study, using the coxI molecular marker only I. ricinus was identified in field-collected ticks with the exception of individual specimens of Haemaphysalis concinna. Using the flaB gene and mag-trnI intergenic spacer as molecular markers 14 Borreliaceae species have been detected with various frequencies in different parts of northern Poland. Among infected ticks, the most frequent were Borreliella (Bl.) afzelii (29.4%) and Bl. garinii (20.0%), followed by Bl. spielmanii, Bl. valaisiana, Bl. lanei, Bl. californiensis, B. miyamotoi, Bl. burgdorferi, Bl. carolinensis, Bl. americana, B. turcica, Bl. lusitaniae, Bl. bissettiae and Bl. finlandensis. Three of the above-mentioned species, i.e., Bl. lanei, Bl. californiensis and B. turcica were detected in this study for the first time in the natural ixodid tick population in Europe. The existence of the newly detected spirochetes increases their total diversity in Europe and points to the necessity of careful identification and establishment of the actual distribution of all Borreliaceae species transmitted by I. ricinus.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| | - Valentyna Kolomiiets
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| |
Collapse
|
7
|
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023; 12:267. [PMID: 36839539 PMCID: PMC9967256 DOI: 10.3390/pathogens12020267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
8
|
Reynolds C, Kontschán J, Takács N, Solymosi N, Sándor AD, Keve G, Hornok S. Shift in the seasonality of ixodid ticks after a warm winter in an urban habitat with notes on morphotypes of Ixodes ricinus and data in support of cryptic species within Ixodes frontalis. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:127-138. [PMID: 36282440 PMCID: PMC9663398 DOI: 10.1007/s10493-022-00756-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/12/2022] [Indexed: 06/01/2023]
Abstract
This study was initiated to assess the seasonality and to investigate the morphology of questing ixodid ticks in an urban habitat in Central Europe, Hungary. A neglected part of a large cemetery, with sparse tree covering and dense lower vegetation, was sampled monthly from February 2019 to May 2021. All ticks were analyzed morphologically, and selected specimens by amplifying and sequencing two genetic markers. During the study 3818 ticks were collected, including Ixodes ricinus (n = 2772), Ixodes frontalis (n = 350) and Haemaphysalis concinna (n = 696). Ixodes ricinus adults and nymphs showed year-round activity, whereas H. concinna was not active during winter months and early spring. Most I. frontalis nymphs were collected in late winter and early spring, whereas the peak activity of larvae was during late autumn. Interestingly, during the spring, the peak activity of I. ricinus adults and nymphs was later (in May) when preceded by a warm winter in 2020. In contrast, the 2019 and 2021 spring activity peaks occurred in March and April after sharply rising temperatures in February. This shift in the peak activity of I. ricinus coincided with the initiation of questing activity of H. concinna. Three notably different morphotypes and four malformed specimens of I. ricinus were found. However, these were not significantly different in their mitochondrial haplotypes and phylogenetic clustering from typical specimens of this species. On the other hand, I. frontalis was represented by two remarkably different haplogroups, between which in the nymph stage there were no recognizable morphological differences, suggesting the status of these as cryptic species.
Collapse
Affiliation(s)
- Ciara Reynolds
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Jenő Kontschán
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D Sándor
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary.
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary.
| |
Collapse
|
9
|
Bell-Sakyi L, Hartley CS, Khoo JJ, Forth JH, Palomar AM, Makepeace BL. New Cell Lines Derived from European Tick Species. Microorganisms 2022; 10:microorganisms10061086. [PMID: 35744603 PMCID: PMC9228755 DOI: 10.3390/microorganisms10061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Tick cell lines are important tools for research on ticks and the pathogens they transmit. Here, we report the establishment of ten new cell lines from European ticks of the genera Argas, Dermacentor, Hyalomma, Ixodes and Rhipicephalus originating from Germany and Spain. For each cell line, the method used to generate the primary culture, a morphological description of the cells and species confirmation by sequencing of the partial 16S rRNA gene are presented. Further molecular analysis of the two new Ixodes ricinus cell lines and three existing cell lines of the same species revealed genetic variation between cell lines derived from ticks collected in the same or nearby locations. Collectively, these new cell lines will support research into a wide range of viral, bacterial and protozoal tick-borne diseases prevalent in Europe.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
- Correspondence:
| | - Catherine S. Hartley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| | - Jing Jing Khoo
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| | - Jan Hendrik Forth
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany;
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ana M. Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, 26006 Logroño, La Rioja, Spain;
| | - Benjamin L. Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK; (C.S.H.); (J.J.K.); (B.L.M.)
| |
Collapse
|
10
|
Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain. Ticks Tick Borne Dis 2022; 13:101961. [DOI: 10.1016/j.ttbdis.2022.101961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
|